微分几何 空间曲线论

合集下载

微分几何第一章曲线论第三节空间曲线

微分几何第一章曲线论第三节空间曲线



P




(C )
基本向量的计算公式 (1)若曲线(C ) : r r (t ), t为一般参数. r r r ; ; r r r r r r ( r r ) r r r r r r r (r r )r ( r r )r . r r r (2)若曲线(C ) : r r ( s ), s为自然参数. r r r r r ; . r ; r r r r
X 1 Y 0 1 1 0 Z 1 0, 即Y Z 0. 0 X 1 Y Z . 副法线的方程为: 0 1 1
3.2 空间曲线的基本三棱形


设曲线(C ) : r r ( s) C 2, P P( s) (C )是非逗留点, dr r 单位切向量, ds (C ) , 1, 即r r , r 主法向量, 副法向量, r 伏雷内标架 { P; , , }; 定义 (基本向量,, ;
P
T
定义 (密切平面) 切平面的极限位置
叫做曲线(C )在点的P密切平面.
Q
T
P
过点P与密切平面垂直的直线 r ( t 0 t ) 叫做曲线(C )在P点的副法线. (C ) O 方程 设曲线(C ) : r r (t ) C 2,
r (t0 )
O

微分几何第二章

微分几何第二章
返回章首
2.3 空间曲线-密切平面方程
设曲线 C: r = (x(t), y(t), z(t)) 是光滑的,P 是曲线上一点,其参数是 t0.设 R = (X, Y, Z) 是 P 点的密切平面上任意一点,则密切平面 方程为:
(R – r(t0), r'(t0), r''(t0)) = 0. 用坐标把密切平面方程表示为:
r'' (t) = (– cost, – sint, 0). 在给定点 P 处的参数 t = 0,所以有
r(0) = (1,0,0), r' (0) = (0,1,1), r'' (0) = (– 1,0,0). 代入密切平面方程并整理得
– Y + Z = 0.
返回章首
2.3 空间曲线-基本向量与伏雷内标架
返回章首
2.1 曲线的概念
一元向量函数 r(t) 所描绘的图形 C 叫曲线, r(t)叫曲线 C 的参数化,或者叫曲线的向量函 数,t 叫曲线的参数.曲线 C 连同它的参数化 r(t) 一起叫参数曲线.
参数曲线用 C : r = r(t) 表示.如果对某个 t0 使得 r'(t0) ≠ 0,就称 r(t0)(或者简称 t0)是曲 线的正则点.如果曲线上处处是正则点,就称 该曲线是正则曲线,相应的参数叫正则参数.
p /2
L 0 | r(t) | dt
3a
p
/2
sint
costdt
3a.
0
2
因此,星形线的弧长为 6a.
返回章首
练习题 1.求旋轮线 x = a(t – sint), y = a(1 – cost) 在0
≤ t ≤ 2p 一段的弧长. 2.求圆柱螺线 x = 3acost, y = 3asint, z = 4at

微分几何_1.3____空间曲线

微分几何_1.3____空间曲线

3
由 0 ( ) ( 1 ) 1 1 1 ( ) (( ) ) 1 1 1 ( r )[( ) ] r r r r r ( r , , ) 2 6 r r r ( r , , ) ( r r ) 2 (r , r , r ) 2 可得挠率公式为 (r r )
密切平面是最贴近于曲线的切平面。
2、密切平面的方程
P(t0 ) 给出 C 类的曲线(C): r (t ) r r (t0 ) 有 PQ r (t t ) r (t ) Q(t0 t ) 0 0 2 1 (t0 )t 2 (r (t0 ) )t r R 因为向量 r (t0 )和 PQ 都在平面 上,所以它们的 O 线性组合 22 [ PQ r (t0 )t ] r (t0 ) 也在平面 上。 t
但与刚体运动和坐标变换无关。我们把 k k ( s), (s) 称为 空间曲线的自然方程。 空间曲线论基本定理
给出闭区间[s0,s1]上的两个连续函数 ( s) 0, (s) ,则除了空 间的位置差别外,唯一存在一条空间曲线,使得参数 s 是曲线 的自然参数,并且 (s) 和 (s) 分别为曲线的曲率和挠率,即曲 线的自然方程为 k ( s), ( s)
3、对于曲线(C)的一般参数表示 r r (t ), 有
r , r (r r )r (r r )r r r , r r r r r
设柱面的母线平行于 z 轴,则可令 p e3 ,再设一般螺线的

微分几何答案+(1)

微分几何答案+(1)

第一章 曲线论§2 向量函数5. 向量函数)(t r具有固定方向的充要条件是)(t r×)('t r= 0 。

分析:一个向量函数)(t r一般可以写成)(t r=)(t )(t e的形式,其中)(t e为单位向量函数,)(t 为数量函数,那么)(t r 具有固定方向的充要条件是)(t e具有固定方向,即)(t e 为常向量,(因为)(t e的长度固定)。

证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t )(t e ,若)(t r具有固定方向,则)(t e 为常向量,那么)('t r=)('t e ,所以 r ×'r = ' (e ×e )=0 。

