搅拌摩擦焊资料
第三章 搅拌摩擦焊

第三章搅拌摩擦焊(Friction Stir Welding 缩写为FSW)1. 搅拌摩擦焊的基本原理是什么?它是利用带有特殊形状的硬质搅拌指棒的搅拌头旋转着插入被焊接头,与被焊金属摩擦生热,通过搅拌摩擦,同时结合搅拌头对焊缝金属的挤压,使接头金属处于塑性状态,搅拌指棒边旋转边沿着焊接方向向前移动,在搅拌头的压力作用下,热塑性金属从其前端向后部塑性流动,从而形成致密的金属间结合,实现材料的连接。
简要说法:“非消耗搅拌工具,顶锻挤压连接面形成焊缝”2. 搅拌头由哪几部分组成?各由什么材料制成?有何作用?(一)搅拌头由特殊形状的搅拌指棒和轴肩组成。
(二)日本采用了SUS440(三)搅拌头的轴肩的作用:(1)可以保证搅拌指棒插入的深度;(2)轴肩与被焊材料的表面紧密接触,防止处于塑性状态的母材表面的金属排出而造成的损失和氧化;(3)与母材表面摩擦生热,提供部分焊接所需要的搅拌摩擦热。
3. 搅拌摩擦焊具有哪些特点?最主要是固相焊,无熔化缺陷等4. 搅拌摩擦焊主要焊接哪些金属材料?5. 搅拌指棒的尺寸大小根据什么来决定?被焊母材厚度7. 搅拌摩擦焊的热输入是如何定义的?即1mm 焊缝长度的搅拌头的转数。
比值越大,说明对母材的热输入越大8. 在搅拌摩擦焊焊接时,对搅拌头中心与焊缝中心线以及接头精度有何要求?为什么?接头间隙在0.5mm以下,搅拌头的中心位置大致允许偏差2.0mm。
9. 搅拌摩擦焊焊接接头由哪几个区域组成?它的断口呈何形状组织?为什么?(1)搅拌摩擦焊焊接接头依据金相组织的不同分为四个区域。
即图中A区为母材,B区为热影响区(HAZ),C区为塑性变形和局部再结晶区(TMAZ),D区(焊核)即焊缝中心区为完全再结晶区(2)圆柱状和焊点状:焊核细小等轴晶;强烈塑性变形特征;洋葱环特征等。
谈搅拌摩擦焊技术

成功案例介绍及经验总结
01
成功案例一
某航空制造企业成功应用搅拌摩擦焊技术,实现了铝合金材料的可靠连
接。通过合理的工艺参数设置和操作规范,获得了高质量的焊接接头,
提高了生产效率。
02
成功案例二
某轨道车辆制造企业采用搅拌摩擦焊技术,实现了不锈钢车体结构的快
速、高效连接。通过优化工艺参数,降低了焊接变形和应力,提高了焊
THANKS
谢谢您的观看
汽车制造领域
车身结构的连接
搅拌摩擦焊技术可用于汽车车身结构的连接,提高车身的强度和刚度。
新能源汽车电池托盘的焊接
搅拌摩擦焊技术还可用于新能源汽车电池托盘的焊接,提高电池托盘的稳定性和安全性。
轨道交通领域
轨道车辆的制造
搅拌摩擦焊技术可用于轨道交通领域中轨道车辆的制造,提高车辆的稳定性和安全性。
地铁车辆车体的焊接
搅拌摩擦焊技术还可用于地铁车辆车体的焊接,提高车体的强度和刚度。
新能源领域
太阳能板的焊接
搅拌摩擦焊技术可用于新能源领域中太 阳能板的焊接,提高太阳能板的稳定性 和效率。
VS
风力发电机叶片的焊接
搅拌摩擦焊技术还可用于风力发电机叶片 的焊接,提高叶片的稳定性和安全性。
03
搅拌摩擦焊技术工艺流程与设 备
,能够产生摩擦热和塑性变形,实现材料的连接。
控制系统
02 用于控制搅拌头的旋转速度、压力和焊接时间等参数
,确保焊接过程的稳定性和可控性。
焊接夹具
03
用于固定待焊接的材料,确保焊接过程的稳定性和精
度。
设备选型与维护
