有杆泵采油
螺杆泵采油的优点和缺点

采油工况中会运用螺杆泵来工作,与其他机械采油相比,螺杆泵兼具容积泵和离心泵的优点,作为一种人工举升方式,它具有以下优点:
1.螺杆泵运动部件少,结构简单,一次性投资小。
2.螺杆泵可以连续举升介质,工作时负载稳定,机械损失小,效能高,是机械采油中能耗最小、效率最高的方式之一。
3.螺杆泵适用范围广,可用于粘度小于8000mPa·s的稠油、高含砂量的砂浆、高含气量的气井等等。
4.螺杆泵占地面积小,可以下放至斜井段,因此可以用于海上油田水平井和丛式井中。
虽然螺杆泵有诸多优点,也被广泛应用于各大油田,但与常规机采方式相比,螺杆泵采油设备也存在一些不足:
1.螺杆泵中的定子内部为橡胶,因此不宜应用于高温注汽井;而且定子容易损坏,增加了检泵的次数,相应增加检修费用。
2.螺杆泵作业时需要流体润滑,缺少润滑将会导致泵体过热,定子橡胶弹性体老化,甚至烧毁。
3.与其他机采方式相比,螺杆泵的总压头较低。
目前大多应用在1000米左右深的井中。
当下泵深度超过2000米时,螺杆泵扭矩增大,杆断脱率增高,井下作业难度增加。
螺杆泵采油技术

三、螺杆泵采油配套工艺技术
1.选井选泵技术
2.检测技术
3.管柱、杆柱防脱及扶正技术 4.清防蜡解堵工艺技术 5.抽空保护技术
6.过载欠载保护技术 7.故障诊断技术
81) 热洗清蜡工艺技术 (2) 加药清防蜡工艺技术 (3) 电加热解堵工艺技术
(1) 热洗清蜡工艺技术
上提杆柱时,可先放开刹车 带,将弹性变形能释放出去,
防反转装置原理图
确保施工作业安全。
b.井下回流控制阀
在螺杆泵的吸入口处,安装单向阀,使液体只能 做举升方向上的单向流动。停机时,油管内的液体不 能回流,抽油杆也就不会因液体回流而反转,从而达 到防止因液体回流而造成的抽油杆脱扣。
c.抽油杆防脱器
各个厂家的结构不一样,原理也不一样,现在 常用的是胜利油田的防脱器。其原理利用一个直键在 油管内的直面做正转,斜面做反转。
三、螺杆泵采油配套工艺技术
1.选井选泵技术
2.检测技术
3.管柱、杆柱防脱及扶正技术 4.清防蜡解堵工艺技术 5.抽空保护技术
6.过载欠载保护技术 7.故障诊断技术
8.测试技术
(1) 管柱防脱技术
•支撑卡瓦(油管锚、自封式油 管锚) •张力油管锚 •防扭锚 •反扣油管
图7-25a DQ0552支撑卡瓦
一、 螺杆泵工作原理及组成
采油螺杆泵是单螺杆式水利机械的一种,是摆线内 啮合螺旋齿轮副的一种应用.螺杆泵的转子、定子副是 利用摆线的多等效动点效应,在空间形成封闭腔室,并 当转子和定子作相对转动时,封闭腔室能作轴向移动,
使其中的液体从一端移向另一端,实现机械能和液体能
的相互转化,从而实现举升作用。
4.清防蜡解堵工艺技术
(1) 热洗清蜡工艺技术 (2) 加药清防蜡工艺技术 (3) 电加热解堵工艺技术
螺杆泵采油系统工作原理

螺杆泵采油系统工作原理
螺杆泵采油系统工作原理是指通过螺杆泵将地下油藏的原油抽至地面。
具体工作原理如下:
1. 旋转螺杆:螺杆泵中有一对同轴且呈螺旋状的螺杆,其中一个为主动螺杆,另一个为从动螺杆。
当泵驱动机械使主动螺杆旋转时,从动螺杆会跟随旋转。
2. 油液的吸入和排出:当螺杆旋转时,螺杆的螺纹与泵体内的定子螺纹间形成一组密闭腔体。
在泵的吸入侧,当螺杆旋转时,腔体的体积逐渐增大,形成负压,使地下油藏中的原油被吸入腔体中。
在泵的排出侧,当螺杆旋转时,腔体的体积逐渐减小,形成正压,将吸入的原油推送至泵的出口。
3. 油液的运移:原油在被推送至泵的出口后,进入输油管道进行后续的运输和处理。
这样不断重复的吸入和排出过程能够将地下油藏的原油逐渐抽至地面。