反之,若r ×'r =0 ,对)(t r =)(t )(t e求微商得'r =' e + 'e ,于是r ×'r =2 (e ×'e )=0 ,则有 = 0 或e ×'e =0 。

当)(t = 0时,)(t r=0 可与任意方向平行;当0时,有e ×'e =0 ,而(e ×'e 2)=22'e e -(e ·'e 2)=2'e ,(因为e具有固定长, e ·'e= 0) ,所以'e =0 ,即e为常向量。

所以,)(t r 具有固定方向。

6.向量函数)(t r平行于固定平面的充要条件是(r r 'r ''r )=0 。

分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n,使)(t r ·n = 0 ,所以我们要寻求这个向量n 及n 与'r ,''r的关系。

证 若)(t r 平行于一固定平面π,设n 是平面π的一个单位法向量,则n 为常向量,且)(t r·n = 0 。

微分几何中的曲线与曲面研究

微分几何中的曲线与曲面研究

微分几何中的曲线与曲面研究微分几何是几何学的一个分支,研究曲线和曲面的性质以及它们与空间的关系。

本文将介绍微分几何中曲线和曲面的研究内容。

一、曲线的研究曲线是平面或空间中的一条连续曲线,它的性质可以通过参数方程和向量函数来描述。

在微分几何中,我们主要研究曲线的切线、曲率、挠率等几何性质。

1. 切线曲线上的每一点都有一个相应的切线,它与曲线在该点处相切。

切线的方向由该点处曲线的切向量决定,切向量的模长表示曲线在该点的斜率。

2. 曲率曲率是曲线在某一点处的弯曲程度。

我们可以通过计算曲线上两点之间的夹角来确定曲率。

曲率越大,表示曲线在该点越陡峭。

3. 挠率挠率描述了曲线在某一点处的旋转性质。

挠率为0表示曲线在该点处没有旋转,为正值表示曲线向左旋转,为负值表示曲线向右旋转。

二、曲面的研究曲面是三维空间中的一个二维平面。

微分几何中的曲面可以通过参数方程或者隐式方程来表示。

研究曲面的性质可以用曲面的法向量、曲率、高斯曲率等概念。

1. 法向量曲面上的每一点都有一个垂直于曲面的法向量。

法向量的方向和模长可以用来描述曲面的几何性质。

2. 曲率曲面上的曲率描述了曲面在某一点处的弯曲性质。

我们可以通过计算曲面上某一方向上的曲率来确定曲面的曲率。

曲率越大,表示曲面在该点弯曲越明显。

3. 高斯曲率高斯曲率是曲面在某一点处曲率的乘积。

高斯曲率可以用来描述曲面的形状,分为正曲率、负曲率和零曲率等情况。

三、曲线和曲面之间的关系微分几何研究了曲线和曲面之间的密切联系。

曲线可以在曲面上进行参数化,曲面上的切线和曲率与曲线的切线和曲率有一定的关系。

1. 曲线的切线与曲面的切线曲线在曲面上的切线是曲面在该点的切平面与曲线的交线。

曲线的切线和曲面的切线有一定的关系,可以通过计算二者的夹角来确定。

2. 曲线的曲率与曲面的曲率曲线的曲率可以通过曲面的曲率来描述。

曲线在曲面上的曲率由曲面的曲率和曲面法向量的关系决定。

结论:微分几何中的曲线与曲面研究了曲线和曲面的性质以及它们与空间的关系。

微分几何曲线论

微分几何曲线论
的连续性,在 t0 点附近有 r′(t0 ) ≠ 0 ,因此奇点总是孤立的。
[注 2] 考察 R3 中的 x 轴的两种参数表示:
(1) r(t) = (t,0,0), − ∞ < t < +∞ ,
(2) r(t) = (t 3 ,0,0), − ∞ < t < +∞
显然(1)是正则参数表示 ,(2)不是正则参数表示。曲线只要有一种参数表示是正则的 ,那 么 这 条 曲线就是正则曲线。 1.1.3 容许的参数变换
立一一对应 ,为此要求参数变换应满足
du ≠ 0, 或 dt ≠ 0
(4)
dt
du
满足这一条件的参数变换称为容许参数变换。
为了使得 t 和 u 增加的方向对应于曲线的正向,应要求
du > 0
(5)
dt
2
赣南师范学院版权所有 All rights reserved
பைடு நூலகம்
由于
dr = dr dt
(6)
du dt du
解 因为 r = (acht,asht,at) (a > 0), 于是
r′(t) = (asht,acht,a)
所以
∫ ∫ s(t) = t r′(t) dt = t 2acht + dt = 2asht.
0
0
[注 1] 容易证明
∫ ∑ br′(t )dt
a
=
lin
max ∆ti →0
n i=1
r(ti ) −r(ti−1 )
要从上式解出 t 是很困难的,以后将看到,我们无需求出 s = s(t) 的反函数,只用到 s 对 t 的导数。
用弧长作为曲线的参数, 将使计论和计算大为简化 。 下面的命题给出了参数 t 是弧长参数的特征,是十分有用的。