设备选型
根据生产需求和预算等因素,选择适合的搅拌摩擦焊设备,包括搅拌头的类型、尺寸和 控制系统等。
搅拌摩擦焊

搅拌摩擦焊搅拌摩擦焊(Friction Stir Welding ,简称FSW )是由英国焊接研究所于1991年提出的一种固态连[1]接方法。
与传统的熔化焊接方法相比较,搅拌摩擦焊具有晶粒细小、力学性能良好、焊接时不需使用保护气体、焊接后残余应力和变形小等优[2]点。
搅拌摩擦焊自提出以来,引起了各国学者和研究机构的广泛重视,成为了国内外的研究热点。
经过十几年的发展,搅拌摩擦焊这种新型固相焊接方法已经从技术研究层面迈向高层次的工程化和工业化应用阶段,成为铝及铝合金首选的连接工艺。
目前,搅拌摩擦焊在航空航天工业、造船业、汽车业等工业领域有了广泛的应用。
近年来,国内轨道车辆制造技术快速改进,搅拌摩擦焊技术开始用于铝合金车体制造。
搅拌摩擦焊铝合金车体的成功试制,标志着搅拌摩擦焊技术在国内轨道车辆工程化应用的开始。
1、搅拌摩擦焊工艺及接头组织性能特点1.1 搅拌摩擦焊焊接工艺过程[3]搅拌摩擦焊的焊接工艺如图1-1所示。
置于垫板上的对接工件通过夹具夹紧,以防止对接接头在焊接过程中松开。
一个带有特型焊针的搅拌焊头旋转并缓慢插入两块对接板材之间的焊缝处。
焊针的长度接近焊缝的深度,当旋转的焊针接触工件表面时,与工件表面快速摩擦产生的摩擦热使接触点材料的温度升高,强度降低。
焊针在外力作用下不断顶锻和挤压接缝两边的材料,直至轴肩紧密接触工1-接缝;2-搅拌头前沿;3-前进侧;4-母材;5-搅拌针;6-搅拌头后沿;7-焊缝;8-搅拌头旋转方向;9-后退侧图1-1 搅拌摩擦焊焊接工艺过程件表面为止。
这时,由旋转轴肩和焊针产生的摩擦热在轴肩下面和焊针周围形成大量的塑化层。
当工件相对焊针移动或焊针相对工件移动时,在焊针侧面和旋转方向上产生的机械搅拌和顶锻作用下,焊针的前表面把塑化的材料移送到焊针后表面。
这样,焊针沿着接缝前进时,搅拌焊头前头的对接接头表面被摩擦加热至轴向压力 前进方向12 34 56789超塑性状态。
结果,焊针摩擦接缝,破碎氧化膜,搅拌焊头后方的磨碎材料。
摩擦搅拌焊

摩擦搅拌焊引言摩擦搅拌焊(Friction Stir Welding,简称FSW)是一种固相焊接技术,通过在接头处产生高速旋转的焊接工具,使材料发生塑性变形并产生摩擦热,从而实现焊接的目的。
与传统的熔化焊接方法相比,摩擦搅拌焊具有低热输入、无焊缝几乎无缺陷、焊接速度快等优点,因此在航空航天、汽车制造、船舶制造等领域得到了广泛应用。
工艺过程焊接设备摩擦搅拌焊主要由以下几个部分组成:•焊接工具:通常由一根柱状工具组成,末端具有圆形或锥形焊接头,用于在接头处进行摩擦搅拌。
•驱动系统:通过电机或液压系统提供驱动力,并控制焊接工具的转速和移动速度。
•夹持装置:用于夹持和固定被焊接材料的接头,以保证接头在焊接过程中的稳定性。
•控制系统:用于控制焊接过程中的各项参数,如转速、移动速度、温度等。
焊接过程摩擦搅拌焊的焊接过程主要包括以下几个步骤:1.夹持工件:将待焊接的工件装入夹持装置,并夹紧以确保工件的稳定性。
2.焊接工具接触:将焊接工具与工件表面接触,并施加一定的压力以保证接触面的贴紧。
3.开始旋转:启动驱动系统,使焊接工具开始高速旋转。
