齿轮传动受力分析
齿轮传动-ppt课件

注意:不要把轴向力直接画在轴线或表示轮齿旋向 的斜线上。
最新课件
30
第第四四节节 齿齿轮轮强强度校度核 校核
齿轮的失效,通常都集中在轮齿部分。 轮齿的 主要失效形式有:轮齿折断、齿 面磨损、齿面点 蚀、齿面胶合、齿面塑 性变形等五种。为保证 齿轮传动所需工 作寿命,应进行强度计算与强 度校核。 一般只进行两类强度计算:齿面接触 疲劳 强度计算,齿根弯曲疲劳强度计算。
最新课件
14
二、斜齿圆柱齿轮受力分析
1、各力的大小
圆周力 径向力
F 2T1 d1
F F tan cos
轴向力
F
法向力
FF
F cotsan
T1 9.55
10
cos
6 P1 n1
式中:n 法面分度圆
压力角
t 端面分度圆压力角 分度圆螺旋角
最新课件
b 基圆螺旋角
15
2、各力的方向
圆周力 Ft:主动轮上的与转向相反,从动轮上的与转向相同;
常用于制造小齿轮和蜗杆 用于制造承受冲击和交变载荷的齿
轮和蜗杆 用于制造速度较高的耐磨
调质渗氮
齿轮
猝火调质
用于制造需氮化的齿轮,热 处 理 后不必磨齿 用于要求防锈、防腐的 齿轮,猝火 后 变形极 小,齿面光 泽
用于制造要求重鱼轻、受力较小的 齿轮
用于制造高抗磨或防磁的重要齿轮
及蜗轮 用于制造抗磨、防腐的次要
最新课件
12
1、各力的大小
2
F t
Td
1
1
F F tan
rt
F Ft 2T1
机械设计基础——直齿锥齿轮传动的设计特点

z1 zv1 cos1
zv 2
z2 cos 2
三、标准直齿锥齿轮的几何尺寸
四、直齿锥齿轮的受力分析和强度计算
锥齿轮的轮齿截面从大端到小端 逐渐缩小,各部位的受力分布也 是从大端到小端逐渐缩小,通常 假设载荷集中在齿宽中点节线 处 的法平面内,并近似认为锥齿轮 的强度相当于当量直齿圆柱齿轮 的强度。
四、直齿锥齿轮的受力分析和强度计算
在齿宽中点节线处的法向 平面内,法向力Fn可分解为 三个分力:圆周力Ft、径向 力Fr和轴向力Fa 。
圆周力:
2000T1 2000T1 Ft1 d m1 (1 0.5 R )d1
dm1 (1 0.5 R )d1 (1 0.5b / R)d1
四、直齿锥齿轮的受力分析和强度计算
3.参数选择
直齿圆柱齿轮强度计算时参数选择的原则基本上适应于锥齿轮传
动,其特点如下: (1)单级直齿锥齿轮传动,一般取u=1-5;
z z (2) YFS 按当量齿数 v cos 由图5-26查取;
(3)许用应力的确定与圆柱齿轮相同; 通常 Ψ R 0.25 ~ 0.3 。
直齿锥齿轮
∑=δ1+δ2=90°的直齿锥齿轮传动的
强度条件。
一、直齿锥齿轮的传动比
二、直齿锥齿轮的当量齿数
1、背锥 背锥:过A点做该圆弧的切线与轴线交于O’,以O’A为母线 绕轴线OO’旋转所得的与球面齿廓相切的圆锥体称为背锥。
二、直齿锥齿轮的当量齿数
2、当量齿轮 当量齿轮:将背锥展成一平面扇形齿轮,并将该扇形齿轮 补充为整圆齿轮。这样所得的直齿圆柱为原直齿锥齿轮的当量 齿轮。
(4)齿宽系数 Ψ 大时,齿宽就大,推荐Ψ R 0.2(u 6) ~ 0.35(u 1) R
高性能弧齿锥齿轮承载及振动特性分析

高性能弧齿锥齿轮承载及振动特性分析高性能弧齿锥齿轮承载及振动特性分析一、引言弧齿锥齿轮是一种重要的传动元件,广泛应用于机械设备中。
它具有传动效率高、承载能力大、工作平稳等优点,在工业领域有着重要的应用价值。
然而,在实际应用过程中,弧齿锥齿轮的使用寿命和工作性能有时会受到一些不可忽视的挑战,例如承载能力不足,振动过大等问题。
因此,对于弧齿锥齿轮的承载能力和振动特性进行分析和研究,对于提高其工作性能具有重要意义。
二、弧齿锥齿轮的承载特性分析1. 弧齿锥齿轮的基本结构弧齿锥齿轮由圆柱齿轮和锥齿轮组成,其中锥齿轮的齿面是由圆锥面组成的。
在传动过程中,锥齿轮和圆柱齿轮之间产生啮合,承载力主要由齿面间的接触行为来传递。
2. 弧齿锥齿轮的受力分析在实际工作过程中,弧齿锥齿轮会承受多种载荷,例如径向力、轴向力和周向力。