微分几何习题解答曲线论

第一章 曲线论§2 向量函数5. 向量函数)(t r 具有固定方向的充要条件是)(t r × )('t r= 0 ;分析:一个向量函数)(t r 一般可以写成)(t r =)(t λ)(t e 的形式,其中)(t e为单位向量函数,)(t λ为数量函数,那么)(t r 具有固定方向的充要条件是)(t e 具有固定方向,即)(t e为常向量,因为)(t e的长度固定;证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t λ)(t e ,若)(t r具有固定方向,则)(t e 为常向量,那么)('t r =)('t λe ,所以 r ×'r=λ'λe ×e =0 ;反之,若r ×'r =0 ,对)(t r =)(t λ)(t e 求微商得'r ='λe +λ'e ,于是r×'r =2λe ×'e =0 ,则有 λ =0 或e ×'e =0 ;当)(t λ= 0时,)(t r =0 可与任意方向平行;当λ≠0时,有e ×'e=0,而e×'e2)=22'e e -e ·'e 2)=2'e ,因为e 具有固定长,e ·'e = 0 ,所以 'e =0 ,即e为常向量;所以,)(t r 具有固定方向;6.向量函数)(t r平行于固定平面的充要条件是r 'r ''r =0 ;分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n ,使)(t r ·n= 0 ,所以我们要寻求这个向量n 及n 与'r ,''r的关系;证 若)(t r 平行于一固定平面π,设n 是平面π的一个单位法向量,则n为常向量,且)(t r·n = 0 ;两次求微商得'r ·n = 0 ,''r ·n = 0 ,即向量r ,'r ,''r 垂直于同一非零向量n,因而共面,即r 'r ''r =0 ;反之, 若r 'r ''r =0,则有r ×'r =0 或r ×'r ≠0 ;若r ×'r =0,由上题知)(t r 具有固定方向,自然平行于一固定平面,若r ×'r≠0 ,则存在数量函数)(t λ、)(t μ,使''r =r λ+μ'r①令n =r ×'r,则n≠0 ,且)(t r ⊥)(t n ;对n =r ×'r求微商并将①式代入得'n =r ×''r =μr ×'r=μn ,于是n ×'n =0 ,由上题知n 有固定方向,而)(t r ⊥n ,即)(t r 平行于固定平面;§3 曲线的概念1.求圆柱螺线x =t cos ,y =t sin ,z=t 在1,0,0的切线和法平面;解 令t cos =1,t sin =0, t =0得t =0, 'r0={ -t sin ,t cos ,1}|0=t ={0,1,1},曲线在0,1,1的切线为 111z y x ==- ,法平面为 y + z = 0 ;2.求三次曲线},,{32ct bt at r =在点0t 的切线和法平面;解 }3,2,{)('2000ct bt a t r = ,切线为230020032ct ct z bt bt y a at x -=-=-, 法平面为 0)(3)(2)(30202000=-+-+-ct z ct bt y bt at x a ; 3. 证明圆柱螺线r ={ a θcos ,a θsin ,θb } +∞∞- θ的切线和z 轴作固定角;证明 'r= {-a θsin ,a θcos ,b },设切线与z 轴夹角为ϕ,则ϕcos=22||||'ba be r k r +=⋅ 为常数,故ϕ为定角其中k 为z 轴的单位向量; 4. 求悬链线r ={t ,a t a cosh }-∞∞ t 从t =0起计算的弧长;解'r = {1,atsinh },|'r | =at2sinh 1+ = a tcosh , s=a tta ta dt sinh cosh=⎰ ;9.求曲线2232,3axz y a x ==在平面3ay =与y = 9a 之间的弧长;解 曲线的向量表示为r =}2,3,{223xa a x x ,曲面与两平面3a y = 与y = 9a 的交点分别为x=a 与x=3a , 'r =}2,,1{2222xa ax -,|'r |=444441x a a x ++=22222xa a x +,所求弧长为a dx xa a x s aa9)2(22322=+=⎰; 10. 将圆柱螺线r ={a t cos ,a t sin ,b t }化为自然参数表示;解 'r= { -a t sin ,a t cos ,b},s = t b a dt r t 220|'|+=⎰ ,所以22ba s t +=,代入原方程得 r ={a cos22ba s +, a sin22ba s +,22ba bs +}11.求用极坐标方程)(θρρ=给出的曲线的弧长表达式; 解由θθρcos )(=x ,θθρsin )(=y 知'r ={)('θρθcos -θθρsin )(,)('θρθsin +θθρcos )(},|'r| = )(')(22θρθρ+,从0θ到θ的曲线的弧长是s=⎰θθ0)(')(22θρθρ+d θ ;§4 空间曲线1.求圆柱螺线x =a t cos ,y =a t sin ,z = b t 在任意点的密切平面的方程;解 'r ={ -a t sin ,a t cos ,b},''r={-a t cos ,- a t sin ,0 } 所以曲线在任意点的密切平面的方程为sin cos cos sin sin cos ta ta b t a t a bt z t a y t a x ------ = 0 ,即b t sin x-b t cos y+a z-ab t=0 .2. 求曲线r = { t t sin ,t t cos ,t t e } 在原点的密切平面、法平面、从切面、切线、主法线、副法线;解 原点对应t=0 , 'r0={ t sin +t t cos ,t cos - t t sin ,t e +t t e 0}=t ={0,1,1},=)0(''r{2t cos + t t cos ,t cos - t t sin ,2t e +t t e 0}=t ={2,0,2} ,所以切线方程是110zy x == ,法面方程是 y + z = 0 ; 密切平面方程是202110zy x=0 ,即x+y-z=0 ,主法线的方程是⎩⎨⎧=+=-+00z y z y x 即112zy x =-=; 从切面方程是2x-y+z=0 ,副法线方程式111-==zy x ; 3.