4.插入工件:焊接工具同时开始向工件内部插入,形成摩擦搅拌区域。
5.搅拌焊接:焊接工具的转动带动工件材料在摩擦热的作用下发生塑性变形,形成焊接接头。
6.完成焊接:当焊接工具插入到设定深度后,停止旋转,并将焊接工具从工件中拔出。
焊接参数在摩擦搅拌焊的过程中,一些关键的焊接参数需要被控制和调节,以确保焊接接头的质量和性能。
•转速:焊接工具的旋转速度是控制摩擦搅拌区域温度的主要参数。
一般来说,较高的旋转速度可以提高焊接质量,但过高的转速可能会导致材料熔化。
•移动速度:焊接工具在插入工件的过程中的移动速度也会影响焊接质量。
较低的移动速度可以提高焊接密度,但过低的速度可能导致焊接接头的不均匀和疏松。
•压力:焊接工具对工件施加的压力可以影响焊接接头的密度和强度。
一般来说,较高的压力可以提高焊接接头的密度和强度,但过高的压力可能会导致材料变形和残余应力的增加。
搅拌摩擦焊工艺

搅拌摩擦焊工艺搅拌摩擦焊(Friction Stir Welding,简称FSW)是一种无焊接熔化的固态焊接技术,由英国剑桥大学的Thomas W. Thomas于1991年首次提出。
相比传统的熔化焊接方法,搅拌摩擦焊具有许多优点,如焊接强度高、焊缝外观美观等,因此在航空航天、汽车制造等领域得到了广泛应用。
搅拌摩擦焊的工艺流程相对简单,主要包括预装夹紧、搅拌摩擦焊接和冷却三个阶段。
首先,需要将两个待焊接的工件通过夹具夹紧,以确保焊接过程中的稳定性。
然后,通过高速旋转的搅拌钎具将焊接面加热至软化温度,同时施加一定的压力。
搅拌钎具的旋转和推进运动将焊接面上的金属材料搅拌在一起,从而实现焊接。
最后,待焊接的区域冷却后,焊缝形成,焊接过程完毕。
搅拌摩擦焊的工艺特点主要包括以下几个方面:1. 无熔化:搅拌摩擦焊是一种固态焊接方法,焊接过程中不产生熔化现象,避免了传统焊接方法中可能产生的气孔、夹杂物等缺陷,提高了焊缝的质量。
2. 焊接强度高:搅拌摩擦焊焊接产生的焊缝表面光滑,焊缝强度高,可以达到甚至超过基材的强度。
3. 焊接速度快:搅拌摩擦焊的焊接速度通常较快,可以在短时间内完成大面积焊接,提高了生产效率。
4. 适用性广:搅拌摩擦焊适用于多种金属材料的焊接,包括铝合金、镁合金、钛合金等,具有较好的通用性。
5. 环保节能:搅拌摩擦焊过程中不需要额外的填充材料和保护气体,无烟尘产生,减少了对环境的污染,同时节约了能源。
搅拌摩擦焊工艺在航空航天、汽车制造等领域得到了广泛应用。
例如,航空航天领域的发动机和机身结构常采用铝合金材料进行制造,而搅拌摩擦焊可以有效地实现铝合金的焊接,提高了零部件的性能和可靠性。
汽车制造领域中,搅拌摩擦焊可以用于车身结构、悬挂系统等部件的焊接,提高了汽车的安全性和耐久性。
尽管搅拌摩擦焊具有许多优点,但也存在一些挑战和局限性。
首先,搅拌摩擦焊的设备成本较高,需要专门的设备来实现焊接。
其次,对于某些材料,如高碳钢、不锈钢等,搅拌摩擦焊效果不理想,难以实现高质量的焊接。
搅拌摩擦焊

搅拌摩擦焊搅拌摩擦焊,是一种新型的焊接技术,也被称为搅拌摩擦联接。
它是通过在焊接区域旋转和挤压两个金属工件来产生热量和塑性变形,从而使两个工件达到联接的目的。
与传统的焊接技术相比,搅拌摩擦焊具有许多优点,如焊接速度快、焊缝质量高、金属变形小等。
本文将详细介绍搅拌摩擦焊的原理、应用和发展趋势。
