电磁场与电磁波试题及答案.
《电磁场与电磁波》期末复习题及答案

《电磁场与电磁波》期末复习题及答案一,单项选择题1.电磁波的极化特性由__B ___决定。
A.磁场强度B.电场强度C.电场强度和磁场强度D. 矢量磁位2.下述关于介质中静电场的基本方程不正确的是__D ___A. ρ??=DB. 0??=EC. 0C d ?=? E lD.0S q d ε?=? E S 3. 一半径为a 的圆环(环面法向矢量z = n e )通过电流I ,则圆环中心处的磁感应强度B 为__D ___A. 02r Ia μe B.02I a φμe C. 02z Ia μe D. 02z I a μπe4. 下列关于电力线的描述正确的是__D ___A.是表示电子在电场中运动的轨迹B. 只能表示E 的方向,不能表示E 的大小C. 曲线上各点E 的量值是恒定的D. 既能表示E 的方向,又能表示E 的大小5. 0??=B 说明__A ___A. 磁场是无旋场B. 磁场是无散场C. 空间不存在电流D. 以上都不是6. 下列关于交变电磁场描述正确的是__C ___A. 电场和磁场振幅相同,方向不同B. 电场和磁场振幅不同,方向相同C. 电场和磁场处处正交D. 电场和磁场振幅相同,方向也相同7.关于时变电磁场的叙述中,不正确的是:(D )A. 电场是有旋场B. 电场和磁场相互激发C.电荷可以激发电场D. 磁场是有源场8. 以下关于在导电媒质中传播的电磁波的叙述中,正确的是__B ___A. 不再是平面波B. 电场和磁场不同相C.振幅不变D. 以TE波形式传播9. 两个载流线圈之间存在互感,对互感没有影响的是_C ____A. 线圈的尺寸B. 两个线圈的相对位置C. 线圈上的电流D. 空间介质10. 用镜像法求解静电场边值问题时,判断镜像电荷的选取是否正确的根据__C ___A. 镜像电荷是否对称B.电位?所满足的方程是否改变C. 边界条件是否保持不变D. 同时选择B和C11. 区域V全部全部用非导电媒质填充,当此区域中的电磁场能量减少时,一定是_A ___A. 能量流出了区域B.能量在区域中被损耗C.电磁场做了功D. 同时选择A和C12. 磁感应强度为(32)x y z B axe y z e ze =+-+ , 试确定常数a 的值。
《电磁场与电磁波》习题参考答案

《电磁场与电磁波》知识点及参考答案第1章 矢量分析1、如果矢量场F 的散度处处为0,即0F∇⋅≡,则矢量场是无散场,由旋涡源所产生,通过任何闭合曲面S 的通量等于0。
2、如果矢量场F 的旋度处处为0,即0F ∇⨯≡,则矢量场是无旋场,由散度源所产生,沿任何闭合路径C 的环流等于0。
3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是:散度(高斯)定理:SVFdV F dS ∇⋅=⋅⎰⎰和斯托克斯定理:sCF dS F dl∇⨯⋅=⋅⎰⎰。
4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。
( √ )5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。
( √ )6、标量场的梯度运算和矢量场的旋度运算都是矢量。
( √ )7、梯度的方向是等值面的切线方向。
(× )8、标量场梯度的旋度恒等于0。
( √ ) 9、习题, 。
第2章 电磁场的基本规律(电场部分)1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。
2、在国际单位制中,电场强度的单位是V/m(伏特/米)。
3、静电系统在真空中的基本方程的积分形式是:V V sD dS dV Q ρ⋅==⎰⎰和0lE dl ⋅=⎰。
4、静电系统在真空中的基本方程的微分形式是:V D ρ∇⋅=和0E∇⨯=。
5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。
6、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =0;而磁场→B 的法向分量B 1n -B 2n =0。