总体来说,螺杆泵采油系统通过螺杆的旋转产生的容积变化,借助螺纹封闭腔体,实现了对原油的吸入和排出,从而实现了油液的抽取和运输。
采油工程

Pa-Pb是在油管 中消耗的压力
Q1
图2-5 油压与产量的关系曲线
①当油嘴直径和气油比一定时, 产量和井口油压成线性关系。
图2-21 油嘴、油压与产量的关系曲线
油层渗流消耗的压力
•泵筒内液体转移入油管
内
•不排液体出井
泵的理论排量
活塞上下一次,向上抽汲的液体体积为:
V fPs
每分钟排量为: 每日体积排量为: 每日质量排量为: 式中:
Vm f P sn
Qt 1440 f P sn
Qm 1440 f P sn l
Qt -泵的体积理论排量,m3/d;
Qm -
泵的质量理论排量,t/d;
Pmin Wr I d Phd Fd Pv
在下泵深度及沉没度不很大、井口回压及冲数不高 的稀油直井内,在计算最大和最小载荷时,通常可 以忽略Pv、F、Pi、Ph及液柱惯性载荷
第三节 抽油机平衡、扭矩与功率计算
一、 抽油机平衡计算
不平衡原因
• 上下冲程中悬点载荷 不同,造成电动机在 上、下冲程中所做的 功不相等。
图5-7 注水井指示曲线
采油工程原量。
吸水指数 = 日注水量 日注水量 注水压差 注水井流压 - 注水井静压
吸水指数=
两种工作制度下日注水量之差 相应两种工作制度下流压之差
采油工程原理与设计
二、影响吸水能力的因素 (1) 与注水井井下作业及注水井管理操作等有关的因素 (2) 与水质有关的因素 (3) 组成油层的粘土矿物遇水后发生膨胀
(2)抽油泵
抽油泵的分类:
采油工程—— 泵效计算与分析

第三章 有杆泵采油第四节 泵效计算与分析泵效:油井日产液量与泵的理论排量的比值称为泵效。
用公式表示为:t Q Q =η (3-78) 一、影响泵效的因素(一)地质因素1.油井出砂:2.气体的影响:充满系数:Pl V V '=β (3-79) 式中 P V —— 上冲程活塞让出容积;'l V —— 每冲次吸入泵内的液体体积;如图3-41所示。
图3-41 气体对泵充满程度的影响图3-41中S V 表示余隙容积,l V 表示活塞在上死点时泵内的液体体积,g V 表示泵内气体的体积,令l g V V R /=称泵内气液比,令P S V V K /=称余隙容积比,将S l l V V V -='和R ,K 代入式(3-79)得:RKR +-=11β (3-80) 分析式(3-80)可得出以下结论:(1)K 值越小,β值就越大。
而减小余隙容积S V 和增大活塞冲程以增大P V 都可以减小K 值。
因此在生产中应使用长冲程和在保证活塞不碰固定阀的前提下,应尽量减小防冲距以减小余隙。
(2)R 越小,β值就越大,因此为增加泵效,应尽量减少进泵的气体。
进泵气液比可用下式计算:1.0)1)((+--=S w S P P f R R R (3-81) 式中 P R —— 地面生产气油比;S R —— 泵吸入口处的溶解气油比;S P —— 沉没压力,MPa ;w f —— 油井含水体积分数;3.油井结蜡:由于活塞上行时,泵内压力降低,在泵的入口处及泵内极易结蜡,使油流进泵阻力增大,影响泵效。
4.原油粘度高:由于油稠,油流进泵阻力大,固定阀和游动阀不易打开和关闭,抽油杆下行阻力大,影响泵的冲程,降低泵的充满系数,使泵效降低。
5.原油中含腐蚀性物质,如硫化物、酸性水,腐蚀泵的部件,引起漏失降低泵效。
(二)设备因素1.活塞的有效冲程:1)静载荷作用下的冲程损失及活塞有效冲程如图3-42,由于转移载荷'l W 上冲程从油管柱上转移到抽油杆柱上使抽油杆柱伸长了r λ,油管柱缩短了t λ,悬点向上移动了t r λλλ+=一段距离后活塞和泵筒才有相对位移,悬点无效的冲程λ称为冲程损失。