一、搅拌摩擦焊的原理搅拌摩擦焊的原理是在两个金属工件之间施加旋转和挤压力,产生热量和塑性变形,从而使两个工件达到联接的目的。
搅拌摩擦焊的焊接区域主要由以下几个部分组成:1. 摩擦区:是指两个金属工件之间产生的热量和塑性变形的区域,也是焊接区域的主要部分。
在摩擦区,由于热量和挤压力的作用,金属工件的表面会产生摩擦热,从而使金属表面熔化和塑性变形。
在摩擦区,金属工件的晶粒也会受到影响,产生细化和变形,从而提高焊缝的质量。
2. 搅拌区:是指焊接区域中金属工件被挤压和旋转产生的区域。
在搅拌区,金属工件的晶粒也会受到影响,产生细化和变形,从而提高焊缝的质量。
3. 热影响区:是指焊接区域中受到热影响但未受到塑性变形的金属区域。
在热影响区,金属工件的晶粒也会受到影响,但不会产生细化和变形。
二、搅拌摩擦焊的应用搅拌摩擦焊的应用非常广泛,可以用于焊接各种金属材料,如铝合金、镁合金、钛合金、铜、钢等。
它在航空、汽车、船舶、铁路、电子、建筑等领域都有着广泛的应用。
1. 航空领域:搅拌摩擦焊可以用于制造航空器的结构件,如机翼、尾翼、机身等。
它可以提高焊缝质量,减少金属变形,从而提高航空器的性能和安全性。
2. 汽车领域:搅拌摩擦焊可以用于制造汽车的车身、底盘、发动机等部件。
它可以提高焊缝质量,减少金属变形,从而提高汽车的性能和安全性。
3. 船舶领域:搅拌摩擦焊可以用于制造船舶的船体、船舶设备等部件。
它可以提高焊缝质量,减少金属变形,从而提高船舶的性能和安全性。
4. 铁路领域:搅拌摩擦焊可以用于制造铁路车辆的车体、车轮等部件。
它可以提高焊缝质量,减少金属变形,从而提高铁路车辆的性能和安全性。
一文读懂搅拌摩擦焊

1搅拌摩擦焊概览搅拌摩擦焊(Friction Stir Welding,FSW)作为一种固相连接技术,在1991年由英国焊接研究所(The Welding Institute, TWI)发明。
与传统熔化焊相比,FSW无需添加焊丝、不需要保护气体,焊接过程无污染、无烟尘、无辐射,焊接接头残余应力低,因此具有焊接效率高、焊接变形小、能耗低、设备简单、焊接过程安全等一系列优点。
经过20多年的发展,FSW已经在航空航天、轨道交通、舰船等领域得到了广泛应用。
搅拌摩擦焊的原理如图1所示。
高速旋转的搅拌头扎入被焊工件内,旋转的搅拌针与被焊材料发生摩擦并使其发生塑化,轴肩与工件表面摩擦生热并用于防止塑性状态的材料溢出。
在焊接过程中,工件要刚性固定在背部垫板上,搅拌头边高速旋转边沿工件的接缝与工件相对移动,在搅拌头锻压力的作用下形成焊缝,最终实现被焊工件的冶金结合。
图1 搅拌摩擦焊接原理搅拌摩擦焊广泛适用于各类材料,目前已成功实现了铝、镁等低熔点金属及合金、铜合金、钛合金、钢铁材料、金属基复合材料以及异种金属(铝/铜、铝/镁、铝/钢等)的焊接。
在传统技术的基础上,搅拌摩擦焊有了五大创新发展:双轴肩搅拌摩擦焊、静轴肩搅拌摩擦焊、搅拌摩擦点焊、复合能场搅拌摩擦焊、搅拌摩擦增材制造。
双轴肩搅拌摩擦焊(Bobbin Tool Friction Stir Welding,BT-FSW)与传统FSW相比,其搅拌头为上、下轴肩结构,两个轴肩通过搅拌针连接,下轴肩取代了传统FSW的背部刚性支撑垫板,对工件进行自支撑,实现中空部件的焊接。