7、在介电常数为的均匀各向同性介质中,电位函数为 2211522x y z ϕ=+-,则电场强度E=5x y zxe ye e --+。
8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。
《电磁场与电磁波》必考复习题(2013年)有答案

为体积 V 内总的损耗功率。
(E H) dS ——单位时间内通过曲面 S
S
进入体积 V 的电磁能量。
物理意义: 在单位时间内, 通过曲面 S 进入体积 V 的电磁能量等于体积 V 中 所增加的电磁场能量与损耗的能量之和——能量守恒! 。 8.什么是波的极化?说明极化分类及判断规则。 答:波的极化:在电磁波传播空间给定点处,电场强度矢量的端点随时间变化的 轨迹, 或者说是在空间给定点上电场强度矢量的取向随时间变化的特性分为线极 化、圆极化、椭圆极化三种。 判断规则:根据两正交分量的振幅或/和两者初相角的相对大小来确定,如 果 y x 0或 ,则为线极化;若 E ym E xm ,且 y x / 2 , 则是圆极化波;其它情况是椭圆极化波。 9.分别定性说明均匀平面波在理想介质中、导电媒质中的传播特性。 答:理想介质中的均匀平面波的传播特点: 电场、磁场与传播方向之间相互垂直,是横电磁波(TEM 波) ; 无衰减,电场与磁场的振幅不变; 波阻抗为实数,电场与磁场同相位; 电磁波的相速与频率无关,无色散; 电场能量密度等于磁场能量密度,能量的传输速度等于相速。 导电媒质中均匀平面波的传播特点: ●电场强度 E 、 磁场强度 H 与波的传播方向相互垂直, 是横电磁波 (TEM 波) ; ●媒质的本征阻抗为复数,电场与磁场相位不同,磁场滞后于电场 角; ●在波的传播过程中,电场与磁场的振幅呈指数衰减; ●电磁波的相速不仅与媒质参数有关,而且与频率有关 (有色散) ; ●平均磁场能量密度大于平均电场能量密度。 10.简要说明行波、驻波、行驻波之间的区别。 答:行波的振幅不变,其驻波比为 1;驻波的振幅最小值是零,其驻波比为无穷
《电磁场与电磁波》试题12及答案

《电磁场与电磁波》试题(12)1. (12分)无限长同轴电缆内导体半径为R 1,外导体半径为R 2,内外导体之间的电压为U 。
现固定外导体半径R 2,调整内导体半径R 1,问:(1)内外导体半径的比值R 1 /R 2为多少时内导体表面上的电场强度最小,和最小电场强度E min =?;(2)此时电缆的特性阻抗Z 0为多少?(设该同轴电缆中介质的参数为μ0和ε0)。
2. (12分)距半径为R 的导体球心d (d >R )处有一点电荷q 。
问需要在球上加多少电荷Q 才可以使作用于q 上的力为零,此时球面电位ϕ为多少?3. (10分)半径为R 的薄金属圆柱壳等分为二,互相绝缘又紧密靠近,如图所示。
上半圆柱壳的电位为(+U ),下半圆柱壳的电位为(-U )。
圆柱壳内充满介电常数为ε的均匀电介质,且无空间电荷分布。
写出阴影区内静电场的边值问题。
题3图 题4图4. (10分)图示装置用以测量磁性材料的特性,上下为两个几何形状对称,相对磁导率为μr1的U 形磁轭,被测样品的相对磁导率为μr2(磁轭和样品的磁导率均远大于μ0),磁化线圈的匝数为N ,电流为I ,尺寸如图所示。
求:(1)样品中的磁场强度H ;(2)样品中的磁化强度M 与线圈电流I 间的关系。
5. (12分)面积为A 的平行圆形极板电容器,板间距离为d ,外加低频电压,板间介质的电导率为γ,介电常数为ε。
求电源提供的复功率S 。
6. (12分)一内阻为50Ω的信号源,通过50cm 长的无损耗传输线向负载馈电,传输线上电磁波的波长为100cm ,传输线终端负载Z L =50+j100Ω,信号源的电压t U u m S ωcos =,传输线单位长度的电感L 0=0.25μH ,单位长度的电容C 0=100pF 。
求:(1)电源的频率;(2)传输线始端和终端的电压、电流相量; (3)负载与传输线上电压最大值处间的距离;(4)传输线上的驻波比。
