概率与统计-2010-2019年高考文科数学真题专题分类汇编训练
文科数学2010-2019高考真题分类训练专题一 集合与常用逻辑用语第一讲 集合

A. {4,8}
B. {0,2,6}
C. {0,2,6,10}
D. {0,2,4,6,8,10}
17.(2015 新课标 2)已知集合 A = {x | −1 x 2} , B = {x | 0 x 3} ,则 A B =
A. (−1,3)
B. (−1,0)
C. (0,2)
D. (2,3)
A.{1, 2,3, 4}
B.{1, 2,3}
C.{2,3, 4} D.{1,3, 4}
9.(2017 新课标Ⅲ)已知集合 A = {1, 2,3, 4}, B = {2, 4, 6,8},则 A B 中元素的个数为
A.1
B.2
C.3
D.4
10.(2017 天津)设集合 A = {1, 2, 6} , B = {2, 4} , C = {1, 2,3, 4} ,则 ( A B) C =
33.(2014 浙江)设全集U = x N | x 2,集合 A = x N | x2 5 ,则 ðU A =
A.
B. {2}
C. {5}
D. {2,5}
34.(2014 北京)已知集合 A = {x | x2 − 2x = 0}, B = {0,1, 2},则 A B =
7.(2017 新课标Ⅰ)已知集合 A = {x | x 2}, B = {3 − 2x 0},则
A. A C. A
B = {x | x 3} 2
B = {x | x 3} 2
B. A B = D. A B = R
8.(2017 新课标Ⅱ)设集合 A = {1, 2,3}, B = {2,3, 4} 则 A B =
A.(–1,+∞)
文科数学2010-2019高考真题分类训练专题二 函数概念与基本初等函数 第三讲函数的概念和性质

专题二 函数概念与基本初等函数Ⅰ第三讲 函数的概念和性质2019年1.(2019江苏4)函数y =的定义域是 .2. (2019全国Ⅱ文6)设f (x )为奇函数,且当x ≥0时,f (x )=e 1x −,则当x <0时,f (x )= A .e 1x −−B .e 1x −+C .e 1x −−−D .e 1x −−+3.(2019北京文14)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白 梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明 对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾 客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.4.(2019北京文3)下列函数中,在区间(0,+∞)上单调递增的是 (A )12y x =(B )y =2x −(C )12log y x =(D )1y x=5.(2019全国Ⅲ文12)设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322−)>f (232−)B .f (log 314)>f (232−)>f (322−)C .f (322−)>f (232−)>f (log 314) D .f (232−)>f (322−)>f (log 314)2010-2018年一、选择题1.(2018全国卷Ⅰ)设函数2,0()1,0−⎧=⎨>⎩≤x x f x x ,则满足(1)(2)+<f x f x 的x 的取值范围是A .(,1]−∞−B .(0,)+∞C .(1,0)−D .(,0)−∞2.(2018浙江)函数||2sin 2x y x =的图象可能是A .B .C .D .3.(2018全国卷Ⅱ)已知()f x 是定义域为(,)−∞+∞的奇函数,满足(1)(1)−=+f x f x .若(1)2=f ,则(1)(2)(3)++f f f (50)++=fA .50−B .0C .2D .504.(2018全国卷Ⅲ)函数422y x x =−++的图像大致为5.(2017新课标Ⅰ)函数sin 21cos xy x=−的部分图像大致为6.(2017新课标Ⅲ)函数2sin 1xy x x =++的部分图像大致为A .B .C . D.7.(2017天津)已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+⎪⎩≥设a ∈R ,若关于x 的不等式()||2x f x a +≥在R 上恒成立,则a 的取值范围是A .[2,2]− B.[2]− C.[2,− D.[− 8.(2017山东)设1()2(1),1x f x x x <<=−⎪⎩≥,若()(1)f a f a =+,则1()f a =A .2B .4C .6D .89.(2016北京)下列函数中,在区间(1,1)− 上为减函数的是A .11y x=− B .cos y x = C .ln(1)y x =+ D .2x y −= 10.(2016山东)已知函数()f x 的定义域为R .当0x <时,3()1f x x =−;当11x −≤≤时,()()f x f x −=−;当12x >时,11()()22f x f x +=−.则(6)f = A .2− B .1− C .0 D .211.(2016天津)已知)(x f 是定义在R 上的偶函数,且在区间)0,(−∞上单调递增,若实数a 满足)2()2(|1|−>−f f a ,则a 的取值范围是A .)21,(−∞B .),23()21,(+∞−∞C .)23,21(D .),23(+∞12.(2015北京)下列函数中为偶函数的是A .2sin y x x = B .2cos y x x = C .|ln |y x = D .2xy −= 13.(2015广东)下列函数中,既不是奇函数,也不是偶函数的是A .sin 2y x x =+B .2cos y x x =−C .122xx y =+D .2sin y x x =+14.(2015陕西)设10()2,0x x f x x ⎧⎪=⎨<⎪⎩≥,则((2))f f −=A .-1B .14 C .12 D .3215.(2015浙江)函数()1()cos f x x x x=−(x ππ−≤≤且0x ≠)的图象可能为A .B .C .D .16.(2015湖北)函数256()lg 3x x f x x −+=+−的定义域为A .(2,3)B .(2,4]C .(2,3)(3,4] D .(1,3)(3,6]−17.(2015湖北)设x R ∈,定义符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪−<⎩,则A .|||sgn |x x x =B .||sgn ||x x x =C .||||sgn x x x =D .||sgn x x x =18.(2015山东)若函数21()2x x f x a+=− 是奇函数,则使()3f x >成立的x 的取值范围为A .(),1−∞−B .()1,0−C .()0,1D .()1,+∞19.(2015山东)设函数()3,1,2,1,x x b x f x x −<⎧=⎨⎩≥ 若5(())46f f = ,则b =A .1B .78 C .34 D .1220.(2015湖南)设函数()ln(1)ln(1)f x x x =+−−,则()f x 是A .奇函数,且在(0,1)上是增函数B .奇函数,且在(0,1)上是减函数C .偶函数,且在(0,1)上是增函数D .偶函数,且在(0,1)上是减函数21.(2015新课标1)已知函数1222,1()log (1),1x x f x x x −⎧−=⎨−+>⎩≤,且()3f a =−,则(6)f a −=A .74−B .54−C .34−D .14− 22.(2014新课标1)设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .()f x |()g x |是奇函数C .|()f x |()g x 是奇函数D .|()f x ()g x |是奇函数 23.(2014山东)函数1)(log 1)(22−=x x f 的定义域为A .)210(, B .)2(∞+, C .),2()210(+∞ , D .)2[]210(∞+,, 24.(2014山东)对于函数()f x ,若存在常数0a ≠,使得x 取定义域内的每一个值,都有()(2)f x f a x =−,则称()f x 为准偶函数,下列函数中是准偶函数的是A.()f x =B .2()f x x =C .()tan f x x =D .()cos(1)f x x =+25.(2014浙江)已知函数则且,3)3()2()1(0,)(23≤−=−=−≤+++=f f f c bx ax x x fA .3≤cB .63≤<cC .96≤<cD .9>c 26.(2015北京)下列函数中,定义域是R 且为增函数的是A .x y e −=B .3y x = C .ln y x = D .y x =27.(2014湖南)已知(),()f x g x 分别是定义在R 上的偶函数和奇函数,且()()f x f x −=321x x ++,(1)(1)f g +则=A .-3B .-1C .1D .328.(2014江西)已知函数||5)(x x f =,)()(2R a x ax x g ∈−=,若1)]1([=g f ,则=a A .1 B .2 C .3 D .-1 29.(2014重庆)下列函数为偶函数的是A .()1f x x =−B .3()f x x x =+ C .()22xxf x −=− D .()22xxf x −=+30.(2014福建)已知函数()⎩⎨⎧≤>+=0,cos 0,12x x x x x f 则下列结论正确的是A .()x f 是偶函数B .()x f 是增函数C .()x f 是周期函数D .()x f 的值域为[)+∞−,131.(2014辽宁)已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪−∈+∞⎪⎩,则不等式1(1)2f x −≤的解集为 A .1247[,][,]4334 B .3112[,][,]4343−−C .1347[,][,]3434D .3113[,][,]4334−−32.(2013辽宁)已知函数()3)1f x x =−+,则1(lg 2)(lg )2f f +=A .1−B .0C .1D .233.(2013新课标1)已知函数()f x =22,0ln(1),0x x x x x ⎧−+≤⎨+>⎩,若|()f x |≥ax ,则a 的取值范围是A .(,0]−∞B .(,1]−∞C .[-2,1]D .[-2,0]34.(2013广东)定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是 A .4B .3C .2D .135.(2013广东)函数lg(1)()1x f x x +=−的定义域是 A .(1,)−+∞ B .[1,)−+∞ C .(1,1)(1,)−+∞ D .[1,1)(1,)−+∞36.(2013山东)已知函数()f x 为奇函数,且当0x >时, ()21f x x x=+,则()1f −= A .-2 B .0 C .1D .237.(2013福建)函数)1ln()(2+=x x f 的图象大致是( )A .B .C .D .38.(2013北京)下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是( )A .1y x=B .x y e −=C .21y x =−+ D .lg y x = 39.(2013湖南)已知()f x 是奇函数,()g x 是偶函数,且()()112f g −+=,()()114f g +−=,则()1g 等于A .4B .3C .2D .140.(2013重庆)已知函数3()sin 4(,)f x ax b x a b R =++∈,2(lg(log 10))5f =,则(lg(lg 2))f =A .5−B .1−C .3D .441.(2013湖北)x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =−在R 上为A .奇函数B .偶函数C .增函数D . 周期函数42.(2013四川)函数133−=x x y 的图像大致是A B C D 43.(2012天津)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为A .cos 2,y x x R =∈B .2log ||,0y x x R x =∈≠且C .,2x xe e y x R −−=∈ D .31y x =+44.(2012福建)设1,0,()0,0,1,0,x f x x x >⎧⎪= =⎨⎪− <⎩⎩⎨⎧=为无理数为有理数x x x g ,0,1)(,则(())f g π的值为A .1B .0C .1−D .π45.(2012山东)函数1()ln(1)f x x =+的定义域为A .[2,0)(0,2]− B .(1,0)(0,2]− C .[2,2]− D .(1,2]−46.(2012陕西)下列函数中,既是奇函数又是增函数的为A 1y x =+B 3y x =− C 1y x=D ||y x x = 47.(2011江西)若()f x =,则)(x f 的定义域为A .(21−,0) B .(21−,0] C .(21−,∞+) D .(0,∞+) 48.(2011新课标)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是A .3y x = B .1y x =+ C .21y x =−+ D .2xy −=49.(2011辽宁)函数)(x f 的定义域为R ,2)1(=−f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为A .(1−,1)B .(1−,+∞)C .(∞−,1−)D .(∞−,+∞) 50.(2011福建)已知函数2,0()1,0x x f x x x >⎧=⎨+≤⎩.若()(1)0f a f +=,则实数a 的值等于A .