其焊接原理如图2所示。
上、下双轴肩的结构在焊接过程中降低了接头厚度方向的温度梯度,减小了接头组织不均匀性,可实现根部全焊透的焊接。
图2 双轴肩搅拌摩擦焊接原理1.上轴肩2.前进侧3.熔合线4.后退侧5.工件6.搅拌针7.下轴肩静轴肩搅拌摩擦焊(Stational Shoulder Friction Stir Welding,SS-FSW)采用轴肩与搅拌针分体式设计,在焊接过程中内部搅拌针处于旋转状态,而外部轴肩不转动,仅沿焊接方向行进。
搅拌摩擦焊资料

搅拌摩擦焊一、搅拌摩擦焊的定义及原理搅拌摩擦焊(Friction Stir Welding,简称FSW)是基于摩擦焊技术的基本原理,由英国焊接研究所(TWI)于1991年发明的一种新型固相连接技术。
与常规摩擦焊相比,其不受轴类零件的限制,可进行板材的对接、搭接、角接及全位置焊接。
与传统的熔化焊方法相比,搅拌摩擦焊接头不会产生与熔化有关的如裂纹、气孔及合金元素的烧损等焊接缺陷;焊接过程中不需要填充材料和保护气体,使得以往通过传统熔焊方法无法实现焊接的材料通过搅拌摩擦焊技术得以实现连接;焊接前无须进行复杂的预处理,焊接后残余应力和变形小;焊接时无弧光辐射、烟尘和飞溅,噪音低;因而,搅拌摩擦焊是一种经济、高效、高质量的“绿色”焊接技术,被誉为“继激光焊后又一次革命性的焊接技术”。
搅拌摩擦焊方法与常规摩擦焊一样,搅拌摩擦焊也是利用摩擦热作为焊接热源。
不同之处在于搅拌摩擦焊焊接过程是由一个圆柱体形状的焊头(伸入工件的接缝处,通过焊头的高速旋转,使其与焊接工件材料摩擦,从而使连接部位的材料温度升高软化同时对材料进行搅拌摩擦来完成焊接的。
二.搅拌摩擦焊焊接过程搅拌摩擦焊是利用摩擦热作为焊接热源的一种固相连接方法,但与常规摩擦焊有所不同。
在进行搅拌摩擦焊接时,首先将焊件牢牢地固定在工作平台上,然后,搅拌焊头高速旋转并将搅拌焊针插入焊件的接缝处,直至搅拌焊头的肩部与焊件表面紧密.接触,搅拌焊针高速旋转与其周围母材摩擦产生的热量和搅拌焊头的肩部与焊件表面摩擦产生的热量共同作用,使接缝处材料温度升高而软化,同时,搅拌焊头边旋转边沿着接缝与焊件作相对运动,搅拌焊头前面的材料发生强烈的塑性变形。
随着搅拌焊头向前移动,前沿高度塑性变形的材料被挤压到搅拌焊头的背后。
在搅拌头轴肩与焊件表层摩擦产热和锻压共同作用下,形成致密的固相连接接头。
搅拌摩擦焊接过程如图所示:三.搅拌摩擦焊工艺(一)、搅拌摩擦焊接头形式搅拌摩擦焊可以实现棒材一棒材、板材一板材的可靠连接,接头形式可以设计为对接、搭接、角接及T形接头,可进行环形、圆形、非线性和立体焊缝的焊接。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
搅拌摩擦焊一、搅拌摩擦焊的定义及原理搅拌摩擦焊(Friction Stir Welding,简称FSW)是基于摩擦焊技术的基本原理,由英国焊接研究所(TWI)于1991年发明的一种新型固相连接技术。
与常规摩擦焊相比,其不受轴类零件的限制,可进行板材的对接、搭接、角接及全位置焊接。
与传统的熔化焊方法相比,搅拌摩擦焊接头不会产生与熔化有关的如裂纹、气孔及合金元素的烧损等焊接缺陷;焊接过程中不需要填充材料和保护气体,使得以往通过传统熔焊方法无法实现焊接的材料通过搅拌摩擦焊技术得以实现连接;焊接前无须进行复杂的预处理,焊接后残余应力和变形小;焊接时无弧光辐射、烟尘和飞溅,噪音低;因而,搅拌摩擦焊是一种经济、高效、高质量的“绿色”焊接技术,被誉为“继激光焊后又一次革命性的焊接技术”。