这些载荷会导致弧齿锥齿轮产生变形和应力,在一定的程度上影响弧齿锥齿轮的承载能力和工作性能。
3. 弧齿锥齿轮的承载能力分析弧齿锥齿轮的承载能力是指在一定工作条件下,它能够承受的最大载荷。
分析弧齿锥齿轮的承载能力,需要考虑到其材料性能、齿形参数、工作条件等因素。
通过建立弧齿锥齿轮的数学模型,可以计算出其承载能力,并根据实际工作条件进行验证。
三、弧齿锥齿轮的振动特性分析1. 弧齿锥齿轮的振动原因弧齿锥齿轮在工作过程中会产生振动,其主要原因包括不平衡载荷、制造误差、磨损和松动等。
这些振动会导致弧齿锥齿轮的工作不稳定,影响其传动效率和使用寿命。
2. 弧齿锥齿轮的振动特性分析方法为了分析弧齿锥齿轮的振动特性,可以采用有限元分析方法。
通过建立弧齿锥齿轮的三维模型和材料参数,可以模拟其在不同工作条件下的振动情况,并得到振动响应的频谱图。
在实际工作中,还可以采用实验方法对弧齿锥齿轮进行振动测试,获得其振动特性的实际数据。
四、弧齿锥齿轮的优化设计通过对弧齿锥齿轮的承载能力和振动特性进行分析,可以发现对其进行优化设计的一些方向。
齿轮传动受力分析习题

1. 已知在某二级齿轮传动中,蜗杆1为主动轮,输出轴上的锥齿轮4的转向如下图所示,欲使中间轴上的轴承所承受的轴向力能部分抵消,试确定:(1)蜗杆1的旋向;(2)蜗杆1的转向;(3)蜗杆1、蜗轮2、锥齿轮3和锥齿轮4的轴向力F a1、F a2、F a3、F a4的方向,并将其标在图中。
(1)蜗杆的旋向:左旋(2)蜗杆的转向:顺时针(3)F a1、F a2、F a3、F a4的方向如图1. 已知在某二级直齿锥齿轮一斜齿圆柱齿轮传动中,1轮为驱动轮,3轮的螺旋线方向如图所示。
为了使II 轴轴承上所受的轴向力抵消一部分,试确定1轮的转动方向。
并将各轮轴向力F a1、F a2、F a3、F a4的方向、4轮的螺旋线方向和1轮的转动方向标在图中。
(1)轮1的转向:向上(2)轮4的旋向:右旋(3)F a1、F a2、F a3、F a4的方向如图1) 单根V 带传递的最大功率max 4.82P KW =,小带轮直径1400d d mm =,11450min n r =,小带轮包角1152α=︒,带和带轮间的当量摩擦系数0.25v f =,试确定带传动的最大有效拉力ec F 、紧边拉力1F 和张紧力0F 。
解 求带运动的速度11400145030.35601000601000d d n v m s ππ⨯⨯===⨯⨯因为1000ec P F v =,故max 10001000 4.82158.8130.35ec P F N v ⨯=== 由公式(8.4)得 (0.253.14152180)10(0.253.14152180)11158.81 2.7181248.31212 2.7181v v f ec f F e F N e αα⨯⨯⨯⨯++=⋅=⋅=-- 由公式(8.2)得10158.81248.31327.7222ec F F F N =+=+= 20158.81248.31168.9122ec F F F N =-=-=2) 一普通V 带传动,已知:主动轮直径1180d d mm =,从动轮直径2630d d mm =,中心距1600a mm =,主动轮转速11450min n r =,使用B 型胶带4根,V 带与带轮表面摩擦系数0.4f =,所能传递的最大功率41.5P KW =。
兆瓦级风力发电机增速器齿轮传动受力分析