证明圆柱螺线x =a t cos ,y =a t sin ,z = b t 的主法线和z 轴垂直相交;证 'r ={ -a t sin ,a t cos ,b}, ''r ={-a t cos ,- a t sin ,0 } ,由'r ⊥''r 知''r为主法线的方向向量,而''r 0=⋅k所以主法线与z 轴垂直;主法线方程是与z 轴有公共点o,o,bt;故圆柱螺线的主法线和z 轴垂直相交;4.在曲线x = cos αcost ,y = cos αsint , z = tsin α的副法线的正向取单位长,求其端点组成的新曲线的密切平面;解 'r = {-cos αsint, cos αcost, sin α } , ''r={ -cos αcost,- cos αsint ,0 }=⨯⨯=|'''|'''r r r rγ{sin αsint ,- sin αcost , cos α }新曲线的方程为r ={ cos αcost + sin αsint ,cos αsint- sin αcost ,tsin α + cos α }对于新曲线'r={-cos αsint+ sin αcost ,cos αcost+ sin αsint,sin α }={sin α-t,cos α-t, sin α} , ''r={ -cos α-t, sin α-t,0} ,其密切平面的方程是即 sin α sint-α x –sin α cost-α y + z – tsin α – cos α = 0 .5.证明曲线是球面曲线的充要条件是曲线的所有法平面通过一定点; 证 方法一:⇒设一曲线为一球面曲线,取球心为坐标原点,则曲线的向径)(t r具有固定长,所以r ·'r= 0,即曲线每一点的切线与其向径垂直,因此曲线在每一点的法平面通过这点的向径,也就通过其始点球心;⇐ 若一曲线的所有法平面通过一定点,以此定点为坐标原点建立坐标系,则r ·'r = 0,)(t r具有固定长,对应的曲线是球面曲线;方法二:()r r t =是球面曲线⇔存在定点0r 是球面中心的径矢和常数R 是球面的半径使220()r r R -=⇔02()0r r r '-⋅= ,即0()0r r r '-⋅= ﹡而过曲线()r r t =上任一点的法平面方程为()0r r ρ'-⋅= ;可知法平面过球面中心⇔﹡成立;所以,曲线是球面曲线的充要条件是曲线的所有法平面通过一定点;6.证明过原点平行于圆柱螺线r ={a t cos ,a t sin ,b t }的副法线的直线轨迹是锥面2222)(bz y x a =+.证 'r={ -a tsin ,a t cos , }, ''r ={-a t cos ,- a t sin ,0 } ,'r×''r=},cos ,sin {a t b t b a ---为副法线的方向向量,过原点平行于副法线的直线的方程是az t b y t b x =-=cos sin ,消去参数t 得2222)(bz y x a =+; 7.求以下曲面的曲率和挠率⑴ },sinh ,cosh {at t a t a r =,⑵ )0)}(3(,3),3({323a t t a at t t a r +-=;解 ⑴},cosh ,sinh {'a t a t a r =,}0,sinh ,cosh {''t a t a r =,}0,cosh ,{sinh '''t t a r =,}1,cosh ,sinh {'''--=⨯t t a r r,所以t a t a t a r r r k 2323cosh 21)cosh 2(cosh 2|'||'''|==⨯= ta t a a r r r r r 22422cosh 21cosh 2)'''()''','','(==⨯=τ ; ⑵ }1,2,1{3'22t t t a r +-= ,}1,0,1{6'''},,1,{6''-=-=a r t t a r,'r ×''r =}1,2,1{18222+--t t t a ,22322223)1(31)1(2227)1(218|'||'''|+=++=⨯=t a t a t a r r r k22224232)1(31)1(2182618)'''()''','','(+=+⨯⨯⨯=⨯=t a t a a r r r r r τ ; 8.已知曲线}2cos ,sin ,{cos 33t t t r = ,⑴求基本向量γβα ,,;⑵曲率和挠率;⑶验证伏雷内公式;分析 这里给出的曲线的方程为一般参数,一般地我们可以根据公式去求基本向量和曲率挠率,我们也可以利用定义来求;解 ⑴ }4,sin 3,cos 3{cos sin }2sin 2,cos sin 3,sin cos 3{'22--=--=t t t t t t t t t r,,cos sin 5|)('|t t t r dtds ==设sintcost>0, 则}54,sin 53,cos 53{|'|'--==t t r r α,}0,cos 53,sin 53{cos sin 51t t t t ds dt dt d ==•αα, }0,cos ,{sin ||t t ==••ααβ,}53,sin 54,cos 54{--=⨯=t t βαγ ,⑵ t t k cos sin 253||==•α,}0,cos ,sin {cos sin 254t t t t --=•γ ,由于•γ 与β 方向相反,所以 tt cos sin 254||==•γτ⑶ 显然以上所得 τγβα,,,••k 满足 βτγβα -==••,k ,而γτακβ+-=-=•}0,sin ,{cos cos sin 51t t tt 也满足伏雷内公式 ;9.