搅拌摩擦焊方法与常规摩擦焊一样,搅拌摩擦焊也是利用摩擦热作为焊接热源。
不同之处在于搅拌摩擦焊焊接过程是由一个圆柱体形状的焊头(伸入工件的接缝处,通过焊头的高速旋转,使其与焊接工件材料摩擦,从而使连接部位的材料温度升高软化同时对材料进行搅拌摩擦来完成焊接的。
二.搅拌摩擦焊焊接过程搅拌摩擦焊是利用摩擦热作为焊接热源的一种固相连接方法,但与常规摩擦焊有所不同。
在进行搅拌摩擦焊接时,首先将焊件牢牢地固定在工作平台上,然后,搅拌焊头高速旋转并将搅拌焊针插入焊件的接缝处,直至搅拌焊头的肩部与焊件表面紧密接触,搅拌焊针高速旋转与其周围母材摩擦产生的热量和搅拌焊头的肩部与焊件表面摩擦产生的热量共同作用,使接缝处材料温度升高而软化,同时,搅拌焊头边旋转边沿着接缝与焊件作相对运动,搅拌焊头前面的材料发生强烈的塑性变形。
随着搅拌焊头向前移动,前沿高度塑性变形的材料被挤压到搅拌焊头的背后。
在搅拌头轴肩与焊件表层摩擦产热和锻压共同作用下,形成致密的固相连接接头。
搅拌摩擦焊接过程如图所示:三.搅拌摩擦焊工艺(一)、搅拌摩擦焊接头形式搅拌摩擦焊可以实现棒材一棒材、板材一板材的可靠连接,接头形式可以设计为对接、搭接、角接及T形接头,可进行环形、圆形、非线性和立体焊缝的焊接。
由于重力对这种固相焊接方法没有影响,搅拌摩擦焊可以用于全位置焊接,如横焊、立焊、仰焊、环形轨道自动焊等。
(二)、搅拌摩擦焊的热输入在搅拌摩擦焊接过程中,搅拌焊针高速旋转并插入焊件,随即在焊接压力的作用下,轴肩与焊件表面接触,于是在轴肩与焊件材料上表面及搅拌针与接合面间产生大量的摩擦热,同时,搅拌针附近材料发生塑性变形和流体流动从而导致形变产热,其中摩擦热是焊接产热的主体。
随着搅拌焊头沿焊缝方向行走,这些热量对焊缝及焊缝附近的母材施以热循环作用,导致材料中沉淀相的溶解、焊缝和热影响区发生较大程度的软化搅拌摩擦焊本质上是以摩擦热作为焊接热源的焊接方法,所以热输入是影响焊接质量的直接、关键因素。
焊缝中的温度与接头的力学性能之间有一个最佳范围,超出最佳范围,焊缝的热出入过大接头的力学性能降低.原因:铝合金在焊接过程中,热循环使焊缝两侧发生组织、性能变化的热效应区(HAZ),是产生软化的主要危险区域.软化区间的宽度直接与热输入成正比,所以要减小软化区间的宽度热输入.当焊缝中的温度进入铝合金的软化温度时,热影响区会发生强化相的析出和聚集,材料的固溶强化效果减弱,焊件的强度降低.随着温度的升高,强化相甚至发生过时效析出现象,材料固溶强化效果更差,强度下降越多.(三)搅拌摩擦焊参数的选择搅拌摩擦焊接是一个复杂的过程,在搅拌头确定的前提下,搅拌摩擦焊最重要的工艺参数是搅拌头的旋转速度R、焊接速度v和轴肩的下压量。
搅拌摩擦焊焊接接头的成型特点及性能和搅拌摩擦焊过程中单位长度焊缝吸收的能量有密切的关系,而单位长度焊缝吸收的能量同旋转速度与焊接速度的比值R/v有关,R/v值越大,表明搅拌头在单位长度的焊缝上旋转的次数越多,则输入材料内的热量越多,焊区的温度越高。
反之,R/v值越小,则焊区的温度越低。