-3B .-1C .1D .351.(2011辽宁)若函数))(12()(a x x xx f −+=为奇函数,则a =A .21 B .32 C .43D .1 52.(2011安徽)设)(x f 是定义在R 上的奇函数,当0x ≤时,2()2f x x x =−,则(1)f =A .-3B .-1C .1D .353.(2011陕西)设函数()()f x x R ∈满足()(),(2)(),f x f x f x f x −=+=则()y f x =的图像可能是54.(2010山东)函数()()2log 31xf x =+的值域为A .()0,+∞B .)0,+∞⎡⎣C .()1,+∞D .)1,+∞⎡⎣ 55.(2010年陕西)已知函数()f x =221,1,1x x x ax x ⎧+<⎨+≥⎩,若((0))f f =4a ,则实数a =A .12 B .45C .2D .9 56.(2010广东)若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则A .f (x )与g (x )均为偶函数B . f (x )为偶函数,g (x )为奇函数C .f (x )与g (x )均为奇函数D . f (x )为奇函数,g (x )为偶函数 57.(2010安徽)若()f x 是R 上周期为5的奇函数,且满足()()11,22f f ==,则()()34f f −=A .-1B .1C .-2D .2二、填空题58.(2018江苏)函数()f x =的定义域为 .59.(2018江苏)函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]−上,cos ,02,2()1||,20,2x x f x x x π⎧<⎪⎪=⎨⎪+<⎪⎩≤-≤则((15))f f 的值为 . 60.(2017新课标Ⅱ)已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈−∞时,32()2f x x x =+,则(2)f = .61.(2017新课标Ⅲ)设函数1,0()2,0xx x f x x +⎧=⎨>⎩≤,则满足1()()12f x f x +−>的x 的取值范围是____.62.(2017山东)已知()f x 是定义在R 上的偶函数,且(4)(2)f x f x +=−.若当[3,0]x ∈−时,()6xf x −=,则(919)f = .63.(2017浙江)已知a ∈R ,函数4()||f x x a a x=+−+在区间[1,4]上的最大值是5,则a 的取值范围是 .64.(2017江苏)已知函数31()2x xf x x x e e =−+−,其中e 是自然数对数的底数,若2(1)(2)0f a f a −+≤,则实数a 的取值范围是 .65.(2015新课标2)已知函数x ax x f 2)(3−=的图象过点)4,1(−,则=a .66.(2015浙江)已知函数()2,166,1x x f x x x x ⎧⎪=⎨+−>⎪⎩≤,则((2))f f −= ,()f x 的最小值是 .67.(2014新课标2)偶函数()f x 的图像关于直线2x =对称,(3)3f =,则(1)f −=__. 68.(2014湖南)若()()ax ex f x++=1ln 3是偶函数,则=a ____________.69.(2014四川)设()f x 是定义在R 上的周期为2的函数,当[1,1)x ∈−时,242,10,(),01,x x f x x x ⎧−+−≤<=⎨≤<⎩,则3()2f = .70.(2014浙江)设函数()⎪⎩⎪⎨⎧≥−<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是__.71.(2014湖北)设()x f 是定义在()+∞,0上的函数,且()0>x f ,对任意0,0>>b a ,若经过点(,())a f a ,(,())b f b −的直线与x 轴的交点为()0,c ,则称c 为b a ,关于函数()x f 的平均数,记为),(b a M f ,例如,当())0(1>=x x f 时,可得2),(ba cb a M f +==,即),(b a M f 为b a ,的算术平均数. (Ⅰ)当())0_____(>=x x f 时,),(b a M f 为b a ,的几何平均数; (Ⅱ)当())0_____(>=x x f 时,),(b a M f 为b a ,的调和平均数ba ab+2; (以上两空各只需写出一个符合要求的函数即可)72.(2013安徽)函数1ln(1)y x=++_____________.73.(2013北京)函数12log ,1()2,1x x x f x x ≥⎧⎪=⎨⎪ <⎩的值域为 .74.(2012安徽)若函数()|2|f x x a =+的单调递增区间是),3[+∞,则a =________. 75.(2012浙江)设函数()f x 是定义在R 上的周期为2的偶函数,当[0,1]x ∈时,()1f x x =+,则3()2f =_______________.76.(2011江苏)已知实数0≠a ,函数⎩⎨⎧≥−−<+=1,21,2)(x a x x a x x f ,若)1()1(a f a f +=−,则a 的值为________.77.(2011福建)设V 是全体平面向量构成的集合,若映射:f V R →满足:对任意向量11(,)x y a =∈V ,22(,)x y b =∈V ,以及任意λ∈R ,均有((1))()(1)(),f f f λλλλ+−=+−a b a b则称映射f 具有性质P . 现给出如下映射:①12:,(),,(,);f V R f m x y m x y V →=−=∈ ②222:,(),(,);f V R f m x y m x y V →=+=∈ ③33:,()1,(,).f V R f m x y m x y V →=++=∈其中,具有性质P 的映射的序号为_____.(写出所有具有性质P 的映射的序号)78.(2010福建)已知定义域为0+∞(,)的函数()f x 满足:①对任意0x ∈+∞(,),恒有(2)=2()f x f x 成立;当]x ∈(1,2时,()=2f x x −.给出如下结论:①对任意Z m ∈,有(2)=0mf ;②函数()f x 的值域为[0+∞,);③存在Z n ∈,使得(2+1)=9n f ;④“函数()f x 在区间(,)a b 上单调递减”的充要条件是 “存在Z k ∈,使得1(,)(2,2)kk a b +⊆”.其中所有正确结论的序号是 .79.(2010江苏)设函数()()x xf x x e ae −=+(x ∈R)是偶函数,则实数a = .专题二 函数概念与基本初等函数Ⅰ第三讲 函数的概念和性质答案部分 2019年1.解析 由2760x x +−…,得2670x x −−…,解得17x −剟.所以函数y =[1,7]−.2.解析 设,则,所以f (-x )=e 1x −−, 因为设为奇函数,所以()e 1x f x −−=−,即()e 1x f x −=−+. 故选D .3.解析 ①草莓和西瓜各一盒的价格为6080140120+=>,则支付14010130−=元; ②设促销前顾客应付y 元,由题意有()80%70%y x −…,解得18x y …,而促销活动条件是120y …,所以max min 111201588x y ⎛⎫==⨯=⎪⎝⎭. 4.解析 由基本初等函数的图像与性质可知,只有12y x =符合题意.故选A. 5.解析 ()f x 是定义域为R 的偶函数,所以331(log )(log 4)4f f =, 因为33log 4log 31>=,2303202221−−<<<=,所以23323022log 4−−<<<,又()f x 在(0,)+∞上单调递减,所以233231(2)(2)(log )4f f f −−>>. 故选C .2010-2018年1.D 【解析】当0x ≤时,函数()2x f x −=是减函数,则()(0)1f x f =≥,作出()f x 的大致图象如图所示,结合图象可知,要使(1)(2)+<f x f x ,则需102021x x x x +<⎧⎪<⎨⎪<+⎩或1020x x +⎧⎨<⎩≥,所以0x <,故选D .2.D 【解析】设||()2sin 2x f x x =,其定义域关于坐标原点对称,又||()2sin(2)()x f x x f x −−=⋅−=−,所以()y f x =是奇函数,故排除选项A ,B ;令()0f x =,所以sin 20x =,所以2x k π=(k ∈Z ),所以2k x π=(k ∈Z ),故排除选项C .故选D .3.C 【解析】解法一 ∵()f x 是定义域为(,)−∞+∞的奇函数,()()−=−f x f x .且(0)0=f .∵(1)(1)−=+f x f x ,∴()(2)=−f x f x ,()(2)−=+f x f x ∴(2)()+=−f x f x ,∴(4)(2)()+=−+=f x f x f x ,∴()f x 是周期函数,且一个周期为4,∴(4)(0)0==f f ,(2)(11)(11)(0)0=+=−==f f f f ,(3)(12)(12)(1)2=+=−=−=−f f f f ,∴(1)(2)(3)(50)120(49)(50)(1)(2)2+++⋅⋅⋅+=⨯++=+=f f f f f f f f , 故选C .解法二 由题意可设()2sin()2f x x π=,作出()f x 的部分图象如图所示.由图可知,()f x 的一个周期为4,所以(1)(2)(3)(50)+++⋅⋅⋅+f f f f , 所以(1)(2)(3)(50)120(1)(2)2+++⋅⋅⋅+=⨯++=f f f f f f ,故选C .4.D 【解析】当0x =时,2y =,排除A ,B .由3420y x x '=−+=,得0x =或2x =±,结合三次函数的图象特征,知原函数在(1,1)−上有三个极值点,所以排除C ,故选D . 5.C 【解析】由题意知,函数sin 21cos xy x=−为奇函数,故排除B ;当x π=时,0y =,排除D ;当1x =时,sin 21cos 2y =−,因为22ππ<<,所以sin 20>,cos 20<,故0y >,排除A .故选C .6.D 【解析】当1x =时,(1)2sin12f =+>,排除A 、C ;当x →+∞时,1y x →+,排除B .选D .7.A 【解析】由题意0x =时,()f x 的最小值2,所以不等式()||2xf x a +≥等价于 ||22xa +≤在R 上恒成立.当a =时,令0x =,得|22x+>,不符合题意,排除C 、D ;当a =−0x =,得|22x−>,不符合题意,排除B ;选A .8.C 【解析】由1x ≥时()()21f x x =−是增函数可知,若,则()()1f a f a ≠+,所以01a <<,由()(+1)f a f a =2(11)a =+−,解得14a =, 则1(4)2(41)6f f a ⎛⎫==−=⎪⎝⎭,故选C .9.D 【解析】由12()2xx y −==在R 上单调递减可知D 符合题意,故选D. 10.D 【解析】当11x−剟时,()f x 为奇函数,且当12x >时,(1)()f x f x +=, 所以(6)(511)(1)f f f =⨯+=.而3(1)(1)[(1)1]2f f =−−=−−−=, 所以(6)2f =,故选D . 11.C【解析】由题意得1|1||1||1|2113(2)(222|1|222a a a f f a a −−−−>⇒−>⇒<⇒−<⇒<<,故选C . 12.B 【解析】根据偶函数的定义()()f x f x −=,A 选项为奇函数,B 选项为偶函数,C选项定义域为(0,)+∞不具有奇偶性,D 选项既不是奇函数,也不是偶函数,故选B . 13.D 【解析】A 为奇函数,B 为偶函数,C 是偶函数,只有D 既不是奇函数,也不是偶函数.14.C 【解析】∵21(2)24f −−==,∴11((2))()142f f f −===. 15.D 【解析】因为11()()cos ()cos ()f x x x x x f x xx−=−+=−−=−,故函数是奇函数,所以排除A, B ;取x π=,则11()()cos ()0f ππππππ=−=−−<,故选D .16.C 【解析】由函数()y f x =的表达式可知,函数()f x 的定义域应满足条件:24||05603x x x x −⎧⎪⎨−+>⎪−⎩≥,即4423x x x −⎧⎨>≠⎩≤≤或,即函数()f x 的定义域为(2,3)(3,4],故选C . 17.D 【解析】当0x >时,||x x =,sgn 1x =,则||sgn x x x =;当0x <时,||x x =−,sgn 1x =−,则||sgn x x x =;当0x =时,||0x x ==,sgn 0x =,则||sgn x x x =;故选D .18.C 【解析】由()()f x f x =−−,即2121,22x x x x a a −−++=−−−所以,(1)(21)0,1xa a −+==,21(),21x x f x +=−由21()321x x f x +=>−,得,122x<<,01x <<,故选C . 19.D 【解析】由题意,555()3,662f b b =⨯−=−由5(())46f f =得, 51253()42b b b ⎧−<⎪⎪⎨⎪−−=⎪⎩或5251224bb −⎧−≥⎪⎨⎪=⎩,解得12b =,故选D . 20.A 【解析】函数()ln(1)ln(1)f x x x =+−−,函数的定义域为(1,1)−,函数()f x −=ln(1)ln(1)[ln(1)ln(1)]()x x x x f x −−+=−+−−=−,所以函数是奇函数.()2111'111f x x x x =+=+−− ,已知在(0,1)上()'0f x > ,所以()f x 在(0,1)上单调递增,故选A .21.A 【解析】∵()3f a =−,∴当1a ≤时,1()223a f a −=−=−,则121a −=−,此等式显然不成立,当1a >时,2log (1)3a −+=−,解得7a =,∴(6)f a −=(1)f −=117224−−−=−,故选A . 