7. (10分)均匀平面波从理想介质(μr =1,εr =16)垂直入射到理想导体表面上,测得理想介质中电场强度最大值为200V/m ,第一个最大电场强度值与理想导体表面的距离为1m ,求:(1)该平面波的频率和相位常数;(2)试写出介质中电场和磁场的瞬时表达式。
《电磁场与电磁波》习题参考答案

况下,电场和磁场可以独立进行分析。( √ )
12、静电场和恒定磁场都是矢量场,在本质上也是相同的。( × )
13、静电场是有源无旋场,恒定磁场是有旋无源场。( √ ) 14、位移电流是一种假设,因此它不能象真实电流一样产生磁效应。(
×)
15、法拉第电磁感应定律反映了变化的磁场可以产生变化的电场。( √ ) 16、物质被磁化问题和磁化物质产生的宏观磁效应问题是不
D.有限差分法
6、对于静电场问题,仅满足给定的泊松方程和边界条件,
而形式上不同的两个解是不等价的。( × )
7、研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物 质内发生的静电现象。( √ )
8、泊松方程和拉普拉斯方程都适用于有源区域。( × )
9、静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方 程的解都是唯一的。( √ )
是( D )。
A.镜像电荷是否对称
B.电位所满足的方程是否未改变
C.边界条件是否保持不变 D.同时选择B和C
5、静电场边值问题的求解,可归结为在给定边界条件下,对拉普拉斯
方程的求解,若边界形状为圆柱体,则宜适用( B )。
A.直角坐标中的分离变量法
B.圆柱坐标中的分离变量法
C.球坐标中的分离变量法
两个基本方程:
3、写出麦克斯韦方程组,并简述其物理意义。
答:麦克斯韦方程组的积分形式:
麦克斯韦方程组的微分形式:
每个方程的物理意义: (a) 安培环路定理,其物理意义为分布电流和时变电场均为磁
场的源。 (b) 法拉第电磁感应定律,表示时变磁场产生时变电场,即动
磁生电。 (c) 磁场高斯定理,表明磁场的无散性和磁通连续性。 (d)高斯定理,表示电荷为激发电场的源。
电磁场与电磁波习题及答案

1麦克斯韦方程组的微分形式是:.D H J t∂∇⨯=+∂u v u u v u v ,BE t ∂∇⨯=-∂u v u v ,0B ∇=u v g ,D ρ∇=u v g2静电场的基本方程积分形式为:CE dl =⎰u v u u v g Ñ S D ds ρ=⎰u v u u vg Ñ3理想导体(设为媒质2)与空气(设为媒质1)分界面上,电磁场的边界条件为:3.00n S n n n Se e e e J ρ⎧⋅=⎪⋅=⎪⎨⨯=⎪⎪⨯=⎩D B E H rr r r r r r r r 4线性且各向同性媒质的本构关系方程是:4.D E ε=u v u v ,B H μ=u v u u v ,J E σ=uv u v5电流连续性方程的微分形式为:5.J t ρ∂∇=-∂r g6电位满足的泊松方程为2ρϕε∇=-; 在两种完纯介质分界面上电位满足的边界 。
12ϕϕ= 1212n n εεεε∂∂=∂∂ 7应用镜像法和其它间接方法解静态场边值问题的理论依据是: 唯一性定理。
8.电场强度E ϖ的单位是V/m ,电位移D ϖ的单位是C/m2 。
9.静电场的两个基本方程的微分形式为 0E ∇⨯=ρ∇=g D ;10.一个直流电流回路除受到另一个直流电流回路的库仑力作用外还将受到安培力作用1.在分析恒定磁场时,引入矢量磁位A u v,并令B A =∇⨯u v u v 的依据是( 0B ∇=u vg )2. “某处的电位0=ϕ,则该处的电场强度0=E ϖ”的说法是(错误的 )。
3. 自由空间中的平行双线传输线,导线半径为a , 线间距为D ,则传输线单位长度的电容为( )ln(1aaD C -=πε )。
4. 点电荷产生的电场强度随距离变化的规律为(1/r2 )。
5. N 个导体组成的系统的能量∑==Ni ii q W 121φ,其中iφ是(除i 个导体外的其他导体)产生的电位。