证明如果曲线的所有切线都经过一的定点,则此曲线是直线;证 方法一:取定点为坐标原点建坐标系,曲线的方程设为r =)(t r,则曲线在任意点的切线方程是)(')(t r t r λρ=-,由条件切线都过坐标原点,所以)(')(t r t rλ=,可见r ∥'r ,所以r 具有固定方向,故r =)(t r是直线;方法二:取定点为坐标原点建坐标系,曲线的方程设为r =)(t r,则曲线在任意点的切线方程是)(')(t r t rλρ=-,由条件切线都过坐标原点,所以)(')(t r t rλ=,于是'r =λ''r ,从而'r ×''r=0 ,所以由曲率的计算公式知曲率k =0,所以曲线为直线;方法二:设定点为0r ,曲线的方程为r =()r s ,则曲线在任意点的切线方程是()()r s s ρλα-=,由条件切线都过定点0r ,所以0()()r r s s λα-=,两端求导得:()()s s αλαλκβ'-=+, 即(1)()0s λαλκβ'++= ,而(),()s s αβ无关,所以10λ'+=,可知0,()0s λκ≠∴=,因此曲线是直线;10. 证明如果曲线的所有密切平面都经过一的定点,则此曲线是平面曲线;证 方法一:取定点为坐标原点建坐标系,曲线的方程设为r =)(t r,则曲线在任意点的密切平面的方程是0))('')('())((=⨯⋅-t r t r t r ρ,由条件0))('')('()(=⨯⋅-t r t r t r,即r 'r ''r =0,所以r 平行于一固定平面,即r =)(t r是平面曲线;方法二:取定点为坐标原点建坐标系,曲线的方程设为r =)(s r,则曲线在任意点的密切平面方程是0))((=⋅-γρ s r ,由条件0)(=⋅γs r ,两边微分并用伏雷内公式得τ-0)(=⋅β s r ;若0)(=⋅β s r ,又由0)(=⋅γ s r 可知)(s r ∥)(s r •= α,所以r =)(s r平行于固定方向,这时r =)(s r表示直线,结论成立;否则0=τ,从而知曲线是平面曲线;方法三:取定点为坐标原点建坐标系,曲线的方程设为r =)(t r,则曲线在任意点的密切平面方程是0))('')('())((=⨯⋅-t r t r t r ρ,由条件0))('')('()(=⨯⋅-t r t r t r,即r 'r ''r =0,所以r ,'r ,''r 共面,若r ∥'r ,则r =)(t r是直线,否则可设''',''''''r r r r r r λμλμ=+∴=+,所以','','''r r r 共面,所以0=τ,从而知曲线是平面曲线;11. 证明如果一条曲线的所有法平面包含常向量e,那么曲线是直线或平面曲线;证 方法一:根据已知0=⋅e α,若α是常向量,则k=||•α =0 ,这时曲线是直线;否则在0=⋅e α两边微分得•α ·e =0,即 k β ·e =0,所以β ·e =0,又因0=⋅e α,所以γ ∥e ,而γ 为单位向量,所以可知γ 为常向量,于是0||||==•γτ,即0=τ,此曲线为平面曲线;方法二:曲线的方程设为r =)(t r ,由条件'r ·e =0,两边微分得''r ·e =0,'''r ·e=0,所以'r , ''r ,'''r共面,所以'r ''r '''r =0;由挠率的计算公式可知0=τ,故曲线为平面曲线;当'r ×''r=0 时是直线;方法三:曲线的方程设为r =)(t r,由条件'r ·e =0,两边积分得p 是常数;因r e p ⋅=是平面的方程,说明曲线r =)(t r在平面上,即曲线是平面曲线,当'r 有固定方向时为直线;12.证明曲率为常数的空间曲线的曲率中心的轨迹仍是曲率为常数的曲线;证明 设曲线C :r =)(s r的曲率k 为常数,其曲率中心的轨迹C 的方程为:)(1)(s ks r βρ+= ,β 为曲线C 的主法向量,对于曲线C 两边微分得γτγτααρ kk k s =+-+=)(1)(' ,α ,γ ,τ分别为曲线C 的单位切向量,副法向量和挠率,βτγτρ k k 2''-=•,k |||'|τρ= ,23'''k τρρ=⨯ α ,曲线C 的曲率为k k k k ==⨯=-33233|||||'||'''|ττρρρ为常数;13.证明曲线x=1+3t+22t ,y=2-2t+52t ,z=1-2t 为平面曲线,并求出它所在的平面方程 ;证 'r ={3+4t, -2+10t,-2t}, ''r ={4,10,-2}, '''r={0,0,0}曲线的挠率是0)'''()''','','(2=⨯=r r r r r τ,所以曲线为平面曲线;曲线所在平面是曲线在任一点的密切平面;对于t=0,r ={1,2,1},'r ={3, -2,0}, ''r ={4,10,-2}, '''r={0,0,0};所以曲线的密切平面,即曲线所在平面是02104023121=-----z y x ,即2x+3y+19z –27=0.14.设在两条曲线Γ、Γ的点之间建立了一一对应关系,使它们在对应点的切线平行,证明它们在对应点的主法线以及副法线也互相平行;证 设曲线Γ:r =)(s r与Γ:)(s r r =点s 与s 一一对应,且对应点的切线平行,则)(s α=)(s α±, 两端对s 求微商得ds s d αα ±=, 即dss d s k s k )()(ββ ±= ,这里k ≠0,若k=||α =0,则β 无定义,所以β ∥β ,即主法线平行,那么两曲线的副法线也平行;15.设在两条曲线Γ、Γ的点之间建立了一一对应关系,使它们在对应点的主法线平行,证明它们在对应点的切线作固定角;证 设α ,α分别为曲线Γ、Γ的切向量,β ,β 分别为曲线Γ、Γ的主法向量,则由已知)()(s s ββ ±=.....① ,而ds s d ds d αααααα ⋅+⋅=⋅)(= dss d s k k )(βααβ ⋅+⋅ 将①式代入 0)(=⋅±⋅dss d k βααβ ;所以α ·α=常数,故量曲线的切线作固定角;16.若曲线Γ的主法线是曲线Γ的副法线, Γ的 曲率、挠率分别为τκ,;求证k=0λ2κ+2τ ,其中0λ为常数;证 设Γ的向量表示为r =)(s r,则Γ可表示为ρ =)(s r +)(s λ)(s β , Γ的切向量'ρ =α+λ β +λ-k α +τγ 与β 垂直,即'ρ ·β =λ =0,所以λ为常数,设为0λ,则'ρ =1-0λk α +0λτγ ;再求微商有''ρ =-0λk α+1-0λkk β +0λτ γ -0λ2τβ ,''ρ ·β =1-0λkk -0λ2τ=0,所以有k=0λ2κ+2τ;17.