Ab t a t n e tbl h s i h h e i n in lp r mee de o n a i n wh c p e me a a tl e n _ i e sr c ・I sa i e n t e t r e d me so a a a t rmo lf u d to i h s r g w l ev lwi d dr n s e v g n r t rs e de yi dr a He ia g as v c — e eao p e rc l n i l c l l e r i e muli tet s e c r e 1 t e n n ln a o t c n lss mo l c t— e h me h s a r s O" h o — i e rc n a ta ay i i 1 de u i g f t l me ta ls ss fwae n h o ner e rv e  ̄ a r d 0 o me h i he c c ia c ur t ttc sae sn i e e e n nay i o ni t r.a d t e c u t a i e rl n I s n t y lc la c ae s ai t t g e t s t e i l t n a a y i T c mp t t n i d c td.t i ri l t i s he r s l e te l tlis a t I o me h h smu a i n l ss he o u a i n i ae o o h s a tce oba n t e u t x r me y ale eua
多齿对 同时 啮合 的三维 有 限元接 触分 析模 型= 由于斜 齿 这 点不 同可 以使 原参数 化 轮 传动 接触 非线性 特点 , 为减 少计 算 T作量 , 大部 分三 维 标 准 斜 齿 轮画 法 更直 观 。 有限元 接触 分析模 型 在接触 处理 都 进行 了简化 。如 本 由 于这 点 不 同 使 得 第 l 2 文采用 一定 长度 的接 触线 代替 未知 的接触带 ,仅 在该 接 步 lI 3 P简 化 , 建 第 一 创 触线上施 加接 触条件 ,把 =线 性问 题线性 化 .并运 用 l 个 轮齿 不再 复杂 ,只需要 怍 — DA E S进行 有限 元分析 . 根据 圣 ・ 南原理 , 维 这种 处理方 式 在扫描 混合 界 面下选 中原 对于非 接触 区 的应力 分析 是 允许 的,但对 于接触 区域 附 始轨 迹 , 取 两个 截 面 即可生 成 , 选 其余 操作 与 文献 [ ] 6介 近 的应力 分析 则会存 在较 大 的误 差 。本 文结合 兆瓦级 风 绍 的相 同 :最后 生成的斜齿 轮 如图 2 。 电机齿 轮增 速 设计要 求 , 斜 齿轮进 行受 力分 析 . 对 采用 了 3 多齿 对啮 合有 限元接 艟模型 的建 立 种 较为 实用 和合理 的有 限元 混合 法 ,该 方法 对于 每一 某 兆 瓦级风 力发 电机增 速器 中一 对圆 柱斜齿 轮的 基
电动助力转向系统中齿轮齿条传动设计与计算_刘庚寅

收稿日期:2012-09-14作者简介:刘庚寅(1970—),男,汉,湖南邵东人,硕士研究生,研究方向:汽车电动助力转向系统。
E-mail :lgy960@ 。
电动助力转向系统中齿轮齿条传动设计与计算刘庚寅,刘晟昱,彭微君,葛阳清,康永升(株洲易力达机电有限公司,湖南株洲412002)摘要:介绍了P-EPS 电动助力转向系统的传动原理及其主要零部件。
特别是就某一车型的P-EPS 齿轮齿条的设计计算进行了详细的分析。
对不同载荷车型的齿轮齿条模数和齿数的匹配分别进行了计算,为新产品的开发提供了参考和指导。
关键词:电动助力转向系统;P-EPS ;齿轮轴;齿条轴Design and Calculation on Transmission between Pinion andRack in Electric Power Steering SystemLIU Gengyin ,LIU Shengyu ,PENG Weijun ,GE Yangqing ,KANG Yongsheng (Zhuzhou Elite Electro Mechanical Co.,Ltd.,Zhuzhu Hunan 412002,China )Abstract :The theory and main components of P-EPS