22.B 【解析】()f x 为奇函数,()g x 为偶函数,故()f x ()g x 为奇函数,()f x |()g x |为奇函数,|()f x |()g x 为偶函数,|()f x ()g x |为偶函数,故选B .23.C 【解析】2222(log )10log 1log 1x x x −>⇒><−或,解得1202x x ><<或. 24.D 【解析】由()(2)f x f a x =−可知,准偶函数的图象关于y 轴对称,排除A ,C ,而B 的对称轴为y 轴,所以不符合题意;故选D .25.C 【解析】由已知得184212793a b c a b c a b c a b c −+−+=−+−+⎧⎨−+−+=−+−+⎩,解得611a b =⎧⎨=⎩,又0(1)63f c <−=−≤,所以69c <≤.26.B 【解析】四个函数的图象如下显然B成立.27.C【解析】用x−换x,得32()()()()1f xg x x x−−−=−+−+,化简得32()()1f xg x x x+=−++,令1x=,得(1)(1)1f g+=,故选C.28.A【解析】因为[(1)]1f g=,且||()5xf x=,所以(1)0g=,即2110a⋅−=,解得1a=.29.D【解析】函数()1f x x=−和2()f x x x=+既不是偶函数也不是奇函数,排除选项A 和选项B;选项C中()22x xf x−=−,则()22(22)()x x x xf x f x−−−=−=−−=−,所以()f x=22x x−−为奇函数,排除选项C;选项D中()22x xf x−=+,则()22()x xf x f x−−=+=,所以()22x xf x−=+为偶函数,选D.30.D【解析】2()1,()1f fπππ=+−=−,所以函数()x f不是偶函数,排除A;因为函数()xf在(2,)ππ−−上单调递减,排除B;函数()xf在(0,)+∞上单调递增,所以函数()f x不是周期函数,选D.31.A【解析】当12x≤≤时,令1()cos2f x xπ=≤,解得1132x≤≤,当12x>时,令1()212f x x=−≤,解得1324x<≤,故1334x≤≤.∵()f x为偶函数,∴1()2f x≤的解集为3113[,][,]4334−−⋃,故1(1)2f x−≤的解集为1247[,][,]4334⋃.32.D【解析】11lg2lg lg(2)lg1022+=⨯==,()()3)13()]1f x f x x x+−=++−−+3)3)2x x=−++ln33)2x x⎡⎤=+⎣⎦2ln (3)2x ⎡⎤=−+⎣⎦ln122=+=33.D 【解析】∵|()f x |=22,0ln(1),0x x x x x ⎧−≤⎨+>⎩,∴由|()f x |≥ax 得,22x x x ax ≤⎧⎨−≥⎩且0ln(1)x x ax >⎧⎨+≥⎩,由202x x x ax≤⎧⎨−≥⎩可得2a x ≥−,则a ≥-2,排除A,B, 当a =1时,易证ln(1)x x +<对0x >恒成立,故a =1不适合,排除C ,故选D . 34.C 【解析】是奇函数的为3y x =与2sin y x =,故选C . 35.C 【解析】1010x x +>⎧⎨−≠⎩,∴11x x >−⎧⎨≠⎩36.A 【解析】()()112f f −−−=−.37.A 【解析】本题考查的是对数函数的图象.由函数解析式可知)()(x f x f −=,即函数为偶函数,排除C ;由函数过)0,0(点,排除B ,D . 38.C 【解析】1y x=是奇函数,xy e −=是非奇非偶函数,而D 在(0,)+∞单调递增.选C . 39.B 【解析】由已知两式相加得,()13g =. 40.C 【解析】因为21(lg(log 10))(lg())(lg(lg 2))5lg 2f f f ==−=,又因为 ()()8f x f x +−=,所以(lg(lg 2))(lg(lg 2))5(lg(lg 2))8f f f −+=+=,所以(lg(lg 2))f =3,故选C .41.D 【解析】由题意f (1.1)=1.1-[1.1]=0.1,f (-1.1)=-1-[-1.1]=-1.1-(-2)=0.9,故该函数不是奇函数,也不是偶函数,更不是增函数.又对任意整数a ,有f (a +x )=a +x -[a +x ]=x -[x ]=f (x ),故f (x )在R 上为周期函数.故选D .42.C 【解析】由函数解析式可得,该函数定义域为(-∞,0)∪(0,+∞),故排除A ;取x =-1,y =1113−−=32>0,故再排除B ;当x →+∞时,3x -1远远大于3x 的值且都为正,故331x x −→0且大于0,故排除D ,选C . 43.B 【解析】函数x y 2log =为偶函数,且当0>x 时,函数x x y 22log log ==为增函数,所以在)2,1(上也为增函数,选B .44.B 【解析】∵π是无理数 ∴()0g π=,则(())(0)0f g f π==,故选B .45.B 【解析】210,11,100 2.40,x x x x x +>⎧⎪+≠∴−<<<≤⎨⎪−≥⎩或故选B .46.D 【解析】A 是增函数,不是奇函数;B 和C 都不是定义域内的增函数,排除,只有D正确,因此选D .47.A 【解析】12log (21)0x +>,所以0211x <+<,故102x −<<. 48.B 【解析】3y x =为奇函数,21y x =−+在(0,)+∞上为减函数,2xy −=在(0,)+∞上为减函数.49.B 【解析】令函数()()24g x f x x =−−,则()()20g x f x ''=−>,所以()g x 在R 上为增函数,又(1)(1)240g f −=−+−=,所以不等式可转化为()(1)g x g >−,由()g x 的单调性可得1x >−.50.A 【解析】当0a >时,由()(1)0f a f +=得220a+=,无解;当0a <时,由()(1)0f a f +=得120a ++=,解得3a =−,故选A .51.A 【解析】∵))(12()(a x x xx f −+=为奇函数,∴(1)(1)0f f −+=,得12a =.52.A 【解析】因为)(x f 是定义在R 上的奇函数,且当0x …时,2()2f x x x =−,∴2(1)(1)2(1)(1)3f f =−−=−⨯−+−=−,选A .53.B 【解】由()()f x f x −=得()y f x =是偶函数,所以函数()y f x =的图象关于y 轴对称,可知B ,D 符合;由(2)()f x f x +=得()y f x =是周期为2的周期函数,选项D 的图像的最小正周期是4,不符合,选项B 的图像的最小正周期是2,符合,故选B .54.A 【解析】因为311x+>,所以()()22log 31log 10xf x =+>=,故选A 。
文科数学2010-2019高考真题分类训练专题四三角函数与解三角形第十二讲解三角形

专题四 三角函数与解三角形第十二讲 解三角形2019年1. (全国Ⅱ文15)ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________.2.(2019全国Ⅰ文11)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .3(Ⅰ)求b ,c 的值; (Ⅱ)求sin (B +C )的值.4.(2019全国三文18)ABC △的内角A 、B 、C 的对边分别为a 、b 、c ,已知sinsin 2A Ca b A +=. (1)求B ;(2)若ABC △为锐角三角形,且c =1,求ABC △面积的取值范围.5.(2019天津文16)在ABC V 中,内角A B C ,,所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(Ⅰ)求cosB 的值; (Ⅱ)求sin 26B π⎛⎫+⎪⎝⎭的值. 6.(2019江苏15)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 7.(2019浙江14)在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上, 若45BDC ∠=︒,则BD =____,cos ABD ∠=________.2010-2018年一、选择题1.(2018全国卷Ⅱ)在△ABC 中,cos25=C ,1=BC ,5=AC ,则=ABA .BCD .2.(2018全国卷Ⅲ)ABC △的内角A ,B ,C 的对边分别为a ,b ,c .若ABC ∆的面积为2224a b c +-,则C =A .2π B .3π C .4π D .6π 3.(2017新课标Ⅰ)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )B A C C +- 0=,2a =,c =C =A .12π B .6π C .4π D .3π4.(2016全国I )△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知a =2c =,2cos 3A =,则b =A B C .2 D .3 5.(2016全国III )在ΔABC 中,4B π=,BC 边上的高等于13BC ,则sin A =A .310B .10C .5D .106.(2016山东)ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,已知22,2(1sin )b c a b A ==-,则A = A .3π4B .π3C .π4D .π67.(2015广东)设ΑΒC ∆的内角,,A B C 的对边分别为a ,b ,c .若2a =,c =,cos A =,且b c <,则b =A .3 B. C .2 D8.(2014新课标2)钝角三角形ABC 的面积是12,1AB =,BC =AC =A .5 BC .2D .19.(2014重庆)已知ABC ∆的内角A ,B ,C 满足sin 2sin()A A B C +-+=sin()C A B --12+,面积S 满足12S ≤≤,记a ,b ,c 分别为A ,B ,C 所对的边,则下列不等式一定成立的是A .8)(>+c b bc B.()ab a b +> C .126≤≤abc D .1224abc ≤≤ 10.(2014江西)在ABC ∆中,a ,b ,c 分别为内角A ,B ,C 所对的边长,若2c =2()6a b -+,3C π=,则ABC ∆的面积是A .3B .239 C .233 D .33 11.(2014四川)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75o,30o,此时气球的高是60cm ,则河流的宽度BC 等于A .1)m -B .1)mC .1)mD .1)m12.(2013新课标1)已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos A +cos20A =,7a =,6c =,则b =A .10B .9C .8D .513.(2013辽宁)在ABC ∆,内角,,A B C 所对的边长分别为,,a b c .若sin cos a B C +1sin cos 2c B A b =,且a b >,则B ∠=A .6πB .3πC .23πD .56π14.(2013天津)在△ABC 中,,3,4AB BC ABC π∠===则sin BAC ∠=A B C D 15.(2013陕西)设△ABC 的内角A , B , C 所对的边分别为a ,b ,c ,若cos cos sin b C c B a A +=,则△ABC 的形状为A .锐角三角形B .直角三角形C .钝角三角形D .不确定16.(2012广东)在ABC ∆中,若60,45,A B BC ︒︒∠=∠==AC =A .B .CD .217.(2011辽宁)ABC ∆的三个内角A ,B ,C 所对的边分别为a ,b ,c ,2sin sin cos a A B b A +=,则=abA .B .C D18.(2011天津)如图,在△ABC 中,D 是边AC 上的点,且,2AB AD AB ==,2BC BD =,则sin C 的值为CA B C D19.(2010湖南)在ABC ∆中,角,,A B C 所对的边长分别为,,a b c .若120C ∠=o,c =,则A .a b >B .a b <C .a b =D .a 与b 的大小关系不能确定 二、填空题20.(2018全国卷Ⅰ)△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为__.21.(2018浙江)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2b =,60A =o ,则sin B =___________,c =___________.22.(2018北京)若ABC △222)a c b +-,且C ∠为钝角,则B ∠= ;ca的取值范围是 .23.(2018江苏)在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 .24.(2017新课标Ⅱ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos cos b B a C c A =+,则B =25.(2017新课标Ⅲ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .已知60C =o,b =3c =,则A =_______.26.(2017浙江)已知ABC ∆,4AB AC ==,2BC =. 点D 为AB 延长线上一点,2BD =,连结CD ,则BDC ∆的面积是_______,cos BDC ∠=_______.27.(2016全国Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =, 5cos 13C =,1a =,则b =_____.28.(2015北京)在△ABC 中,23,3a b A π==∠=,则B ∠= _________. 