曲线r ={at-sint,a1-cost,4acos2t}在那点的曲率半径最大;解 'r= a{1-cost,sint,-2sin2t } , ''r = a{sint,cost,-cos 2t}, |2sin |22|'|tr = ,'r ×''r =}1,2cos ,2{sin 2sin 2}2cos 4,2cos 2sin 2,2sin 2{22232tt t a t a t t t a -=--,|'r ×''r |=22sin 222t a , |2sin|81|||'''|3ta r r r k =⨯=,|2sin |8t a R = ,所以在t=2k+1π,k 为整数处曲率半径最大;18. 已知曲线)(:)(3s r r C C =∈上一点)(0s r 的邻近一点)(0s s r ∆+ ,求)(0s s r ∆+点到)(0s r 点的密切平面、法平面、从切平面的距离设点)(0s r 的曲率、挠率分别为00,τκ;解)(0s s r ∆+-)(0s r =30200])([!31)(21)(s s r s s r s s r ∆++∆+∆ε =300021s s ∆+∆βκα +300000020)(61s k k ∆+++-εγτκβα ,设030201γεβεαεε ++=,其中0lim 0=→∆ε s ;则)(0s s r ∆+ -)(0s r=0330003202003120])(61[])(6121[])(61[γετκβεκκαεκ s s s s s ∆++∆++∆+∆+-+∆ 上式中的三个系数的绝对值分别是点)(0s s r ∆+ 到)(0s r的法平面、从切平面、密切平面的距离;§5 一般螺线5. 证明如果所有密切平面垂直于固定直线,那么它是平面直线.证法一: 当曲线的密切平面垂直于某固定直线时,曲线的副法向量γ是常向量.即γ=0;曲线的挠率的绝对值等于|γ|为零,所以曲线为平面曲线; 证法二:设n 是固定直线一向量,则'r ·n =0 ,积分得r ·n=p ,说明曲线在以n 为法向量的一个平面上,因而为平面直线;证法三:设n 是固定直线一向量,则'r ·n =0 ,再微分得''r ·n =0 ,'''r ·n=0 ;所以'r 、''r 、'''r三向量共面,于是'r ''r '''r = 0 ,由挠率的计算公式知τ=0,因此曲线为平面曲线;7.如果两曲线在对应点有公共的副法线,则它们是平面曲线;证 设一曲线为Γ:r =)(s r,则另一曲线Γ的表达式为:+=)(s r ρ)(s λ)(s γ ,)(s γ 为曲线Γ在点s 的主法向量,也应为Γ在对应点的副法线的方向向量;'ρ =α+λ γ -λτβ 与γ 正交,即'ρ ·γ =0,于是λ =0,λ为常数;'ρ =α -λτβ ,''ρ =k β -λτ β -λτ-k α+τγ 也与γ 正交,即''ρ ·γ =-λ2τ=0,而λ≠0,所以有τ=0,曲线Γ为平面曲线;同理曲线Γ为平面曲线;8. 如果曲线Γ:r =)(s r为一般螺线, α、β 为Γ的切向量和主法向量,R 为Γ的曲率半径;证明Γ:ρ=R α-⎰ds β 也是一般螺线;证 因为Γ为一般螺线, 所以存在一非零常向量e 使α与e成固定角,对于曲线Γ,其切向量'ρ=αββκα R R R =-+与α共线,因此也与非零常向量e 成固定角, 所以Γ也为一般螺线;9.证明曲线r =)(s r 为一般螺线的充要条件为0),,(....=r r r证 βκ =r ,γτκτκβκτκκακκγκτβκακ )2()(3,23....2++-+-+-=++-=r r 25333....)(3)2(),,(κτκτκκτκτκκτκκτκτκ -=-=-+=k r r r =)(5κτκ,其中k ≠0. 曲线r =)(s r 为一般螺线的充要条件为κτ为常数,即•)(κτ=0,也就是0),,(....=r r r ;方法二: 0),,(....=r r r ,即0),,(=ααα;曲线r =)(s r 为一般螺线,则存在常向量e ,使α·e =常数,所以,0,0,0=⋅=⋅=⋅e e e ααα所以ααα ,,共面,从而ααα ,,=0;反之,若ααα ,,=0,则α 平行于固定平面,设固定平面的法矢为e ,则有0=⋅e α,从而α·e = p 常数,所以r =)(s r 为一般螺线;方法三:曲线r =)(s r 为一般螺线⇔存在常向量e 使e β⊥,即0e ββ⋅=⇔平行于固定平面以e 为法向量的平面r ⇔平行于一固定平面(,,)0r r r ⇔= ;方法四:""⇒设r =)(s r 为一般螺线,存在常向量e 使e α⋅=常数,即r e ⋅=常数,连续三次求微商得0,0r e r e ⋅=⋅=,0r e ⋅= ,所以0),,(....=r r r ;""⇐因为0),,(....=r r r ,所以r 平行于固定平面,设固定平面的法矢为n 常向量,则r n ⊥,而,r n ββ∴⊥,所以曲线为一般螺线;10. 证明一条曲线的所有切线不可能同时都是另一条曲线的切线;证 设曲线Γ与Γ在对应点有公共的切线,且Γ的表达式为:r =)(s r ,则Γ:+=)(s r ρ)(s λ)(s α ,λ≠0,其切向量为'ρ=α+λ α+λk β 应与α平行,所以k =0,从而曲线Γ为直线;同理曲线Γ为直线,而且是与Γ重合的直线;所以作为非直线的两条不同的曲线不可能有公共的切线;11.设在两条曲线Γ、Γ的点之间建立了一一对应关系,使它们在对应点的切线平行,证明它们在对应点的主法线以及副法线也互相平行,且它们的挠率和曲率都成比例,因此如果Γ为一般螺线, 则Γ也为一般螺线;证 设曲线Γ:r =)(s r 与Γ:)(s r r =点建立了一一对应,使它们对应点的切线平行,则适当选择参数可使)(s α =)(s α , 两端对s 求微商得ds s d αα =, 即ds s d s k s k )()(ββ = ,这里0 ds s d ,所以有β =β ,即主法线平行,从而)(s γ =)(s γ ,即两曲线的副法线也平行;且,ds s d κκ= 或ds s d =κκ;)(s γ =)(s γ 两边对s 求微商得dss d s s )()(βτβτ -=-,于是 ,ds s d ττ=或ds s d =ττ,所以,ττκκ= 或τκτκ=;。