6.为了描述电荷分布在空间流动的状态,定义体积电流密度J ,其国际单位为(a/m2 )7. 应用高斯定理求解静电场要求电场具有(对称性)分布。
电磁场与电磁波课后习题及答案七章习题解答 (2)
《电磁场与电磁波》习题解答 第七章 正弦电磁波求证在无界理想介质内沿任意方向e n (e n 为单位矢量)传播的平面波可写成j()e n r t m βω⋅-=e E E 。
解 E m 为常矢量。
在直角坐标中故 则 而 故可见,已知的()n j e r t m e βω⋅-=E E 满足波动方程 故E 表示沿e n 方向传播的平面波。
试证明:任何椭圆极化波均可分解为两个旋向相反的圆极化波。
:解 表征沿+z 方向传播的椭圆极化波的电场可表示为式中取显然,E 1和E 2分别表示沿+z 方向传播的左旋圆极化波和右旋圆极化波。
在自由空间中,已知电场3(,)10sin()V/my z t t z ωβ=-E e ,试求磁场强度(,)z t H 。
解 以余弦为基准,重新写出已知的电场表示式这是一个沿+z 方向传播的均匀平面波的电场,其初相角为90︒-。
与之相伴的磁场为 均匀平面波的磁场强度H 的振幅为1A/m 3π,以相位常数30rad/m 在空气中沿z -e 方向传播。
当t=0和z=0时,若H 的取向为y -e,试写出E 和H 的表示式,并求出波的频率和波长。
解 以余弦为基准,按题意先写出磁场表示式 与之相伴的电场为由rad/m β=30得波长λ和频率f 分别为 '则磁场和电场分别为一个在空气中沿ye +方向传播的均匀平面波,其磁场强度的瞬时值表示式为(1)求β和在3ms t =时,z H =的位置;(2)写出E 的瞬时表示式。
解(1)781π10πrad /m rad /m 0.105rad /m 31030β==⨯==⨯在t =3ms 时,欲使H z =0,则要求 若取n =0,解得y =。
考虑到波长260mπλβ==,故因此,t =3ms 时,H z =0的位置为(2)电场的瞬时表示式为在自由空间中,某一电磁波的波长为0.2m 。
当该电磁波进入某理想介质后,波长变为0.09m 。
设1r μ=,试求理想介质的相对介电常数r ε以及在该介质中的波速。
电磁场与电磁波第八章习题及参考答案
第八章 电磁辐射与天线8.1 由(8.1-3)式推导(8.1-4)及(8.1-5)式。
解)sin ˆcos ˆ(4θθθπμ-=-rrIdle A jkrρ (8.1-3) 代入A H ρρ⨯∇=μ1,在圆球坐标系ˆsin ˆˆsin 112θ∂ϕ∂∂θ∂∂∂ϕθθθμμrA A rr r rr A H r=⨯∇=ρρ)]cos ()sin ([4ˆ])([sin sin ˆ2r e e r r Idl A rA r r r jkr jkr r θθθπϕθθμθϕθ--∂∂--∂∂=∂∂-∂∂=可求出H ρ的3个分量为jkre kr kr j Idl k H -+=))(1(sin 422θπϕ (8.1-4) 0==θH H r将上式代入E j H ρρωε=⨯∇,可得到电场为H j E ρρ⨯∇=ωε1ϕθ∂ϕ∂∂θ∂∂∂ϕθθθωεH r rr r rr j sin 0ˆsin ˆˆsin 12=代入ϕH 得jkrr e kr kr j Idl k j E -+-=))(1)((cos 2323θπωε jkr e kr jkr kr j Idl k E --+=))()(1(sin 4323θπωεθ (8.1-5) 0=ϕE8.2 如果电流元yIl ˆ放在坐标原点,求远区辐射场。