29.(2015重庆)设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且2a =,1cos 4C =-,3sin 2sin A B =,则c =________.30.(2015安徽)在ABC ∆中,6=AB ,ο75=∠A ,ο45=∠B ,则=AC .31.(2015福建)若锐角ABC ∆的面积为5AB =,8AC =,则BC 等于 . 32.(2015新课标1)在平面四边形ABCD 中,75A B C ∠=∠=∠=o,2BC =,则AB 的取值范围是_______.33.(2015天津)在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为2b c -=,1cos 4A =-,则a 的值为 .34.(2015湖北)如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30o的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75o的方向上,仰角为30o,则此山的高度CD =m .35.(2014新课标1)如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100BC m =,则山高MN =________m .CNABM36.(2014广东)在ABC ∆中,角C B A ,,所对应的边分别为c b a ,,,已知cos b C +cos 2c B b =,则=ba. 37.(2013安徽)设ABC ∆的内角,,A B C 所对边的长分别为,,a b c .若2b c a +=,则3sin 5sin ,A B =则角C =_____.38.(2013福建)如图ABC ∆中,已知点D 在BC 边上,AD ⊥AC ,22sin BAC ∠=32AB =3AD =,则BD 的长为_______________.C39.(2012安徽)设ABC ∆的内角,,A B C 所对的边为,,a b c ;则下列命题正确的是 .①若2ab c >;则3C π<②若2a b c +>;则3C π<③若333a b c +=;则2C π<④若()2a b c ab +<;则2C π>⑤若22222()2a b c a b +<;则3C π>40.(2012北京)在ABC ∆中,若12,7,cos 4a b c B =+==-,则b = .41.(2011新课标)ABC ∆中,60,B AC =︒=,则AB +2BC 的最大值为____.42.(2011新课标)ABC ∆中,120,7,5B AC AB =︒==,则ABC ∆的面积为_ __. 43.(2010江苏)在锐角三角形ABC ,a ,b ,c 分别为内角A ,B ,C 所对的边长,6cos b a C a b +=,则tan tan tan tan C CA B+=_______.44.(2010山东)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若2a b ==,sin cos B B +=A 的大小为 .三、解答题45.(2018天津)在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c .已知sin cos()6b A a B π=-.(1)求角B 的大小;(2)设2a =,3c =,求b 和sin(2)A B -的值.46.(2017天津)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知sin 4sin a A b B =,222)ac a b c =--.(Ⅰ)求cos A 的值; (Ⅱ)求sin(2)B A -的值.47.(2017山东)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知3b =,6AB AC ⋅=-u u u r u u u r,3ABC S ∆=,求A 和a .48.(2015新课标2)ABC ∆中,D 是BC 上的点,AD 平分∠BAC ,∆ABD 面积是∆ADC 面积的2倍. (Ⅰ)求sin sin BC; (Ⅱ) 若AD =1,DC =22,求BD 和AC 的长. 49.(2015新课标1)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(Ⅰ)若a b =,求cos ;B (Ⅱ)若90B =o ,且2a =,求ABC ∆的面积.50.(2014山东)ABC ∆中,a ,b ,c 分别为内角A ,B ,C 所对的边长.已知3a =,6cos ,2A B A π==+. (I)求b 的值; (II )求ABC ∆的面积.51.(2014安徽)设ABC ∆的内角,,A B C 所对边的长分别是,,a b c ,且3b =,1c =,2A B =.(Ⅰ)求a 的值; (Ⅱ)求sin()4A π+的值.52.(2013新课标1)如图,在ABC ∆中,∠ABC =90°,AB =3,BC =1,P 为△ABC 内一点,∠BPC =90°.(Ⅰ)若PB =12,求P A ; (Ⅱ)若∠APB =150°,求tan ∠PBA .53.(2013新课标2)ABC ∆在内角,,A B C 的对边分别为,,a b c ,已知cos sin a b C c B =+. (Ⅰ)求B ;(Ⅱ)若2b =,求△ABC 面积的最大值.54.(2012安徽)设ABC ∆的内角C B A ,,所对边的长分别为,,,c b a ,且有2sin cos B A =sin cos cos sin A C A C +.(Ⅰ)求角A 的大小;(Ⅱ) 若2b =,1c =,D 为BC 的中点,求AD 的长.55.(2012新课标)已知a 、b 、c 分别为ABC ∆三个内角A 、B 、C 的对边,cos a C +3sin 0a C b c --=.(Ⅰ)求A ;(Ⅱ)若2=a ,ABC ∆的面积为3,求b 、c .56.(2011山东)在ABC ∆中,a ,b ,c 分别为内角A ,B ,C 所对的边长.已知cos 2cos 2cos A C c aB b --=. (I )求sin sin CA的值;(II )若1cos 4B =,2b =,ABC ∆的面积S .57.(2011安徽)在ABC ∆中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a =3,b =2,12cos()0B C ++=,求边BC 上的高.58.(2010陕西)如图,A ,B 是海面上位于东西方向相距()533+海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D 点需要多长时间?59.(2010江苏)某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角∠ABE=α,∠ADE=β.(1)该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,请据此算出H的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使α与β之差较大,可以提高测量精确度。
文科数学2010-2019高考真题分类训练专题二函数概念与基本初等函数第三讲函数的概念和性质

专题二 函数概念与基本初等函数Ⅰ第三讲 函数的概念和性质2019年1.(2019江苏4)函数y =的定义域是 .2. (2019全国Ⅱ文6)设f ()为奇函数,且当≥0时,f ()=e 1x -,则当<0时,f ()=A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+ 3.(2019北京文14)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白 梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明 对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付元.每笔订单顾 客网上支付成功后,李明会得到支付款的80%.①当=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则的最大值为__________.4.(2019北京文3)下列函数中,在区间(0,+)上单调递增的是(A )12y x = (B )y =2x - (C )12log y x = (D )1y x= 5.(2019全国Ⅲ文12)设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-) B .f (log 314)>f (232-)>f (322-) C .f (322-)>f (232-)>f (log 314) D .f (232-)>f (322-)>f (log 314)2010-2018年一、选择题1.(2018全国卷Ⅰ)设函数2,0()1,0-⎧=⎨>⎩≤x x f x x ,则满足(1)(2)+<f x f x 的x 的取值范围是A .(,1]-∞-B .(0,)+∞C .(1,0)-D .(,0)-∞ 2.(2018浙江)函数||2sin 2x y x =的图象可能是A .B .C .D .3.(2018全国卷Ⅱ)已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)-=+f x f x .若(1)2=f ,则(1)(2)(3)++f f f (50)++=L fA .50-B .0C .2D .50 4.(2018全国卷Ⅲ)函数422y x x =-++的图像大致为5.(2017新课标Ⅰ)函数sin 21cos x y x=-的部分图像大致为6.(2017新课标Ⅲ)函数2sin 1x y x x=++的部分图像大致为 A . B .C .D .7.(2017天津)已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+⎪⎩≥设a ∈R ,若关于x 的不等式()||2x f x a +≥在R 上恒成立,则a 的取值范围是A .[2,2]-B .[23,2]-C .[2,23]-D .[3,23]-8.(2017山东)设,01()2(1),1x x f x x x <<=-⎪⎩≥,若()(1)f a f a =+,则1()f a = A .2 B .4 C .6 D .89.(2016北京)下列函数中,在区间(1,1)- 上为减函数的是A .11y x=- B .cos y x = C .ln(1)y x =+ D .2x y -= 10.(2016山东)已知函数()f x 的定义域为R .当0x <时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,11()()22f x f x +=-.则(6)f = A .2- B .1- C .0 D .211.(2016天津)已知)(x f 是定义在R 上的偶函数,且在区间)0,(-∞上单调递增,若实数a 满足)2()2(|1|->-f f a ,则a 的取值范围是A .)21,(-∞ B .),23()21,(+∞-∞Y C .)23,21( D .),23(+∞ 12.(2015北京)下列函数中为偶函数的是A .2sin y x x =B .2cos y x x =C .|ln |y x =D .2xy -= 13.(2015广东)下列函数中,既不是奇函数,也不是偶函数的是A .sin 2y x x =+B .2cos y x x =-C .122x x y =+ D .2sin y x x =+14.(2015陕西)设1,0 ()2,0xxxf xx⎧-⎪=⎨<⎪⎩≥,则((2))f f-=A.-1 B.14C.12D.3215.(2015浙江)函数()1()cosf x x xx=-(xππ-≤≤且0x≠)的图象可能为A.B.C.D.16.(2015湖北)函数256()4||lg3x xf x xx-+=--的定义域为A.(2,3)B.(2,4]C.(2,3)(3,4]U D.(1,3)(3,6]-U 17.(2015湖北)设x R∈,定义符号函数1,0sgn0,01,0xx xx>⎧⎪==⎨⎪-<⎩,则A.|||sgn|x x x=B.||sgn||x x x=C.||||sgnx x x=D.||sgnx x x=18.(2015山东)若函数21()2xxf xa+=-是奇函数,则使()3f x>成立的x的取值范围为A.(),1-∞-B.()1,0-C.()0,1D.()1,+∞19.(2015山东)设函数()3,1,2,1,xx b xf xx-<⎧=⎨⎩≥若5(())46f f=,则b=A.1 B.78C.34D.1220.(2015湖南)设函数()ln(1)ln(1)f x x x=+--,则()f x是A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数21.(2015新课标1)已知函数1222,1()log (1),1x x f x x x -⎧-=⎨-+>⎩≤,且()3f a =-,则(6)f a -=A .74-B .54-C .34-D .14- 22.(2014新课标1)设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .()f x |()g x |是奇函数C .|()f x |()g x 是奇函数D .|()f x ()g x |是奇函数23.(2014山东)函数1)(log 1)(22-=x x f 的定义域为 A .)210(, B .)2(∞+, C .),2()210(+∞Y , D .)2[]210(∞+,,Y24.(2014山东)对于函数()f x ,若存在常数0a ≠,使得x 取定义域内的每一个值,都有()(2)f x f a x =-,则称()f x 为准偶函数,下列函数中是准偶函数的是A.()f x = B .2()f x x = C .()tan f x x = D .()cos(1)f x x =+25.