微分几何中的曲线与曲面理论

微分几何中的曲线与曲面理论微分几何是研究曲线与曲面的数学分支,它在物理学、工程学和计算机图形学等领域有着广泛的应用。

本文将介绍微分几何中的曲线与曲面理论,并讨论其基本概念、性质和应用。

一、曲线理论1. 曲线的定义在微分几何中,曲线是指由一组点按照一定的方式连接形成的线状对象。

曲线可以是直线、圆、椭圆等各种形状,其性质由曲线的参数化方程来描述。

2. 参数化方程参数化方程是描述曲线运动的一种方式,通过引入参数t,可以用函数形式表示曲线上的每一个点的坐标。

曲线的参数化方程可以表示为:x = x(t)y = y(t)z = z(t)3. 弧长和切向量在曲线理论中,弧长是曲线上两个点之间的距离。

切向量是描述曲线在某一点上的方向的矢量。

通过参数化方程,可以求得曲线上任意一点的切向量,并计算出曲线的曲率和挠率等性质。

二、曲面理论1. 曲面的定义曲面是三维空间中的一个二维对象,可以看作是曲线在平面上的推广。

曲面有着平面没有的曲率和法向量等性质。

2. 参数化曲面和曲线类似,曲面也可以通过参数化方程来描述。

参数化曲面是指通过引入两个参数u和v,可以用函数形式表示曲面上的每一个点的坐标。

曲面的参数化方程可以表示为:x = x(u, v)y = y(u, v)z = z(u, v)3. 第一基本形式和第二基本形式在曲面理论中,第一基本形式描述了曲面的度量性质,包括曲面的长度和角度等信息。

第二基本形式描述了曲面的曲率性质,包括法向量的旋转和曲面的高斯曲率等性质。

三、应用微分几何中的曲线与曲面理论在多个领域有着广泛的应用,下面以几个典型应用为例进行介绍:1. 物理学中的路径与表面积在物理学中,曲线与曲面理论可以描述粒子在空间中的路径和表面积。