解 解1 电流元yIl ˆ的矢量磁位为 jkr e rIl y A -=πμ4ˆρ 在圆球坐标系中jkry r e rIl A A -==πϕθμϕθ4sin sin sin sinjkry e rIl A A -==πϕθμϕθθ4sin cos sin cosjkry e rIl A A -==πϕμϕϕ4cos cos由A H ρρ⨯∇=μ1,对远区辐射场,结果仅取r1项,得jkre rIl jH -=λϕθ2cos jkre r Il j H --=λϕθϕ2sin cos根据辐射场的性质,E r ZH ρρ⨯=ˆ1得 jkre r Il jZ E --=λϕθθ2sin cosjkre r Il jZ E --=λϕϕ2cos解2 根据 jkR e RRl Id jH -⨯=λ2ˆρρ (8.1-13) RH Z E ˆ⨯=ρρ (8.1-14) ϕϕϕθθϕθcos ˆsin cos ˆsin sin ˆˆˆ++==r y lr Rˆˆ≈ ϕθϕθϕcos ˆsin cos ˆˆˆ+-=⨯rl ϕϕϕθθcos ˆsin cos ˆˆ)ˆˆ(--=⨯⨯r rl jkRer Idl j H -=λ2ρ)cos ˆsin cos ˆ(ϕθϕθϕ+- jkR erIdl jZ H -=λ2ρ)cos ˆsin cos ˆ(ϕϕϕθθ--8.3 三副天线分别工作在30MHz,100MHz,300MHz,其产生的电磁场在多远距离之外主要是辐射场。
电磁场与电磁波习题及答案
11 麦克斯韦I 方程组.的微分形式 是:J . H =J JD,\ E = _。
「|_B =0,七出=:2静电场的基本方程积分形式为:性£虏=03理想导体(设为媒质 2)与空气(设为媒质 1)分界 面上,电磁场的边界条件为:4线性且各向同性媒质的 本构关系方程是:5电流连续性方程的微分形式为:。
6电位满足的泊松方程为;在两种完纯介质分界面上 电位满足的边界 。
7应用镜像法和其它间接方法解静 态场边值问题的理论依据是。
8.电场强度E Aj 单位是,电位移D t 勺单位是。
9.静电场的两个基本方程的微分 形式为“黑E =0 Q D = P ; 10.—个直流电流回路除 受到另一个直流电流回路的库仑力作用外还将受到安 培力作用1 .在分析恒定磁场时,引入矢量磁位A,并令冒=%,的依据是(c.V 值=0)2 . “某处的电位 中=0,则该处的电场强度 E=0的说法是(错误的)。
3 .自由空间中的平行双线传输线,导线半径为a ,线间距为D ,则传输线单位长度的电容为4 .点电荷产生的电场强度随距离变化的规律为( 1/r2)。
5 . N 个导体组成的系统的能量 W =1£ q * ,其中e i 2 t i i 是(除i 个导体外的其他导体)产生的电位。
6 .为了描述电荷分布在空间流动的状态, 定义体积电流密度J,其国际单位为(a/m2 )7 .应用高斯定理求解静电场要求电场具有(对称性)分布。
8 .如果某一点的电场强度为零,则该点电位的(不一 定为零 )。
9 .真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为( 1/r2 )。
10.半径为a 的球形电荷分布产生的电场的能量储存于(整个空间)。
三、海水的电导率为 4S/m,相对介电常数为 81,求频 率为1MHz 时,位幅与导幅比值?三、解:设电场随时间作正弦变化,表示为:E = e x E m cos t则位移电流密度为:J d =— = -ex :-. ■ 0 r E m Sin t;t其振幅彳1为:J dm = 网 5E m = 4.5X10- E m 传导电 流的振幅值为: J cm -二- E m = 4E m 因此:Jm =1.125/0J -cm四、自由空间中,有一半径为a 、带电荷量q 的导体球。
电磁场与电磁波自测试卷及答案
电磁场与电磁波自测试卷及答案一、选择题(每题 3 分,共 30 分)1、静电场中,通过任意闭合曲面的电通量等于该闭合曲面所包围的电荷的代数和除以()A 介电常数B 真空介电常数C 磁导率D 真空磁导率2、对于时变电磁场,电场强度的旋度等于()A 位移电流密度与传导电流密度之和B 位移电流密度C 传导电流密度D 零3、均匀平面波在无损耗媒质中传播时,电场强度和磁场强度的相位关系为()A 同相B 反相C 相差 45°D 相差 90°4、电磁波在良导体中的穿透深度与频率的关系是()A 成正比B 成反比C 无关D 平方成正比5、磁场强度的单位是()A 安培/米B 伏特/米C 特斯拉D 韦伯/米²6、能流密度矢量(坡印廷矢量)的方向与()的方向一致。