采油方法基础知识

采油方法基础知识采油方法,就是指把地下四周油层内流到井底的原油采到地面所使用的方法,一般包括自喷采油和机械采油两种。
1.自喷采油自喷采油是指依靠油藏本身的能量使原油喷到地面的采油方法。
一口油井用钻井的方法钻孔、下入套管连通到油层后,原油就会像喷泉那样沿着油井的套管自动向地面喷射出来。
油层内的压力越大,喷出来的油就越快越多。
这种靠油层自身的能量将原油举升到地面的能力,称为自喷,用这种办法采油就称为自喷采油。
这种采油方法常发生在油井开发初期。
油井在油藏开发初期为什么会自喷呢?石油和天然气深埋于地下封闭的岩石孔隙中,在上覆地层的重压下,它们与岩石一起受到压缩,从而集聚了大量的弹性能量,形成高温高压区。
当油层通过油井与地面连通后,在弹性能量的驱动下,石油、天然气必然向处于低压区的井简和井口流动。
这就像一个充足气的汽车轮胎一样,当拔掉气门芯后,被压缩的空气将喷射而出。
油层与油井的沟通一般情况下靠射孔完成,射孔一旦完成,就像拔掉了封闭油层的气门芯,油气将通过油井喷射到地面。
自喷井的产量一般来说都是比较高的。
例如,中东地区有些油井每口油井日产油可高达(1~2)x104t。
我国华北油田开发初期,很多油井日产千吨以上,大庆油田的高产井日产200~300t。
据统计,目前世界有50%~60%的原油是靠自喷方法开采出来的,特别是中东地区,大多数油井有旺盛的自喷能力。
这种方法不需要复杂昂贵的设备,油井管理也比较方便,是一种高效益的采油方法。
因此,在油田开发过程中,人们都设法尽可能地保持油井长期自喷。
但到了油藏开发的中后期,油层的压力会逐渐减小,不足以再将地层内的原油驱替到井底并举升到地面,这时就需要给油层补充能量,如注人水或注入天然气等,增加油层的压力,以此延长油井的自喷期。
2.机械采油机械采油指借助外界能量将原油采到地面的方法,又称为人工举升采油方法。
随着油田的不断开发,地下地层能量逐渐消耗,油井最终会停止自喷。
由于地层的地质特点,有的油井一开始就不能自喷。
提升有杆泵采油系统效率的方法研究

提升有杆泵采油系统效率的方法研究作者:张永光来源:《中国新技术新产品》2013年第07期摘要:随着油藏开发的不断进行,油井产能受到地质特征、油藏管理、采油工程、生产维护等多方面影响,从较长的时期看是一个动态的变量,合理地选取采油工艺的直接决定着油田开发效益。
本文结合油田生产工作实际,着重分析了影响机械采油有杆泵系统效率的主要因素,提出了提高系统效率的方法。
关键词:有杆泵才有系统;智能控制;采油效率中图分类号:TE34 文献标识码:A1 机械采油有杆泵采油系统组成有杆泵采油的三大主要装备有抽油机、抽杆和抽油泵。
抽油泵可分为:管式泵和杆式泵。
管式泵的结构简单、成本低,在相同油管直径下允许下入的泵径较杆式泵大,因而排量大;杆式泵检泵方便,但结构复杂,制造成本高,在相同油管直径下允许下入的泵径比管式泵小。
杆式泵适用于下泵深度大、产量较小的油井。
有杆泵抽油的主要参数,冲程:光杆(或柱塞)上、下运动一次称为一个冲程。
光杆冲程:光杆从上死点到下死点的距离,用S表示。
柱塞冲程:柱塞在上、下死点间的位移。
冲次:每分钟内完成冲程的次数,用n来表示。
沉没度:抽油泵的吸入阀与动液面之间的相对高度。
动液面:抽油机正常生产时,井口至液面的距离。
沉没压力(泵口压力):作用在泵吸入口处的环形空间压力。
影响泵效的主要因素:(1)抽油杆柱和油管柱的弹性伸缩;(2)气体和充不满的影响;(3)漏失影响;(4)体积系数的影响。
载荷作用下的柱塞冲程,柱塞冲程损失的构成:液柱载荷交替地由油管转移到抽油杆柱和由抽油杆柱转移到油管,使杆柱和管柱发生交替地伸长和缩短。