这对于研究物体运动、力学和电磁学等领域具有重要意义。

2. 工程学中的曲线设计曲线与曲面理论在工程学中广泛用于曲线的设计和表达。

例如,在汽车造型设计中,可以利用曲线与曲面理论来构建具有流线型外观的车身曲线。

微分几何习题及答案解析.pdf

微分几何主要习题解答
第一章 曲线论
§2 向量函数
5.
向量函数
r (t
)
具有固定方向的充要条件是
r (t)
×
r'
(t
)
=
0。
分析:一个向量函数
r (t
)
一般可以写成
r (t)
=
λ (t )
e (t )
的形式,其中
e (t )
为单位向
量函数,λ
(t)
为数量函数,那么
r (t
)
具有固定方向的充要条件是
'

e
×
e
)= 0 。
反之,若 r × r ' = 0
,对
r (t)
=
λ (t )
e (t )
求微商得 r' = λ '
e + λ
e'
,于是
r
×
r
'
=
λ
2

e
×
e'
)=
0
,则有
λ
=0

e
×
e'
=
0
。当
λ
(t)
=
0
时,r(t)
=
0
可与任意方
向平行;当 λ

0
时,有
e
×
e
'
λr + µ
r'

26
微分几何主要习题解答
令 n = r × r' ,则 n

0
,且
r(t
)

n(t)

微分几何第一章曲线论第二节曲线的概念


定义 对于曲线(C ):r r (t ), r (t )叫做曲线在对应点的切 向量. 非零的切向量, 注 (1)因为曲线在正常点总有 从而曲线在正常点总有 唯一的切线 . 正则曲线处处有唯一的 切线. 问题:曲线在非正常点 处是否有切线? (2)切向量的方向总是与曲 线的参数增值方向一致 . PR总是与曲线(C )的参数t R P T 的增值方向一致, Q R Q lim PR r ( t 0 )总与参数t t 0 Q P t 0 r (t0 ) r (t0 t ) 的增值方向一致. O 参数t的增值方向也叫曲线的 正向.
n
P2 P P0
Pi Pn
(C ) r r (t )
l ( T ) 0
l ( T ) 0
i 1
则称这个极限值为曲线 段P0 Pn的弧长. 存在性和计算公式 对于曲线(C ) : r r (t ) C 1[a, b],
lim n lim Pi 1 Pi 存在, 且
2.2 光滑曲线 曲线的正常点
定义 对于曲线(C ):r r (t ) (a t b), 如果r (t ) C k , 则称曲线为C k 类曲线. C 1类曲线称为光滑曲线 . C 0类曲线称为连续曲线 . 1 定义 对于C 类曲线r r (t )上的点r (t0 ), 如果r (t0 ) 0, 则称该点为曲线的正常 点. 而r (t0 ) 0的点叫做非正常点 . 如果曲线上的点全是正 常点,则称该曲线为
第一章
曲线论
§2 曲线的概念
主要内容
1.曲线的概念; 2.光滑曲线,曲线的正常点; 3.曲线的切线和法面; 4.曲线的弧长,自然参数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微分几何是数学的一个分支,研究的是曲线、曲面和一般的流形等几何对象的性质。

空间曲线论是微分几何中的一个具体方向,专注于研究三维空间中的曲线。

以下是微分几何中空间曲线论的一些基本概念和方法:
1. 参数化曲线:
在空间曲线论中,通常使用参数化曲线来描述一条曲线。

一条参数化曲线可以表示为一个向量函数:
r(t)=⟨x(t),y(t),z(t)⟩
其中,t是参数,而x(t),y(t),z(t)是关于参数t的实函数。

曲线上的点可以通过
在参数t上取值来得到。

2. 切矢量和切线:
在曲线上的每一点,可以定义一个切矢量,表示曲线在该点的方向。

切矢量T的
方向是由参数t的增加方向给定的。

切线是通过在曲线上移动一个无限小的距离得到的线。

T(t)=dr
dt
=⟨
dx
dt
,
dy
dt
,
dz
dt

3. 速度和加速度:
速度矢量v表示曲线上一点的运动速度,是切矢量的模:
v(t)=∥T(t)∥
加速度矢量a是速度对时间的导数:
a(t)=dv
dt
=
d2r
dt2
4. 弧长和曲率:
曲线上两点之间的弧长是通过积分速度得到的:
s(t)=∫∥T(t)∥ dt
曲率是一个描述曲线弯曲程度的概念,可以通过速度和加速度的关系得到:
κ(t)=∥a(t)∥∥T(t)∥
5. 扭率:
对于空间中的曲线,除了曲率外,还有一个与三维几何相关的量,称为扭率(torsion)。

扭率描述了曲线在空间中的扭转情况。

τ(t)=−
B′(t)⋅N(t)∥T(t)∥∥N(t)∥
其中,T(t)是切矢量,N(t)是法向矢量,B(t)是切矢量和法向矢量的叉乘。

这些是空间曲线论中的一些基本概念和方法。

微分几何的空间曲线论在计算机图形学、机器学习等领域有着广泛的应用。

相关文档
最新文档