(2014浙江)已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x fA .3≤cB .63≤<cC .96≤<cD .9>c26.(2015北京)下列函数中,定义域是R 且为增函数的是A .xy e -= B .3y x = C .ln y x = D .y x = 27.(2014湖南)已知(),()f x g x 分别是定义在R 上的偶函数和奇函数,且()()f x f x -=321x x ++,(1)(1)f g +则=A .-3B .-1C .1D .328.(2014江西)已知函数||5)(x x f =,)()(2R a x ax x g ∈-=,若1)]1([=g f ,则=aA .1B .2C .3D .-129.(2014重庆)下列函数为偶函数的是A .()1f x x =-B .3()f x x x =+C .()22x x f x -=-D .()22x x f x -=+30.(2014福建)已知函数()⎩⎨⎧≤>+=0,cos 0,12x x x x x f 则下列结论正确的是A .()x f 是偶函数B .()x f 是增函数C .()x f 是周期函数D .()x f 的值域为[)+∞-,131.(2014辽宁)已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤ 的解集为 A .1247[,][,]4334U B .3112[,][,]4343--U C .1347[,][,]3434U D .3113[,][,]4334--U 32.(2013辽宁)已知函数()3)1f x x =+,则1(lg 2)(lg )2f f +=A .1-B .0C .1D .233.(2013新课标1)已知函数()f x =22,0ln(1),0x x x x x ⎧-+≤⎨+>⎩,若|()f x |≥ax ,则a 的取值范围是A .(,0]-∞B .(,1]-∞C .[-2,1]D .[-2,0]34.(2013广东)定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是A .4B .3C .2D .135.(2013广东)函数lg(1)()1x f x x +=-的定义域是 A .(1,)-+∞ B .[1,)-+∞ C .(1,1)(1,)-+∞U D .[1,1)(1,)-+∞U36.(2013山东)已知函数()f x 为奇函数,且当0x >时, ()21f x x x=+ ,则()1f -= A .-2 B .0 C .1D .2 37.(2013福建)函数)1ln()(2+=x x f 的图象大致是( )A .B .C .D .38.(2013北京)下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是( )A .1y x =B .x y e -=C .21y x =-+D .lg y x = 39.(2013湖南)已知()f x 是奇函数,()g x 是偶函数,且()()112f g -+=,()()114f g +-=,则()1g 等于A .4B .3C .2D .1 40.(2013重庆)已知函数3()sin 4(,)f x ax b x a b R =++∈,2(lg(log 10))5f =,则(lg(lg 2))f =A .5-B .1-C .3D .441.(2013湖北)x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R 上为A .奇函数B .偶函数C .增函数D . 周期函数42.(2013四川)函数133-=x x y 的图像大致是A B C D43.(2012天津)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为A .cos 2,y x x R =∈B .2log ||,0y x x R x =∈≠且C .,2x xe e y x R --=∈ D .31y x =+44.(2012福建)设1,0,()0,0,1,0,x f x x x >⎧⎪= =⎨⎪- <⎩⎩⎨⎧=为无理数为有理数x x x g ,0,1)(,则(())f g π的值为A .1B .0C .1-D .π45.(2012山东)函数1()ln(1)f x x =++ A .[2,0)(0,2]-U B .(1,0)(0,2]-U C .[2,2]- D .(1,2]-46.(2012陕西)下列函数中,既是奇函数又是增函数的为A 1y x =+B 3y x =-C 1y x =D ||y x x = 47.(2011江西)若()f x =,则)(x f 的定义域为 A .(21-,0) B .(21-,0] C .(21-,∞+) D .(0,∞+) 48.(2011新课标)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是 A .3y x = B .1y x =+ C .21y x =-+ D .2x y -=49.(2011辽宁)函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为A .(1-,1)B .(1-,+∞)C .(∞-,1-)D .(∞-,+∞)50.(2011福建)已知函数2,0()1,0x x f x x x >⎧=⎨+≤⎩.若()(1)0f a f +=,则实数a 的值等于A .-3B .-1C .1D .3 51.(2011辽宁)若函数))(12()(a x x x x f -+=为奇函数,则a = A .21 B .32 C .43 D .1 52.(2011安徽)设)(x f 是定义在R 上的奇函数,当0x ≤时,2()2f x x x =-,则(1)f =A .-3B .-1C .1D .353.(2011陕西)设函数()()f x x R ∈满足()(),(2)(),f x f x f x f x -=+=则()y f x =的图像可能是54.(2010山东)函数()()2log 31x f x =+的值域为A .()0,+∞B .)0,+∞⎡⎣C .()1,+∞D .)1,+∞⎡⎣ 55.(2010年陕西)已知函数()f x =221,1,1x x x ax x ⎧+<⎨+≥⎩,若((0))f f =4a ,则实数a = A .12 B .45C .2D .9 56.(2010广东)若函数f ()=3+3-与g ()=3-3-的定义域均为R ,则A .f ()与g ()均为偶函数B . f ()为偶函数,g ()为奇函数C .f ()与g ()均为奇函数D . f ()为奇函数,g ()为偶函数57.(2010安徽)若()f x 是R 上周期为5的奇函数,且满足()()11,22f f ==,则()()34f f -=A .-1B .1C .-2D .2二、填空题58.(2018江苏)函数2()log 1f x x -的定义域为 .59.(2018江苏)函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上, cos ,02,2()1||,20,2x x f x x x π⎧<⎪⎪=⎨⎪+<⎪⎩≤-≤则((15))f f 的值为 . 60.(2017新课标Ⅱ)已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f = .61.(2017新课标Ⅲ)设函数1,0()2,0x x x f x x +⎧=⎨>⎩≤,则满足1()()12f x f x +->的x 的取值范围是____.62.(2017山东)已知()f x 是定义在R 上的偶函数,且(4)(2)f x f x +=-.若当[3,0]x ∈-时,()6x f x -=,则(919)f = .63.(2017浙江)已知a ∈R ,函数4()||f x x a a x=+-+在区间[1,4]上的最大值是5,则a 的取值范围是 .64.(2017江苏)已知函数31()2x x f x x x e e=-+-,其中e 是自然数对数的底数,若2(1)(2)0f a f a -+≤,则实数a 的取值范围是 .65.(2015新课标2)已知函数x ax x f 2)(3-=的图象过点)4,1(-,则=a . 66.(2015浙江)已知函数()2,166,1x x f x x x x ⎧⎪=⎨+->⎪⎩≤,则((2))f f -= ,()f x 的最小值是 .67.(2014新课标2)偶函数()f x 的图像关于直线2x =对称,(3)3f =,则(1)f -=__.68.(2014湖南)若()()ax e x f x ++=1ln 3是偶函数,则=a ____________. 69.(2014四川)设()f x 是定义在R 上的周期为2的函数,当[1,1)x ∈-时,242,10,(),01,x x f x x x ⎧-+-≤<=⎨≤<⎩,则3()2f = . 70.(2014浙江)设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是__. 71.(2014湖北)设()x f 是定义在()+∞,0上的函数,且()0>x f ,对任意0,0>>b a ,若经过点(,())a f a ,(,())b f b -的直线与x 轴的交点为()0,c ,则称c 为b a ,关于函数()x f 的平均数,记为),(b a M f ,例如,当())0(1>=x x f 时,可得2),(b a c b a M f +==,即),(b a M f 为b a ,的算术平均数. (Ⅰ)当())0_____(>=x x f 时,),(b a M f 为b a ,的几何平均数;(Ⅱ)当())0_____(>=x x f 时,),(b a M f 为b a ,的调和平均数ba ab +2; (以上两空各只需写出一个符合要求的函数即可)72.(2013安徽)函数1ln(1)y x =+_____________. 73.(2013北京)函数12log ,1()2,1x x x f x x ≥⎧⎪=⎨⎪ <⎩的值域为 .74.(2012安徽)若函数()|2|f x x a =+的单调递增区间是),3[+∞,则a =________.75.(2012浙江)设函数()f x 是定义在R 上的周期为2的偶函数,当[0,1]x ∈时,()1f x x =+,则3()2f =_______________. 76.(2011江苏)已知实数0≠a ,函数⎩⎨⎧≥--<+=1,21,2)(x a x x a x x f ,若)1()1(a f a f +=-,则a 的值为________.77.(2011福建)设V 是全体平面向量构成的集合,若映射:f V R →满足:对任意向量11(,)x y a =∈V ,22(,)x y b =∈V ,以及任意λ∈R ,均有((1))()(1)(),f f f λλλλ+-=+-a b a b则称映射f 具有性质P .现给出如下映射:①12:,(),,(,);f V R f m x y m x y V →=-=∈②222:,(),(,);f V R f m x y m x y V →=+=∈③33:,()1,(,).f V R f m x y m x y V →=++=∈ 其中,具有性质P 的映射的序号为_____.(写出所有具有性质P 的映射的序号)78.(2010福建)已知定义域为0+∞(,)的函数()f x 满足:①对任意0x ∈+∞(,),恒有(2)=2()f x f x 成立;当]x ∈(1,2时,()=2f x x -.给出如下结论:①对任意Z m ∈,有(2)=0mf ;②函数()f x 的值域为[0+∞,);③存在Z n ∈,使得(2+1)=9n f ;④“函数()f x 在区间(,)a b 上单调递减”的充要条件是 “存在Z k ∈,使得1(,)(2,2)k k a b +⊆”.其中所有正确结论的序号是 .79.(2010江苏)设函数()()x x f x x e ae -=+(x R)是偶函数,则实数a = .。
文科数学2010-2019高考真题分类训练专题一 集合与常用逻辑用语第一讲 集合—后附解析答案