A 电场强度B 磁场强度C 电磁波传播D 电流密度7、静电场中,电位相等的点所组成的曲面称为()A 等电位面B 电场线C 磁力线D 等位线8、真空中电磁波的速度为()A 3×10^5 千米/秒B 3×10^8 米/秒C 3×10^7 米/秒D 3×10^6 千米/秒9、麦克斯韦方程组中,描述磁场变化产生电场的方程是()A 法拉第电磁感应定律B 安培环路定律C 高斯定理D 高斯磁定律10、电位移矢量的定义式为()A D =εEB D =ε0ECD =εrE D D =ε0εrE二、填空题(每题 3 分,共 30 分)1、静电场的高斯定理表明,静电场是()场。
2、时变电磁场中,磁场强度的旋度等于()。
3、电磁波的极化方式分为()、()和()。
4、均匀平面波在理想介质中传播时,其相速与()有关。
5、真空中,某点的电场强度为 E = 3×10^3 V/m,则该点的电位为()。
6、磁通量的单位是()。
7、位移电流的定义式为()。
8、电偶极子的电场强度与距离的()成反比。
9、坡印廷定理表明,电磁能量的传输与()有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。 2.答非限定情况下麦克斯韦方程组的微分形式为,,0,DBHJEBDttvvvvvvv,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。 1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。 2. 时变场的一般边界条件 2nD、20tE、2tsHJ、20nB。 (或矢量式2nDvvg、20nEvv、
2snHJvvv、20nBvv
g)
1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。 2. 答矢量位,0BAAvvv;动态矢量位AEtvv或AEtvv。库仑规范与洛仑兹规范的作用都是限制Av的散度,从而使Av的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。 1. 简述穿过闭合曲面的通量及其物理定义 2. sAdsvvÒ 是矢量A穿过闭合曲面S的通量或发散量。若Ф> 0,流出S面的通量大于流入的
通量,即通量由S面内向外扩散,说明S面内有正源若Ф< 0,则流入S面的通量大于流出的通量,即通量向S面内汇集,说明S面内有负源。若Ф=0,则流入S面的通量等于流出的通量,说明S面内无源。
1. 证明位置矢量xyzrexeyezrrrr 的散度,并由此说明矢量场的散度与坐标的选择无关。 2. 证明在直角坐标系里计算 ,则有
()()xyzxyzrreeeexeyezxyzrrrrrrrr 3xyzxyz 若在球坐标系里计算,则 232211()()()3rrrrrrrrrrr由此说明了矢量场的散度与坐标的选择无关。 1. 在直角坐标系证明0Ar 2.
()[()()()]()()()0yxxxzzxyzxyzyyxxzzAAAAAAAeeeeeexyzyzzxxyAAAAAAxyzyzxzxy
rrrrrrr
1. 简述亥姆霍兹定理并举例说明。 2. 亥姆霍兹定理研究一个矢量场,必须研究它的散度和旋度,才能确定该矢量场的性质。 例静电场
0s
Ddsq
vv
Ò 0Dv 有源
0lEdlvvÑ 0Ev 无旋 1. 已知 Rrrrrr,证明RRRReRr。 2. 证明 xyzxyzRRRxxyyzzReeeeeexyzRRR
rrrvvv
R …… R
1. 试写出一般电流连续性方程的积分与微分形式 ,恒定电流的呢? 2. 一般电流/0,/JdSdqdtJtvvvÑ;
恒定电流0,0JdSJvvvÑ 1. 电偶极子在匀强电场中会受作怎样的运动?在非匀强电场中呢? 2. 电偶极子在匀强电场中受一个力矩作用,发生转动;非匀强电场中,不仅受一个 力矩作用,发生转动,还要受力的作用,使 电偶极子中心 发生平动,移向电场强的方向。 1. 试写出静电场基本方程的积分与微分形式 。 2. 答静电场基本方程的