1.搅拌头转速搅拌摩擦焊工艺试验过程中,在焊接压力及焊接速度不变的情况下(焊接速度为40mm/min,下压量为0.17mm),搅拌头旋转速度较低时,摩擦产热功率小,焊接区金属不能达到热塑性状态,不足以形成热塑性流动层,使得搅拌摩擦焊过程类似于金属的铣削加工,从而在焊缝表面产生沟槽。
图1a为搅拌头转速为1000r/min时在焊缝表面产生沟槽。
由于热输入不够,焊缝区金属不能完全塑化,塑性流动不够,使得部分镁合金粘附在搅拌头上,不能形成闭合的焊缝。
此时由于搅拌头的探针上粘附了镁合金,其起搅拌作用的部分尺寸有所增加,使得焊缝背面出现焊透的现象(图1b);当搅拌头转速提高为1100r/min时,焊接区内摩擦产热量增加,在接近试样表面的搅拌焊针周围,首先形成热塑性流动层,但在焊缝的内部,由于热塑性层的温度相对较低,还无法完成流动、填充、挤压、扩散过程,焊缝表面的沟槽虽然消失,但如果沿焊缝的横截面将其切开,则焊缝内部可能有孔洞甚至出现隧道型缺陷,不能形成良好的固相连接;如果搅拌头旋转速度继续增加到1200r/min,由于热输入的增加,热塑性层逐渐扩大和流动,使得焊缝中的孔洞和隧道消失,形成致密的焊缝(图1)。
当搅拌头转速超过1500r/min时,由于旋转速度过高造成热输入过大而导致焊缝金属过热,甚至局部产生熔化现象。
2.焊接速度当搅拌头的旋转速度一定时,若焊接速度较慢, 焊缝表面平滑光亮,但在焊缝背面可见到由于局部母材熔化而出现的缩孔。
随着焊接速度的增加,这种缩孔会消失,继续增加焊接速度,焊缝表面的光洁度变差,甚至会出现隧道型缺陷;若焊接速度过快,隧道型缺陷逐渐增大,甚至会在焊缝表面出现沟槽。
在搅拌头旋转速度为1300r/min、下压量定为0.17mm时,焊接速度若高于60mm/min,会看到焊缝的一侧产生未焊合或在搅拌头的后面出现长长的沟槽。
图2是焊接速度为70mm/min的焊缝,由于热输入不够,在焊缝表面产生沟槽。
当焊接速度低于30mm/min时,则焊缝表面发生凹陷或在焊缝某一侧产生切边现象,同时,在焊缝的背面会出现由于过热而形成的缩孔。
当焊接速度为30~60mm/min,焊缝的外观成形较好。
图3为焊速分别为30mm/min和50mm/min所形成的焊缝正反两面的宏观形貌,可以看出其成形良好。
这是由于焊接速度影响单位长度焊缝上的热输入量,搅拌头旋转速度一定而焊接速度过慢时,单位长度焊缝上获得的热量过多,使焊接区温度接近母材的熔化温度而出现局部过热甚至熔化现象;反之,当焊接速度过快时,焊接区获得的热量较少,材料达不到塑性流变状态并且不能充分流动,以致形成隧道型缺陷或在表面出现沟槽。
对于一个给定的旋转速度,总有一个适当的焊接速度范围与其相对应,降低旋转速度,焊接速度则相应降低。
只有搅拌焊头的旋转速度与焊接速度合理匹配时,才能得到外观成形好、内部无缺陷的优质焊缝。
3.搅拌头轴肩下压量搅拌头轴肩下压量其实是焊接过程中焊接压力的一种表示方法,搅拌摩擦焊接工艺过程中,只有通过施加足够的焊接压力才能在搅拌焊头和焊件之间获得摩擦力进而获得足够的摩擦热能。
同时,焊接压力还起到限制塑性流体外溢保证焊缝成型的作用。
因此,搅拌头轴肩下压量的大小对焊接质量有重要的影响。
图4搅拌头轴肩不同下压量时的焊缝宏观形貌试验过程中,在保持旋转速度和焊接速度不变的情况下,通过改变搅拌头轴肩下压量,观察焊接压力对搅拌摩擦焊焊缝成型的影响,结果表明,对于一定结构尺寸的搅拌焊头,存在一个合适的焊接压力范围与其相对应。