上冲程:载荷由从油管转移到抽油杆,抽油杆伸长,油管缩短;下冲程:载荷由从抽油杆转移到油管,油管伸长,抽油杆缩短。
柱塞冲程损失由抽油杆柱伸缩与油管伸缩共同造成的。
2 影响有杆泵系统效率的主要原因2.1 电机负载率的影响。
常用电机最佳运行效率在额定负载附近,即在0.7~1.1之间,而现场上大多数电机的负载率都比较低,一般只有30%左右。
不同采油方法的基本原理及各自优缺点

不同采油方法的基本原理及各自优缺点摘要:采油工程中的采油方法有多种,从客观的地下能量来看,可分为自喷采油和人工举升两种。
自喷采油就是原油从井底举升到井口,从井口流到集油站,全部都是依靠油层自身的能量来完成的,而由于地层的地质特点,有的油井不能自喷,人工举升就成为解决这个问题的主要途径。
目前,利用人工举升将原油从井底举升到地面的方法可分为气举法和抽油法两大类,而每一种方式都有其优势的一面,和其劣势,在采油的过程中都扮演着不同的角色。
关键词:自喷采油人工举升气举抽油有杆泵采油无杆泵采油一、自喷采油自喷采油就是原油从井底举升到集油站,全部都是依靠油层自身的能量来完成的。
自喷采油的能量来源是:第一、井底油流所具有的压力;第二、随同原油一起进入井底的溶解气所具有的弹性膨胀能量。
油井自喷生产,一般要经过四种流动过程:(1)原油从油层流到井底;(2)从井底沿着井筒上升到井口;(3)原油到井口之后通过油嘴;(4)沿着地面管线流到分离器、计量站。
不论哪种流动过程,都是一个损耗地层能量的过程,四种流动过程压力损耗的情况因油藏而异,大致如下:1.油层渗流当油井井底压力高于油藏饱和压力时,流体为单相流动。
当井底压力低于饱和压力时,流体在油井井底附近形成多相流动。
井底流动压力可通过更换地面油嘴而改变,油嘴放大,井底压力下降,生产压差加大,油井产量增加。
多数情况下,油层渗流压力损耗约占油层至井口分离器总压力损耗的10%~40%左右。
2.井筒流动自喷井井筒油管中的流动,一般都是油、气两相或油、气、水混合物,必须克服三相混合物在油管中流动的重力和摩擦力,才能把原油举升到井口,并继续沿地面管线流动。
井筒的压力损耗最大,约占总压力损耗的40%~60%左右。
3.油嘴节流油气到达井口通过油嘴的压力损耗,与油嘴直径的大小有关,通常约占总压力损耗的5%~20%左右。
4.地面管线流动压力损耗较小,约占总压力损耗的5%~10%左右。
20世纪80年代以来,对自喷井的流动过程开展了节点分析研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 有杆泵采油 第一节 抽油装置及泵的工作原理 第三章 有杆泵采油 第一节 抽油装置及泵的工作原理 一、教学目的 了解抽油机的工作原理,对抽油杆有一定的认识,掌握抽油泵的工作原理。 二、教学重点、难点 教学重点: 1、抽油机的工作原理; 2、抽油泵的工作原理。 教学难点: 1、抽油泵上下冲程中载荷变化、凡尔开关等。 三、教法说明 课堂讲授并辅助以多媒体课件展示相关的图形和动画。 四、教学内容 本节主要介绍两个方面的问题: 1. 抽油装置. 2. 泵的工作原理. (一) 抽油装置 采油方法 自喷 人工举升 气举采油 深井泵采油 有杆泵采油 无杆泵采油 有杆泵采油的优点: 第三章 有杆泵采油 第一节 抽油装置及泵的工作原理 a、设备简单 b、结构牢固 c、性能可靠 d、管理经验比较完善 有杆泵采油的不足 a、设备笨重(10型,18T) b、仅适用于浅井、中深井 c、对特殊井(斜井、弯井、海口油井)有困难 d、对砂、蜡、盐、气、稠的适应性差 目前在人工举升中占绝对多数的还是游梁式有杆泵,因此,本章重点介绍游梁式有杆抽油。 