electric power steering system were introduced here.Especially ,the design and calculation for rack and pinion of P-EPS about one car were analyzed in detail.Also ,matching relation between modulus and teeth number of rack and pinion were separately calculated for different car types with different weight ,so the reference and guides were provided for the devel-opment of new products.Keywords :Electric power steering system ;P-EPS ;Pinion ;Rack0前言国产电动助力转向系统(EPS )经过十几年的探索与研究,技术日趋成熟,并以其相对传统液压转向系统的突出优点而得到众多汽车厂家的认可,并在中小排量汽车上得到了广泛应用。
高速精密齿轮传动装置的动态特性及优化设计分析

高速精密齿轮传动装置的动态特性及优化设计分析摘要高速精密齿轮传动装置应用广泛,但其动态特性对其性能和寿命起着至关重要的作用。
本文旨在探讨高速精密齿轮传动装置的动态特性及其优化设计分析,提供可靠的理论依据和建议。
引言齿轮传动作为一种古老而重要的机械传动形式,广泛应用于各个领域。
高速精密齿轮传动装置具有高传动精度、高效率和高承载能力等优点,被广泛应用于航空航天、汽车制造、机床等高精度领域。
然而,由于高速精密齿轮传动装置的特殊性,其动态特性与传统齿轮传动装置存在很大差异,因此需要进行深入研究和优化设计。
一、高速精密齿轮传动装置的动态特性分析1. 齿轮系统的振动特性高速精密齿轮传动装置在运行过程中会产生振动,这对其运行稳定性和寿命造成影响。
通过分析齿轮系统的振动特性,可以深入了解振动产生的原因,进而采取相应的措施进行优化设计。
常用的分析方法包括模态分析、有限元分析等。
2. 齿轮系统的动力特性高速精密齿轮传动装置在运转过程中受到多种动力因素的影响,包括齿轮重力、惯性力、接触力等。
这些力的作用对齿轮系统的传动性能和动态特性产生影响。
通过分析动力特性,可以了解齿轮系统受力情况,为优化设计提供依据。
3. 齿轮系统的噪声特性高速精密齿轮传动装置的噪声水平直接关系到其在实际运行中的可接受性。
噪声问题不仅影响操作者的工作环境,还可能对装置自身产生负面影响。
通过噪声特性分析,可以确定噪声产生的原因,采取合适的措施进行降噪处理。
二、高速精密齿轮传动装置的优化设计分析1. 优化齿轮的几何参数齿轮的几何参数对精密齿轮传动装置的性能起着决定性的作用。
通过优化齿轮的几何参数,可以提高齿轮传动的精度和承载能力。
常用的优化方法包括参数优化、拓扑优化等。
2. 优化齿轮的材料选择材料的选择对精密齿轮传动装置的使用寿命和可靠性至关重要。
通过优化材料选择,可以提高齿轮的强度和耐磨性能,减少疲劳寿命的损失。
适当的材料选择还可以降低成本和减少装置的重量。
直齿圆柱齿轮强度计算

4.5 直齿圆柱齿轮强度计算一、轮齿的失效齿轮传动就装置形式来说,有开式、半开式及闭式之分;就使用情况来说有低速、高速及轻载、重载之别;就齿轮材料的性能及热处理工艺的不同,轮齿有较脆(如经整体淬火、齿面硬度较高的钢齿轮或铸铁齿轮)或较韧(如经调质、常化的优质钢材及合金钢齿轮),齿面有较硬(轮齿工作面的硬度大于350HBS或38HRC,并称为硬齿面齿轮)或较软(轮齿工作面的硬度小于或等于350HBS或38HRC,并称为软齿面齿轮)的差别等。
由于上述条件的不同,齿轮传动也就出现了不同的失效形式。
一般地说,齿轮传动的失效主要是轮齿的失效,而轮齿的失效形式又是多种多样的,这里只就较为常见的轮齿折断和工作面磨损、点蚀,胶合及塑性变形等略作介绍,其余的轮齿失效形式请参看有关标准。