专题一 集合与常用逻辑用语第一讲 集合2019年1.(2019全国Ⅰ文2)已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则UB A =A .{}1,6 B .{}1,7C .{}6,7D .{}1,6,72.(2019全国Ⅱ文1)已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(–1,+∞) B .(–∞,2)C .(–1,2)D .∅3.(2019全国Ⅲ文1)已知集合2{1,0,1,2}{1}A B x x =-=≤,,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,24.(2019北京文1)已知集合A ={x |–1<x <2},B ={x |x >1},则A ∪B = (A )(–1,1)(B )(1,2)(C )(–1,+∞)(D )(1,+∞)5.(2019天津文1)设集合{}1,1,2,3,5A =-,{}2,3,4B = ,{|13}C x R x =∈< ,则()A CB =(A ){2}(B ){2,3}(C ){-1,2,3}(D ){1,2,3,4}6.(2019江苏1)已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B = .7.(2019浙江1) 已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则UA B =A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-2010-2018年一、选择题1.(2018全国卷Ⅰ)已知集合{0,2}=A ,{21012}=--,,,,B ,则A B =A .{0,2}B .{1,2}C .{0}D .{21012}--,,,, 2.(2018浙江)已知全集{1,2,3,4,5}U =,{1,3}A =,则=UAA .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}3.(2018全国卷Ⅱ)已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{3}B .{5}C .{3,5}D .{}1,2,3,4,5,74.(2018北京)已知集合{|||2}A x x =<,{2,0,1,2}B =-,则AB =A .{0,1}B .{–1,0,1}C .{–2,0,1,2}D .{–1,0,1,2}5.(2018全国卷Ⅲ)已知集合{|10}A x x =-≥,{0,1,2}B =,则A B =A .{0}B .{1}C .{1,2}D .{0,1,2}6.(2018天津)设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x x =∈-<R ≤,则()A B C =A .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}7.(2017新课标Ⅰ)已知集合{|2}A x x =<,{320}B x =->,则A .3{|}2AB x x =< B .A B =∅C .3{|}2A B x x =< D .A B =R8.(2017新课标Ⅱ)设集合{1,2,3}A =,{2,3,4}B =则AB =A .{1,2,3,4}B .{1,2,3}C .{2,3,4}D .{1,3,4} 9.(2017新课标Ⅲ)已知集合{1,2,3,4}A =,{2,4,6,8}B =,则AB 中元素的个数为A .1B .2C .3D .4 10.(2017天津)设集合{1,2,6}A =,{2,4}B =,{1,2,3,4}C =,则()AB C =A .{2}B .{1,2,4}C .{1,2,4,6}D .{1,2,3,4,6} 11.(2017山东)设集合{}11M x x =-<,{}2N x x =<,则M N =A .()1,1-B .()1,2- C .()0,2D .()1,212.(2017北京)已知U =R ,集合{|22}A x x x =<->或,则UA =A .(2,2)-B .(,2)(2,)-∞-+∞ C .[2,2]- D .(,2][2,)-∞-+∞13.(2017浙江)已知集合{|11}P x x =-<<,{|02}Q x x =<<,那么PQ =A .(1,2)-B .(0,1)C .(1,0)-D .(1,2) 14.(2016全国I 卷)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则=ABA .{1,3}B .{3,5}C .{5,7}D .{1,7}15.(2016全国Ⅱ卷)已知集合{123}A =,,,2{|9}B x x =<,则A B =A .{210123}--,,,,,B .{21012}--,,,,C .{123},,D .{12}, 16.(2016全国Ⅲ)设集合{0,2,4,6,8,10},{4,8}A B ==,则A B =A .{48},B .{026},,C .{02610},,,D .{0246810},,,,,17.(2015新课标2)已知集合}21|{<<-=x x A ,}30|{<<=x x B ,则AB =A .)3,1(-B .)0,1(-C .)2,0(D .)3,2(18.(2015新课标1)已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合AB中的元素个数为A .5B .4C .3D .219.(2015北京)若集合{|52}A x x =-<<,{|33}B x x =-<<,则AB =A .{|32}x x -<<B .{|52}x x -<<C .{|33}x x -<<D .{|53}x x -<<20.(2015天津)已知全集{1,2,3,4,5,6}U =,集合{}2,3,5A =,集合{1,3,4,6}B =,则集合UAB =。
文科数学2010-2019高考真题分类训练专题一,,集合与常用逻辑用语第一讲,,集合—后附解析答案

文科数学2010-2019高考真题分类训练专题一,,集合与常用逻辑用语第一讲,,集合—后附解析答案专题一集合与常用逻辑用语第一讲集合2019年1.(2019全国Ⅰ文2)已知集合,则A.B.C.D.2.(2019全国Ⅱ文1)已知集合,,则A∩B= A.(–1,+∞) B.(–∞,2) C.(–1,2) D.3.(2019全国Ⅲ文1)已知集合,则A.B.C.D.4.(2019北京文1)已知集合A={x|–1<x<2},B={x|x>1},则A∪B= (A)(–1,1)(B)(1,2)(C)(–1,+∞)(D)(1,+∞)5.(2019天津文1)设集合,,,则(A){2} (B){2,3} (C){-1,2,3} (D){1,2,3,4} 6.(2019江苏1)已知集合,,则. 7.(2019浙江1) 已知全集,集合,,则= A.B.C.D.2010-2018年一、选择题1.(2018全国卷Ⅰ)已知集合,,则A.B.C.D.2.(2018浙江)已知全集,,则A.B.{1,3} C.{2,4,5} D.{1,2,3,4,5} 3.(2018全国卷Ⅱ)已知集合,,则A.B.C.D.4.(2018北京)已知集合,,则A.{0,1} B.{–1,0,1} C.{–2,0,1,2} D.{–1,0,1,2} 5.(2018全国卷Ⅲ)已知集合,,则A.B.C.D.6.(2018天津)设集合,,,则A.B.C.D.7.(2017新课标Ⅰ)已知集合,,则A.B.C.D.8.(2017新课标Ⅱ)设集合,则= A.B.C.D.9.(2017新课标Ⅲ)已知集合,,则中元素的个数为A.1 B.2 C.3 D.4 10.(2017天津)设集合,,,则A.B.C.D.11.(2017山东)设集合则A.B.C.D.12.(2017北京)已知,集合,则=A.B.C.D.13.(2017浙江)已知集合,,那么= A.B.C.D.14.(2016全国I卷)设集合,,则A.{1,3} B.{3,5} C.{5,7} D.{1,7} 15.(2016全国Ⅱ卷)已知集合,则A.B.C.D.16.(2016全国Ⅲ)设集合,则= A.B.C.D.17.(2015新课标2)已知集合,,则= A.B.C.D.18.(2015新课标1)已知集合,则集合中的元素个数为A.5 B.4 C.3 D.2 19.(2015北京)若集合,,则= A.B.C.D.20.(2015天津)已知全集,集合,集合,则集合A.B.C.D.21.(2015陕西)设集合,,则= A.[0,1] B.(0,1] C.[0,1) D.(-∞,1] 22.(2015山东)已知集合,,则A.B.C.D.23.(2015福建)若集合,,则等于A.B.C.D.24.(2015广东)若集合,,则A.B.C.D.25.(2015湖北)已知集合,,定义集合,则中元素的个数为A.77 B.49 C.45 D.30 26.(2014新课标)已知集合A={|},B={|-2≤<2},则= A.[2, 1] B.[1,1] C.[1,2)D.[1,2)27.(2014新课标)设集合=,=,则= A.{1}B.{2}C.{0,1}D.{1,2}28.(2014新课标)已知集合A={2,0,2},B={|},则A.B.C.D.29.(2014山东)设集合则A.[0,2] B.(1,3) C.[1,3) D.(1,4) 30.(2014山东)设集合,则A.B.C.D.31.(2014广东)已知集合,,则A.B.C.D.32.(2014福建)若集合,,则等于A.B.C.D.33.(2014浙江)设全集,集合,则= A.B.C.D.34.(2014北京)已知集合,则A.B.C.D.35.(2014湖南)已知集合,则A.B.C.D.36.(2014陕西)已知集合,则A.B.C.D.37.(2014江西)设全集为,集合,则A.B.C.D.38.(2014辽宁)已知全集,则集合A.B.C.D.39.(2014四川)已知集合,集合为整数集,则A.B.C.D.40.(2014湖北)已知全集,集合,则A.B.C.D.41.(2014湖北)设为全集,是集合,则“存在集合使得,”是“”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件42.(2013新课标1)已知集合A={x|x2-2x>0},B={x|-<x<},则A.A∩B=Æ B.A∪B=R C.B⊆A D.A⊆B 43.(2013新课标1)已知集合,,则A.B.C.D.44.(2013新课标2)已知集合,,则= A.B.C.D.45.(2013新课标2)已知集合,,则A.B.C.D.46.(2013山东)已知集合均为全集的子集,且, ,则A.{3} B.{4} C.{3,4} D.47.(2013山东)已知集合A={0,1,2},则集合B=中元素的个数是A.1 B.3 C.5 D.9 48.(2013安徽)已知,则A.B.C.D.49.(2013辽宁)已知集合A.B.C.D.50.(2013北京)已知集合,,则A.B.C.D.51.(2013广东)设集合,,则A.B.C.D.52.(2013广东)设整数,集合,令集合,且三条件恰有一个成立,若和都在中,则下列选项正确的是A., B., C., D., 53.(2013陕西)设全集为R, 函数的定义域为M, 则为A.[-1,1] B.(-1,1) C.D.54.(2013江西)若集合中只有一个元素,则= A.4 B.2 C.0 D.0或 4 55.(2013湖北)已知全集为,集合,,则A.B.C.D.56.(2012广东)设集合;则A.B.C.D.57.(2012浙江)设全集,设集合,,则= A.B.C.D.58.(2012福建)已知集合,,下列结论成立的是A.B.C.D.59.(2012新课标)已知集合,,则A.B.C.D.60.(2012安徽)设集合A={},集合B为函数的定义域,则AB= A.(1,2)B.[1,2] C.[ 1,2)D.(1,2 ] 61.(2012江西)若集合,,则集合中的元素的个数为A.5 B.4 C.3 D.2 62.(2011浙江)若,则A.B.C.D.63.(2011新课标)已知集合M={0,1,2,3,4},N={1,3,5},,则的子集共有A.2个B.4个C.6个D.8个64.(2011北京)已知集合=,.若,则的取值范围是A.(∞, 1] B.[1, +∞)C.[1,1] D.(∞,1][1,+∞)65.(2011江西)若全集,则集合等于A.B.C.D.66.(2011湖南)设全集,,则= A.{1,2,3} B.{1,3,5} C.{1,4,5} D.{2,3,4} 67.(2011广东)已知集合A=为实数,且,B=为实数且,则AB的元素个数为A.4 B.3 C.2 D.1 68.(2011福建)若集合={1,0,1},={0,1,2},则∩等于A.{0,1}B.{1,0,1}C.{0,1,2}D.{1,0,1,2}69.(2011陕西)设集合,,则为A.(0,1)B.(0,1] C.[0,1)D.[0,1] 70.(2011辽宁)已知M,N为集合I的非空真子集,且M,N不相等,若,则A.M B.N C.I D.71.(2010湖南)已知集合,,则A.B.C.D.72.(2010陕西)集合A=,B=,则= A.B.C.D.73.(2010浙江)设P={x︱x<4},Q={x ︱<4},则A.B.C.D.74.(2010安徽)若集合,则A.B.C.D.75.(2010辽宁)已知均为集合={1,3,5,7,9}的子集,且,,则= A.{1,3} B.{3,7,9} C.{3,5,9} D.{3,9} 二、填空题76.(2018江苏)已知集合,,那么.77.(2017江苏)已知集合,,若,则实数的值为____.78.(2015江苏)已知集合,,则集合中元素的个数为.79.(2015湖南)已知集合=,=,=,则()= .80.(2014江苏)已知集合A={},,则.81.(2014重庆)设全集,,,则= .82.(2014福建)若集合且下列四个关系:①;②;③;④有且只有一个是正确的,则符合条件的有序数组的个数是_________.83.(2013湖南)已知集合,则= .84.(2010湖南)若规定的子集为的第个子集,其中=,则(1)是的第____个子集;(2)的第211个子集是_______.85.(2010江苏)设集合,,,则实数=__.专题一集合与常用逻辑用语第一讲集合答案部分2019 1.解析因为,所以,则. 故选C.2.解析,,.故选C. 3.解析因为,,所以.故选A.4.解析由数轴可知,.故选C. 5.解析设集合,,则. 又,所以. 故选D. 6.解析因为,,所以.7.解析,.故选A.2010-2018 1.A【解析】由题意,故选A.2.C【解析】因为,,所以{2,4,5}.故选C.3.C【解析】因为,,所以,故选C.4.A【解析】,,∴,故选A.5.C 【解析】由题意知,,则.故选C.6.C【解析】由题意,∴,故选C.7.A【解析】∵,∴,选A.8.A【解析】由并集的概念可知,,选A.9.B【解析】由集合交集的定义,选B.10.B【解析】∵,,选B.11.C【解析】,所以,选C.12.C【解析】,选C.13.A 【解析】由题意可知,选A.14.B【解析】由题意得,,,则.选B.15.D【解析】易知,又,所以故选D.16.C【解析】由补集的概念,得,故选C.17.A【解析】∵,,∴.18.D【解析】集合,当时,,当时,,当时,,当时,,当时,,∵,∴中元素的个数为2,选D.19.A【解析】.20.B【解析】,∴.21.A【解析】∵,,∴=[0,1].22.C 【解析】因为,所以,故选C.23.D【解析】∵.24.B【解析】.25.C【解析】由题意知,,,所以由新定义集合可知,或.当时,,,所以此时中元素的个数有:个;当时,,,这种情形下和第一种情况下除的值取或外均相同,即此时有,由分类计数原理知,中元素的个数为个,故应选C.26.A【解析】,故=[2, 1].27.D【解析】,∴={1,2}.28.B 【解析】∵,∴.29.C【解析】,∴,.∴.30.C【解析】∵,,所以.31.C【解析】,选C.32.A【解析】=.33.B【解析】由题意知,,所以=,选B.34.C【解析】∵.