通过前面的学习我们知道,任何油井的生产都可分为三个基本流动过程: ①从油层到井底的流动 渗流 向井流 ②从井底到井口的流动 井筒中的流动,涉及到采油方法的问题。 ③从井口到分离器的流动 对于自喷井,可分为四个基本流动过程,即增加原油到达井口后的嘴流。 有杆泵采油典型特点: 第三章 有杆泵采油 第一节 抽油装置及泵的工作原理 地面能量通过抽油杆、抽油泵传递给井下流体 有杆泵采油分类: (1) 常规有杆泵采油:抽油机悬点的往复运动通过抽油杆传递给井下柱塞泵。 (2) 地面驱动螺杆泵采油:井口驱动头的旋转运动通过抽油杆传递给井下螺杆泵。 常规有杆泵采油是目前我国应用最广泛的采油方式,我国机械采油井占总井数的90%以上,其中有杆泵占机采井的90%以上。全国产液量的60%、产油量的75%靠有杆抽油采出。 设 抽油机 备 抽油杆 组 抽油泵 成 其它附件 1、抽油机 有杆深井泵采油的主要地面设备,它将电能转化为机械能,将旋转运动转化成往复运动。 包括:游梁式抽油机和无游梁 式抽油机两种。 第三章 有杆泵采油 第一节 抽油装置及泵的工作原理 游梁式抽油机组成: 游梁-连杆-曲柄机构、减速箱、动力设备和辅助装置。 工作原理: 工作时,动力机将高速旋转运动通过皮带和减速箱传给曲柄轴,带动曲柄作低速旋转。曲柄通过连杆经横梁带动游梁作上下摆动。挂在驴头上的悬绳器便带动抽油杆柱作往复运动。 游梁式抽油机分类: 后置式和前置式。
不同点: ①游梁和连杆的连接位置不同。 ②平衡方式不同—后置式多采用机械平衡;前置式多采用气动平衡。 ③运动规律不同—后置式上、下冲程的时间基本相等;前置式上冲程较下冲程慢。
新型抽油机:为了节能第三章 有杆泵采油
第一节 抽油装置及泵的工作原理 和加大冲程。 异相型游梁式抽油机 链条式抽油机 节能 异形游梁式抽油机 加大冲程 宽带传动抽油机 双驴头游梁式抽油机 液压抽油机
图3-4 异相型游梁式抽油机 第三章 有杆泵采油
第一节 抽油装置及泵的工作原理 图3-5 异形游梁式抽油机 图3-6 双驴头游梁式抽油机 第三章 有杆泵采油
第一节 抽油装置及泵的工作原理 图3-7 链条式抽油机 图3-8 KGJ5-3.6-7HZ宽皮带式抽油机 第三章 有杆泵采油
第一节 抽油装置及泵的工作原理 图3-9 液压增程抽油机 异相曲柄平衡抽油机,是近年来美国CMI公司利用计算机动态模
拟技术研究出的一种新的游梁式抽油机,它具有以下特点: ①上冲程曲柄转角(约192°)大于下冲程的曲柄转角(约168°),因此上冲程悬点运动较下冲程缓慢,相应地降低了上冲程悬点的加速度,从而降低了上冲程悬点的惯性载荷,提高了抽油机的承载能力。 ②曲柄中心线与平衡重力臂中心线之间设置了一特殊的相位角,它使曲柄轴上的平衡重扭矩与油井负荷(光杆)扭矩产生一个相位差,由此平衡后产生的曲柄轴净扭矩曲线较平缓,净据矩峰值降低,它改善了减速箱的工作条件,同时因抽油机减速箱输出扭矩与电机输出功率成正比,因此,它也降低了电机功率。据美国同类产品的资料报导,第三章 有杆泵采油 第一节 抽油装置及泵的工作原理 这种新型异相曲柄平衡抽油机与普通常规式抽油机相比,可节省电机功率15-35%。 链条式抽油机的特点: ①冲程长,有利于稠油井开采; ②采用气动平衡,因而电机工作平衡且平衡效果好; ③钢丝绳使用寿命短,易造成断链条事故。 塔式单臂游梁增程抽油机: ①工作原理:电动机通过三角皮带带动减速器旋转,减速器带动曲柄作360°转动,从而使连杆拉动单臂游梁作上下往复运动,单臂游梁牵动钢丝绳,带动光杆作上下往复运动,从而达到抽油的目的。 ②性能特点:具有冲程长(如常规的2.5-3.5倍),效率高,能耗低,整体性能稳定可靠,换向平稳,动载小,结构简单耐用,维护工作量小等特点。可利用常规抽油机进行改造,达到增加冲程长度的目的。 