至于齿轮的其它部分(如齿圈、轮辐、轮毂等),除了对齿轮的质量大小需加严格限制外,通常只需按经验设计,所定的尺寸对强度及刚度均较富裕,实践中也极少失效。
轮齿折断轮齿折断有多种形式,在正常情况下,主要是齿根弯曲疲劳折断,因为在轮齿受载时,齿根处产生的弯曲应力最大,再加上齿根过渡部分的截面突变及加工刀痕等引起的应力集中作用,当轮齿重复受载后,齿根处就会产生疲劳裂纹,并逐步扩展,致使轮齿疲劳折断(见图1 图2 图3)。
此外,在轮齿受到突然过载时,也可能出现过载折断或剪断;在轮齿受到严重磨损后齿厚过分减薄时,也会在正常载荷作用下发生折断。
在斜齿圆柱齿轮(简称斜齿轮)传动中,轮齿工作面上的接触线为一斜线(参看),轮齿受载后,如有载荷集中时,就会发生局部折断。
若制造或安装不良或轴的弯曲变形过大,轮齿局部受载过大时,即使是直齿圆柱齿轮(简称直齿轮),也会发生局部折断。
为了提高齿轮的抗折断能力,可采取下列措施:1)用增加齿根过渡圆角半径及消除加工刀痕的方法来减小齿根应力集中;2)增大轴及支承的刚性,使轮齿接触线上受载较为均匀;3)采用合适的热处理方法使齿芯材料具有足够的韧性;4)采用喷丸、滚压等工艺措施对齿根表层进行强化处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六、蜗轮蜗杆传动
2
n2
Fr1
2 n2
Fr1
Ft2
Fx2
Ft1
Fx1
n1
n1
Fr1
1
1 Fr1
在分析蜗杆和蜗轮受力方向时,必须先指明主动轮和从动 轮(一般蜗杆为主动轮);蜗杆或蜗轮的螺旋方向:左旋或右 旋;蜗杆的转向和位置。
蜗杆与蜗轮轮齿上各方向判断如下:
① 圆周力的方向:主动轮圆周力与其节点速度方向相反, 从动轮圆周力与其节点速度方向相同;
② 径向力的方向:由啮合点分别指向各自轴心;
③ 轴向力的方向 :蜗杆主动时,蜗杆轴向力的方向由 “主动轮左、右手定则”判断,即右旋蜗杆用右手(左旋用左 手),四指顺着蜗杆转动方向弯曲,大拇指指向即蜗杆轴向力 的方向。
蜗轮轴向力的方向与蜗杆圆周力方向相反。
Fr c
Fa
ααntFβbnFn
β Ft
F' ω1 T1
d1
主动
n1
O1
Fa1 Ft2
Fr2
Fr1 Ft1
Fa2
O2 从动
如何判断齿轮的旋向?——齿轮中心线竖直, 右端齿线高的即为右旋,左端齿线高的即为左旋。
主动
Ft1 Fa1
Fr1
n1
Fr1
Fa2
ቤተ መጻሕፍቲ ባይዱ
n2
Ft2
n2
从动
圆周力Ft—主反从同; 径向力Fr—指向各自的轮心; 轴向力Fa—主动轮左右手螺旋定则; 主动轮轮齿左旋(或右旋)伸左手(或右手),四指沿着主动轮的转向握住 轴线,大拇指所指即为主动轮所受的Fa1的方向,Fa2与Fa1方向相反。
齿轮传动的受力分析
—直齿圆柱齿轮、斜齿圆柱齿轮
——梅春枝
一、直齿圆柱齿轮传动
沿啮合线作用在齿面上的法向载荷Fn垂 直于齿面,为了计算方便,将Fn在节点P处 分解为两个相互垂直的分力,即圆周力Ft与 径向力Fr。
T1——齿轮传递的转矩; d1——分度圆直径; α——啮合角。
圆周力: Ft
2T1 d1
(T=Fr)
径向力: Fr Ft tan
法向力:
Fn
2T1
d1 cos
n1
主动
主动
O1
n1
Fr1
Ft1
Fr1
Ft2
Ft1
Fr2
O2 从动
Ft2
Fr2
n2
n2 从动
主动轮上的圆周力Ft1与其速度方向相反;主反从同 从动轮上的圆周力Ft2与其速度方向相同;
径向力Fr指向各轮的轮心。
二、斜齿圆柱齿轮传动
圆周力Ft—主反从同
Ft
2T1 d1
径向力Fr—指向各自的轮心
F ' F t 2T1
cos d1 cos
Fr
F ' tann
2T1 tann d1 cos
轴向力Fa—主动轮左右手螺旋定则
Fa
Ft
tan
2T1 tan
d1
Fn
F'
cos n
2T1
d1 cosn cos