∴=.35.C 【解析】.36.B【解析】∵,∴,∴,故选B.37.C【解析】,,∴.38.D【解析】由已知得,或,故.39.A【解析】,,故.40.C【解析】.41.C【解析】“存在集合使得”“”,选C.42.B【解析】A=(,0)∪(2,+),∴AB=R,故选B.43.A【解析】,∴.44.A 【解析】∵,∴.45.C【解析】因为,, 所以,选C.46.A【解析】由题意,且,所以中必有3,没有4,,故.47.C【解析】;;.∴中的元素为共5个.48.A【解析】A:,,,所以答案选A 49.D【解析】由集合A,;所以.50.B【解析】集合中含1,0,故.51.A【解析】∵,,∴.52.B【解析】特殊值法,不妨令,,则, ,故选B.如果利用直接法:因为,,所以…①,…②,…③三个式子中恰有一个成立;…④,…⑤,…⑥三个式子中恰有一个成立.配对后只有四种情况:第一种:①⑤成立,此时,于是,;第二种:①⑥成立,此时,于是,;第三种:②④成立,此时,于是,;第四种:③④成立,此时,于是,. 综合上述四种情况,可得,. 53.D【解析】的定义域为M=[1,1],故=,选D 54.A【解析】当时,不合,当时,,则.55.C【解析】,,∴.56.A 【解析】=.57.D【解析】,=,=.58.D【解析】由M={1,2,3,4},N={2,2},可知2∈N,但是2M,则NM,故A错误.∵MN={1,2,3,4,2}≠M,故B错误.M∩N={2}≠N,故C错误,D正确.故选D.59.B【解析】A=(1,2),故BA,故选B.60.D【解析】,.61.C 【解析】根据题意容易看出只能取1,1,3等3个数值.故共有3个元素.62.D【解析】∴,又∵,∴,故选D.63.B【解析】,故的子集有4个.64.C【解析】因为,所以,即,得,解得,所以的取值范围是.65.D【解析】因为,所以==.66.B【解析】因为,所以==.67.C 【解析】由消去,得,解得或,这时或,即,有2个元素.68.A【解析】集合.69.C【解析】对于集合,函数,其值域为,所以,根据复数模的计算方法得不等式,即,所以,则.70.A【解析】根据题意可知,是的真子集,所以.71.C【解析】故选C. 72.D【解析】73.B【解析】,可知B正确,74.A【解析】不等式,得,得,所以=.75.D【解析】因为,所以3∈,又因为,所以9∈A,所以选D.本题也可以用Venn图的方法帮助理解.76.{1,8}【解析】由集合的交运算可得{1,8}.77.1【解析】由题意,显然,此时,满足题意,故.78.5【解析】,5个元素.79.{1,2,3}【解析】,()=.80.【解析】.81.【解析】,, .82.6【解析】因为①正确,②也正确,所以只有①正确是不可能的;若只有②正确,①③④都不正确,则符合条件的有序数组为,;若只有③正确,①②④都不正确,则符合条件的有序数组为;若只有④正确,①②③都不正确,则符合条件的有序数组为,,.综上符合条件的有序数组的个数是6.83.【解析】=.84.【解析】(1)5 根据的定义,可知;(2)此时,是个奇数,所以可以判断所求集中必含元素,又均大于211,故所求子集不含,然后根据(=1,2,7)的值易推导出所求子集为.85.1【解析】考查集合的运算推理.3,,.感谢您的阅读!。
文科数学2010-2019高考真题分类训练专题四三角函数与解三角形第十二讲解三角形

专题四 三角函数与解三角形第十二讲 解三角形2019年1. (全国Ⅱ文15)ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________.2.(2019全国Ⅰ文11)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .3(Ⅰ)求b ,c 的值; (Ⅱ)求sin (B +C )的值.4.(2019全国三文18)ABC △的内角A 、B 、C 的对边分别为a 、b 、c ,已知sinsin 2A Ca b A +=. (1)求B ;(2)若ABC △为锐角三角形,且c =1,求ABC △面积的取值范围.5.(2019天津文16)在ABC V 中,内角A B C ,,所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(Ⅰ)求cosB 的值; (Ⅱ)求sin 26B π⎛⎫+⎪⎝⎭的值. 6.(2019江苏15)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 7.(2019浙江14)在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上, 若45BDC ∠=︒,则BD =____,cos ABD ∠=________.2010-2018年一、选择题1.(2018全国卷Ⅱ)在△ABC 中,cos25=C ,1=BC ,5=AC ,则=ABA .BCD .2.(2018全国卷Ⅲ)ABC △的内角A ,B ,C 的对边分别为a ,b ,c .若ABC ∆的面积为2224a b c +-,则C =A .2π B .3π C .4π D .6π 3.(2017新课标Ⅰ)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )B A C C +- 0=,2a =,c =C =A .12π B .6π C .4π D .3π4.(2016全国I )△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知a =2c =,2cos 3A =,则b =A B C .2 D .3 5.(2016全国III )在ΔABC 中,4B π=,BC 边上的高等于13BC ,则sin A =A .310B .10C .5D .106.(2016山东)ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,已知22,2(1sin )b c a b A ==-,则A = A .3π4B .π3C .π4D .π67.(2015广东)设ΑΒC ∆的内角,,A B C 的对边分别为a ,b ,c .若2a =,c =,cos A =,且b c <,则b =A .3 B. C .2 D8.(2014新课标2)钝角三角形ABC 的面积是12,1AB =,BC =AC =A .5 BC .2D .19.(2014重庆)已知ABC ∆的内角A ,B ,C 满足sin 2sin()A A B C +-+=sin()C A B --12+,面积S 满足12S ≤≤,记a ,b ,c 分别为A ,B ,C 所对的边,则下列不等式一定成立的是A .8)(>+c b bc B.()ab a b +> C .126≤≤abc D .1224abc ≤≤ 10.(2014江西)在ABC ∆中,a ,b ,c 分别为内角A ,B ,C 所对的边长,若2c =2()6a b -+,3C π=,则ABC ∆的面积是A .3B .239 C .233 D .33 11.(2014四川)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75o,30o,此时气球的高是60cm ,则河流的宽度BC 等于A .1)m -B .1)mC .1)mD .1)m12.(2013新课标1)已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos A +cos20A =,7a =,6c =,则b =A .10B .9C .8D .513.(2013辽宁)在ABC ∆,内角,,A B C 所对的边长分别为,,a b c .若sin cos a B C +1sin cos 2c B A b =,且a b >,则B ∠=A .6πB .3πC .23πD .56π14.(2013天津)在△ABC 中,,3,4AB BC ABC π∠===则sin BAC ∠=A B C D 15.(2013陕西)设△ABC 的内角A , B , C 所对的边分别为a ,b ,c ,若cos cos sin b C c B a A +=,则△ABC 的形状为A .锐角三角形B .直角三角形C .钝角三角形D .不确定16.(2012广东)在ABC ∆中,若60,45,A B BC ︒︒∠=∠==AC =A .B .CD .217.(2011辽宁)ABC ∆的三个内角A ,B ,C 所对的边分别为a ,b ,c ,2sin sin cos a A B b A +=,则=abA .B .C D18.(2011天津)如图,在△ABC 中,D 是边AC 上的点,且,2AB AD AB ==,2BC BD =,则sin C 的值为CA B C D19.(2010湖南)在ABC ∆中,角,,A B C 所对的边长分别为,,a b c .若120C ∠=o,c =,则A .a b >B .a b <C .a b =D .a 与b 的大小关系不能确定 二、填空题20.(2018全国卷Ⅰ)△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为__.21.(2018浙江)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2b =,60A =o ,则sin B =___________,c =___________.22.(2018北京)若ABC △222)a c b +-,且C ∠为钝角,则B ∠= ;c a的取值范围是 .23.(2018江苏)在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 .24.(2017新课标Ⅱ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos cos b B a C c A =+,则B =25.(2017新课标Ⅲ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .已知60C =o,b =3c =,则A =_______.26.(2017浙江)已知ABC ∆,4AB AC ==,2BC =. 点D 为AB 延长线上一点,2BD =,连结CD ,则BDC ∆的面积是_______,cos BDC ∠=_______.27.(2016全国Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =, 5cos 13C =,1a =,则b =_____.28.(2015北京)在△ABC 中,23,3a b A π==∠=,则B ∠= _________. 29.(2015重庆)设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且2a =,1cos 4C =-,3sin 2sin A B =,则c =________.30.(2015安徽)在ABC ∆中,6=AB ,ο75=∠A ,ο45=∠B ,则=AC .31.(2015福建)若锐角ABC ∆的面积为5AB =,8AC =,则BC 等于 . 32.(2015新课标1)在平面四边形ABCD 中,75A B C ∠=∠=∠=o,2BC =,则AB 的取值范围是_______.33.(2015天津)在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为2b c -=,1cos 4A =-,则a 的值为 .34.(2015湖北)如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30o的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75o的方向上,仰角为30o,则此山的高度CD =m .35.(2014新课标1)如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100BC m =,则山高MN =________m .CNABM36.(2014广东)在ABC ∆中,角C B A ,,所对应的边分别为c b a ,,,已知cos b C +cos 2c B b =,则=ba. 37.(2013安徽)设ABC ∆的内角,,A B C 所对边的长分别为,,a b c .若2b c a +=,则3sin 5sin ,A B =则角C =_____.38.(2013福建)如图ABC ∆中,已知点D 在BC 边上,AD ⊥AC ,22sin BAC ∠=32AB =3AD =,则BD 的长为_______________.C39.(2012安徽)设ABC ∆的内角,,A B C 所对的边为,,a b c ;则下列命题正确的是 .①若2ab c >;则3C π<②若2a b c +>;则3C π<③若333a b c +=;则2C π<④若()2a b c ab +<;则2C π>⑤若22222()2a b c a b +<;则3C π>40.(2012北京)在ABC ∆中,若12,7,cos 4a b c B =+==-,则b = .41.(2011新课标)ABC ∆中,60,B AC =︒=,则AB +2BC 的最大值为____.42.(2011新课标)ABC ∆中,120,7,5B AC AB =︒==,则ABC ∆的面积为_ __. 43.(2010江苏)在锐角三角形ABC ,a ,b ,c 分别为内角A ,B ,C 所对的边长,6cos b a C a b +=,则tan tan tan tan C CA B+=_______.44.(2010山东)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若2a b ==,sin cos B B +=A 的大小为 .三、解答题45.(2018天津)在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c .已知sin cos()6b A a B π=-.(1)求角B 的大小;(2)设2a =,3c =,求b 和sin(2)A B -的值.46.