轮系增距式抽油机: ①工作原理: 该机由电机驱动,经减速器减速后带动曲柄连杆机构,把减速器输出的旋转运动变成增矩滑车的往复直线运动。增距滑车通过一个死轮与平衡重小车相连接,带动平衡重小车沿导轮作上下长距离运动,平衡重小车通过天车轮及钢丝绳带动抽油杆作往复直线运动而完成抽油动作。 ②性能特点: 第三章 有杆泵采油 第一节 抽油装置及泵的工作原理 a、冲程长度调节方便,适应于深井、大排量抽油的需要; b、悬点运动规律近似简谐运动,变速加速度小,动载小,整机运转平衡; c、平衡效果好,节电; d、重量轻,占地面积小。 游梁式抽油机系列型号表示方法:
2、抽油泵:机械能转化为流体压能的设备。 一般要求: a.结构简单,强度高,质量好,连接部分密封可靠; b.制造材料耐磨和抗腐蚀性好,使用寿命长; c.规格类型能满足油井排液量的需要,适应性强; d.便于起下; e.结构上应考虑防砂、防气,并带有必要的辅助设备。 主要组成: 第三章 有杆泵采油 第一节 抽油装置及泵的工作原理 工作筒(外筒和衬套)、柱塞及游动阀(排出阀)和固定阀(吸入阀)。 分类: 按照抽油泵在油管上的固定方式可分为:管式泵和杆式泵。 管式泵:外筒和衬套在地面组装好接在油管下部先下入井内,然后投入固定阀,最后再把柱塞接在抽油杆柱下端下入泵内。 杆式泵:整个泵在地面组装好后接在抽油杆柱的下端整体通过油管下入井内,由预先装在油管预定深度(下泵深度)上的卡簧固定在油管上,检泵时不需要起油管。 管式泵特点:结构简单、成本低,排量大。但检泵时必须起出油管,修井工作量大,故适用于下泵深度不很大,产量较高的油井。 杆式泵特点:结构复杂,制造成本高,排量小,修井工作量小。杆式泵适用于下泵深度大、产量较小的油井。 3、抽油杆:能量传递工具。
图3-11 抽油杆示意图 普通杆特点:结构简单、制造容易、成本低;直径小,有利于在油管第三章 有杆泵采油 第一节 抽油装置及泵的工作原理 中运行。 玻璃钢杆特点:耐腐蚀、有利于延长寿命;重量轻、有利于降低抽油机悬点载荷和节约能量;弹性模量小,可实现超行程,有利于提高泵效。 空心杆特点:成本高,可用于热油循环和热电缆加热,也可通过空心通道向井内添加化学剂,适用于高含蜡、高凝固点的稠油井。 符号说明:CYG 25 / 120 C(B) CYG-抽油杆代号;25-抽油杆直径(mm);120-短抽油杆长度(mm);C-杆材强度代号(C-40号、45号钢正火处理;B-20CrMo钢调质处理) 常用的杆体直径有13mm、16mm、19mm、22mm、25mm和29mm。 新型抽油杆的发展: 为满足大泵强采、小泵深抽、稠油井、高含蜡井、腐蚀井和斜井采油的需要,以增加杆的承载、耐腐蚀、耐磨损,提高杆的使用可靠性与寿命,已开发出多种特殊抽油杆,如加高强度抽油杆、玻璃钢抽油杆、铝合金抽油杆、不锈钢抽油杆、喷涂保护处理抽油杆、空心抽油杆、连续抽油杆、钢丝绳抽油杆等。 (二)泵的工作原理 1、泵的抽汲过程 1)上冲程 抽油杆柱带着柱塞向上运动,柱塞上的游动阀受管内液柱压力而第三章 有杆泵采油 第一节 抽油装置及泵的工作原理 关闭。 泵内压力降低,固定阀在环形空间液柱压力(沉没压力)与泵内压力之差的作用下被打开。 泵内吸入液体、井口排出液体。 泵吸入的条件: 泵内压力(吸入压力)低于沉没压力。 2)下冲程 柱塞下行,固定阀在重力作用下关闭。 泵内压力增加,当泵内压力大于柱塞以上液柱压力时,游动阀被顶开。 柱塞下部的液体通过游动阀进入柱塞上部,使泵排出液体。 泵排出的条件: 泵内压力(排出压力)高于柱塞以上的液柱压力。 柱塞上下抽汲一次为一个冲程,在一个冲程内完成进油与排油的过程。 光杆冲程:光杆从上死点到下死点的距离。 2、泵的理论排量