当转速为1200r/min,焊速为40mm/min时,轴肩下压量在015~0.2mm之间时,可获得表面成型良好的焊缝。
当下压量低于0.15mm时,焊缝内部组织疏松或出现孔洞、隧道型缺陷,在焊缝表面出现沟槽,甚至肩部对焊接区起不到封闭作用而使焊缝.金属流外溢。
如图4a所示,焊缝左边部分轴肩下压量为0.12mm,此时焊接压力不够,在焊缝表面出现沟槽;焊缝右边部分轴肩下压量为0.15mm,沟槽现象消失,焊缝成型良好。
图4b是轴肩下压量为0.19mm时的焊缝,焊缝表面成形良好没有飞边产生。
图4c、图4d是下压量分别为0.2mm和0.25mm时,焊缝表面产生飞边。
下压量为0.2mm时,只在后退面上产生少量的飞边;当下压量继续增加到0.25mm时,在前进面和后退面上都有飞边产生,而且特别明显。
增加轴肩的下压量即增加了搅拌头对试样表面的压力,使搅拌头和焊件之间获得足够摩擦热,提高了焊缝组织的致密度,使焊缝成型得到改善。
但压力过大,会造成摩擦力增大,搅拌头向前移动的阻力增大,且易造成焊缝凹陷,焊缝表面出现飞边、毛刺。
因此,下压量的选择对焊缝飞边的产生有着重要的影响,在搅拌头转速和焊速一定的情况下,选择合适的下压量是得到成形良好焊缝的关键因素。
图4e、图4f是下压量为0.15mm时,成形良好的焊缝正面和反面图。
根据以上试验结果,当转速为1200~1500r/min、焊速为30~60mm/min,轴肩下压量为0.15~0.2mm时,可以得到表面成形良好、剖开后没有孔洞和隧道的焊缝。
结论:1.镁合金搅拌摩擦焊焊接接头的成形质量影响最大的因素是搅拌头的旋转速度、焊接速度和轴肩的下压量。
2.搅拌头转速过快或者焊接速度过慢时,单位长度焊缝上的热输入量过多,会使焊接区温度接近母材的熔化温度而出现局部过热甚至熔化现象;反之,当搅拌头转速不够或者焊接速度过快时,焊接区获得的热量较少,材料达不到塑性流变状态并且不能充分流动,以致形成隧道型缺陷或在表面出现沟槽。
3.当轴肩下压量过低时,焊缝内部组织疏松或出现孔洞、隧道型缺陷,在焊缝表面出现沟槽,甚至肩部对焊接区起不到封闭作用而使焊缝金属流外溢;下压量过大,会造成摩擦力增大,搅拌焊头向前移动的阻力增大,易使焊缝凹陷,焊缝表面出现飞溅。
四.搅拌摩擦焊的特点与传统摩擦焊及其他焊接方法相比,搅拌摩擦焊有以下优点:1. 焊接接头质量高,不易产生缺陷。
焊缝是在塑性状态下受挤压完成的,属于固相焊接,因而其接头不会产生与凝固冶金有关的一些如裂纹、气孔以及合金元素的烧损等焊接缺陷和脆化现象,适于焊接铝、铜、铅、钛、锌、镁等有色金属及其合金以及钢铁材料、复合材料等,也可用于异种材料的连接。
2.不受轴类零件的限制,可进行平板的对接和搭接,可焊接直焊缝、角焊缝及环焊缝,可进行大型框架结构及大型筒体制造、大型平板对接等,扩大了应用范围。
3.易于实现机械化、自动化,质量比较稳定,重复性高。
搅拌摩擦焊工艺参数少,焊接设备简单,容易实现自动化,从而使焊接操作十分简便,焊机运行和焊接质量的可靠性大大提高。
4.焊接成本较低,效率高。
无须填充材料、保护气体,焊前无须对焊件表面预处理,焊接过程中无须施加保护措施。
厚焊接件边缘不用加工坡口。