(2017天津)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知sin 4sin a A b B =,222)ac a b c =--.(Ⅰ)求cos A 的值; (Ⅱ)求sin(2)B A -的值.47.(2017山东)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知3b =,6AB AC ⋅=-u u u r u u u r,3ABC S ∆=,求A 和a .48.(2015新课标2)ABC ∆中,D 是BC 上的点,AD 平分∠BAC ,∆ABD 面积是∆ADC 面积的2倍. (Ⅰ)求sin sin BC; (Ⅱ) 若AD =1,DC =22,求BD 和AC 的长. 49.(2015新课标1)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(Ⅰ)若a b =,求cos ;B (Ⅱ)若90B =o ,且2a =,求ABC ∆的面积.50.(2014山东)ABC ∆中,a ,b ,c 分别为内角A ,B ,C 所对的边长.已知3a =,6cos ,2A B A π==+. (I)求b 的值; (II )求ABC ∆的面积.51.(2014安徽)设ABC ∆的内角,,A B C 所对边的长分别是,,a b c ,且3b =,1c =,2A B =.(Ⅰ)求a 的值; (Ⅱ)求sin()4A π+的值.52.(2013新课标1)如图,在ABC ∆中,∠ABC =90°,AB =3,BC =1,P 为△ABC 内一点,∠BPC =90°.(Ⅰ)若PB =12,求P A ; (Ⅱ)若∠APB =150°,求tan ∠PBA .53.(2013新课标2)ABC ∆在内角,,A B C 的对边分别为,,a b c ,已知cos sin a b C c B =+. (Ⅰ)求B ;(Ⅱ)若2b =,求△ABC 面积的最大值.54.(2012安徽)设ABC ∆的内角C B A ,,所对边的长分别为,,,c b a ,且有2sin cos B A =sin cos cos sin A C A C +.(Ⅰ)求角A 的大小;(Ⅱ) 若2b =,1c =,D 为BC 的中点,求AD 的长.55.(2012新课标)已知a 、b 、c 分别为ABC ∆三个内角A 、B 、C 的对边,cos a C +3sin 0a C b c --=.(Ⅰ)求A ;(Ⅱ)若2=a ,ABC ∆的面积为3,求b 、c .56.(2011山东)在ABC ∆中,a ,b ,c 分别为内角A ,B ,C 所对的边长.已知cos 2cos 2cos A C c aB b --=. (I )求sin sin CA的值;(II )若1cos 4B =,2b =,ABC ∆的面积S .57.(2011安徽)在ABC ∆中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a =3,b =2,12cos()0B C ++=,求边BC 上的高.58.(2010陕西)如图,A ,B 是海面上位于东西方向相距()533+海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D 点需要多长时间?59.(2010江苏)某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角∠ABE=α,∠ADE=β.(1)该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,请据此算出H的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使α与β之差较大,可以提高测量精确度。
文科数学2010-2019高考真题分类训练专题二 函数概念与基本初等函数 第三讲函数的概念和性质—后附解析答案

专题二 函数概念与基本初等函数Ⅰ第三讲 函数的概念和性质2019年1.(2019江苏4)函数y =的定义域是 .2. (2019全国Ⅱ文6)设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )= A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+3.(2019北京文14)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白 梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明 对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾 客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.4.(2019北京文3)下列函数中,在区间(0,+∞)上单调递增的是 (A )12y x =(B )y =2x -(C )12log y x =(D )1y x=5.(2019全国Ⅲ文12)设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314) D .f (232-)>f (322-)>f (log 314)2010-2018年一、选择题1.(2018全国卷Ⅰ)设函数2,0()1,0-⎧=⎨>⎩≤x x f x x ,则满足(1)(2)+<f x f x 的x 的取值范围是A .(,1]-∞-B .(0,)+∞C .(1,0)-D .(,0)-∞2.(2018浙江)函数||2sin 2x y x =的图象可能是A .B .C .D .3.(2018全国卷Ⅱ)已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)-=+f x f x .若(1)2=f ,则(1)(2)(3)++f f f (50)++=fA .50-B .0C .2D .504.(2018全国卷Ⅲ)函数422y x x =-++的图像大致为5.(2017新课标Ⅰ)函数sin 21cos xy x=-的部分图像大致为6.(2017新课标Ⅲ)函数2sin 1xy x x=++的部分图像大致为 A . B .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 专题十 概率与统计 第二十八讲 统计初步 2019年 1.(2019全国1文6)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A.8号学生 B.200号学生 C.616号学生 D.815号学生 2.(2019全国II文14)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.
3.(2019全国II文19)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表. y的分组
[0.20,0) [0,0.20) [0.20,0.40) [0.40,0.60) [0.60,0.80)
企业数 2 24 53 14 7
(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例; (2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)
附:748.602. 4.(2019全国III文4)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为 A.0.5 B.0.6 C.0.7 D.0.8 5.(2019全国III文17)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同. 经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图: 2
记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70. (1)求乙离子残留百分比直方图中a,b的值; (2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 6.(2019江苏5)已知一组数据6,7,8,8,9,10,则该组数据的方差是 .
7.(2019北京文17)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付
已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下: 支付金额 支付方式 不大于2 000元 大于2 000元
仅使用A 27人 3人 仅使用B 24人 1人 (Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数; (Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率; (Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(Ⅱ)的结果,能否认为样本仅使用B
的学生中本月支付金额大于2 000元的人数有变化?说明理由. 8.(2019天津文15)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况. (Ⅰ)应从老、中、青员工中分别抽取多少人? 3
(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为,,,,,ABCDEF.享受情况如右表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访. 员工 项目 A B C D E F
子女教育 ○ ○ × ○ × ○ 继续教育 × × ○ × ○ ○ 大病医疗 × × × ○ × × 住房贷款利息 ○ ○ × × ○ ○ 住房租金 × × ○ × × × 赡养老人 ○ ○ × × × ○ (i)试用所给字母列举出所有可能的抽取结果; (ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.
2010-2018年 一、选择题 1.(2018全国卷Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:
则下面结论中不正确的是 A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加了一倍 4
D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 2.(2017新课标Ⅰ)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为1x,2x,…,n
x,下面给出的指标中可以用来评估这种农作物亩
产量稳定程度的是 A.1x,2x,…,nx的平均数 B.1x,2x,…,n
x的标准差
C.1x,2x,…,nx的最大值 D.1x,2x,…,n
x的中位数
3.(2017新课标Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.
根据该折线图,下列结论错误的是 A.月接待游客逐月增加 B.年接待游客量逐年增加 C.各年的月接待游客量高峰期大致在7,8月 D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 4.(2017山东)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为 A.3,5 B.5,5 C.3,7 D.5,7
5.(2016年全国III卷)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均 5
最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是
A.各月的平均最低气温都在0℃以上 B.七月的平均温差比一月的平均温差大 C.三月和十一月的平均最高气温基本相同 D.平均最高气温高于20℃的月份有5个 6.(2016年北京)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊. 学生序号 1 2 3 4 5 6 7 8 9 10 立定跳远(单位:米) 1.96 1.92 1.82 1.80 1.78 1.76 1.74 1.72 1.68 1.60
30秒跳绳(单位:次) 63 a 75 60 63 72 70 a−1 b 65 在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则 A.2号学生进入30秒跳绳决赛 B.5号学生进入30秒跳绳决赛 C.8号学生进入30秒跳绳决赛 D.9号学生进入30秒跳绳决赛 7.(2016年山东)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是 A.56 B.60 C.120 D.140 6
8.(2015新课标2)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的是
A.逐年比较,2008年减少二氧化硫排放量的效果最显著 B.2007年我国治理二氧化硫排放显现成效 C.2006年以来我国二氧化硫年排放量呈减少趋势 D.2006年以来我国二氧化硫年排放量与年份正相关 9.(2015湖北)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为 A.134石 B.169石 C.338石 D.1365石 10.(2015北京)某校老年,中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体情况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为 A.90 B.100 C.180 D.300 类别 人数 老年教师 900 中年教师 1800 青年教师 1600