积分形式 01sEdsqrrÒ ,0lEdlrrÑ
微分形式 ,0DErr 1. 试写出静电场基本方程的微分形式,并说明其物理意义。 2. 静电场基本方程微分形式,0DEvv ,说明激发静电场的源是空间电荷的分布(或是激发静电场的源是是电荷的分布)。 1. 试说明导体处于静电平衡时特性。
2. 答导体处于静电平衡时特性有 ①导体内 0Ev; ②导体是等位体(导体表面是等位面); ③导体内无电荷,电荷分布在导体的表面(孤立导体,曲率);
④导体表面附近电场强度垂直于表面,且 0/Envv。 1. 试写出两种介质分界面静电场的边界条件。 2. 答在界面上D的法向量连续 12nnDD或(1212nDnDvvvv);E的切向分量连续12ttEE或(1112nEnEvvvv) 1. 试写出1为理想导体,二为理想介质分界面静电场的边界条件。
2. 在界面上D的法向量 2nD或(12nDvv);E的切向分量20tE或(120nEvv) 1. 试写出电位函数表示的两种介质分界面静电场的边界条件。
2. 答电位函数表示的两种介质分界面静电场的边界条件为12,1212nn 1. 试推导静电场的泊松方程。 2. 解由 Dv ,其中 ,DEEvvv , DEvv 为常数
2
泊松方程
1. 简述唯一性定理,并说明其物理意义 2. 对于某一空间区域V,边界面为s,φ满足
,
给定 (对导体给定q) 则解是唯一的。只要满足唯一性定理中的条件,解是唯一的,可以用能想到的最简便的方法求解(直接求解法、镜像法、分离变量法……),还可以由经验先写出试探解,只要满足给定的边界条件,也是唯一解。不满足唯一性定理中的条件无解或有多解。 1. 试写出恒定电场的边界条件。 2. 答恒定电场的边界条件为 ,, 1. 分离变量法的基本步骤有哪些? 2. 答具体步骤是1、先假定待求的位函数由两个或三个各自仅含有一个坐标变量的乘积所组成。2、把假定的函数代入拉氏方程,使原来的偏微分方程转换为两个或三个常微分方程。解这些方程,并利用给定的边界条件决定其中待定常数和函数后,最终即可解得待求的位函数。 1. 叙述什么是镜像法?其关键和理论依据各是什么? 2. 答镜像法是用等效的镜像电荷代替原来场问题的边界,其关键是确定镜像电荷的大小和位置,理论依据是唯一性定理。 7、 试题关键字恒定磁场的基本方程 1. 试写出真空中恒定磁场的基本方程的积分与微分形式,并说明其物理意义。
2. 答真空中恒定磁场的基本方程的积分与微分形式分别为 0slBdsHdlI
vv
vv
Ñ
Ñ’ 0BHJvv
说明恒定磁场是一个无散有旋场,电流是激发恒定磁场的源。 1. 试写出恒定磁场的边界条件,并说明其物理意义。 2. 答:恒定磁场的边界条件为:12()snHHJrrrr,12()0nBBrrr,说明磁场在不同的边界条件下磁场强度的切向分量是不连续的,但是磁感应强强度的法向分量是连续。 1. 一个很薄的无限大导电带电面,电荷面密度为。证明垂直于平面的z轴上0zz处的电场强度E中,有一半是有平面上半径为03z的圆内的电荷产生的。 2. 证明半径为r、电荷线密度为dlr的带电细圆环在z轴上0zz处的电场强度为
0223200
dd2()zrzrrzEe
故整个导电带电面在z轴上0zz处的电场强度为 0022322212000000
0
d12()2()2zzzrzrzrzrzEeee
而半径为03z的圆内的电荷产生在z轴上0zz处的电场强度为 00
3300223222120000000d112()2()42zz
zzzrzrz
rzrzEeeeE
1. 由矢量位的表示式
0()()d4RJrAr
证明磁感应强度的积分公式
03
()()d4RJrRBr
并证明0B 2. 答
0()()()d4RJrBrAr
00()1d()()d44RRJrJr
0033
()()()dd44RRRJrRJr
[()]0BAr 1. 由麦克斯韦方程组出发,导出点电荷的电场强度公式和泊松方程。 2. 解 点电荷q产生的电场满足麦克斯韦方程 0E和D
由D得
ddD
据散度定理,上式即为 dsqÑDS
利用球对称性,得 24rqr
De