偶极子 交叉偶极子阵列声波测井

合集下载

偶极子 交叉偶极子阵列声波测井

偶极子 交叉偶极子阵列声波测井

2019/11/16
28
一、声波基础理论概述 二、偶极子及交叉偶极子阵列声波测量原理 三、所提供的基本成果及图件 四、偶极子及交叉偶极子阵列声波地质应用
1、岩石力学参数的计算 2、岩性的识别 3、识别气层 4、判断裂缝发育井段、类型及区域有效性 5、地层各向异性分析 6、地应力参数计算及井眼稳定性分析
五、总结
声波在地层中传播的原理
声波在岩石中传播的体波有两种,即纵波和横波, 面波有斯通利波。纵波也叫 P波,是一种岩石的压缩和膨 胀所产生的波,传播方向于岩石中的质子的震动方向一 致;横波也叫S波,是岩石受剪切力的作用而产生的一种 波,传播方向与岩石中质子的震动方向垂直。声波的传 播速度受岩石机械特性的控制,岩石的机械特性可以用 岩石的密度和弹性力学参数来表示。
偶极子、交叉偶极子阵列声波测井
2019/11/16
1
一、声波基础理论概述 二、偶极子及交叉偶极子阵列声波测量原理 三、所提供的基本成果及图件 四、偶极子及交叉偶极子阵列声波地质应用
1、岩石力学参数的计算 2、岩性的识别 3、识别气层 4、判断裂缝发育井段、类型及区域有效性 5、地层各向异性分析 6、地应力参数计算及井眼稳定性分析
常规全波列声波测井仪的测量原理
常规声波测井仪采 用单极子技术,在快速 地层中可以从波形数据 中提取纵、横、斯通利 波慢度,但在软地层中 只能探测到纵、斯通利 波信号,且仪器稳定性 较差。
利用测井资料中的纵波时差、横波时差、 体积密度、岩性指示曲线(自然伽马等)、 双井径、井斜角等曲线,计算泊松比、杨氏 模量、切变模量、体积弹性模量、体积压缩 系数等岩石力学参数及地层孔隙压力、地层 破裂压力、垂向主应力(岩层上覆压力)、 最大水平主应力、最小水平主应力、最大水 平主应力方向等应力参数。测井资料中的横 波时差是计算岩石力学参数、应力参数及地 层各向异性的重要基础资料,因此准确获取 横波资料致关重要。

交叉多极子阵列声波测井资料在页岩气储层评价中的应用

交叉多极子阵列声波测井资料在页岩气储层评价中的应用

交叉多极子阵列声波测井资料在页岩气储层评价中的应用摘要:交叉偶极子声波克服了普通单极在软地层中无法测量横波的弊端,能提供地层纵波、横波和斯通利波的丰富信息。

本文总结了多极子阵列声波在页岩气储层中的应用,尤其是在岩性识别、气层判别及地层各向异性分析方面具有良好的应用效果。

关键词:阵列声波;页岩气;储层评价;各向异性1 引言交叉多极子阵列声波克服普通单极在软地层中无法测量横波的弊端,能精确测量地层的各种声波参数,尤其是对慢速地层的测量。

交叉偶极阵列声波(XMAC–II)是贝克休斯公司推出的声波测井仪器, 属于新一代声波成像测井技术。

它将一个单极阵列和一个偶极阵列组合在一起,具有许多优点:偶极子频率响应低,有助于测量具有大井眼的慢速地层;模数转换器的应用, 使动态范围大大增加;一次下井可以同时采集交叉偶极、单极全波列、单极DT 等资料;应用数字DSP滤波, 提高了数据质量。

多极子阵列声波资料在页岩气储层流体性质及岩石力学、地层各向异性分析中至关重要。

2 XMAC-Ⅱ测井资料的应用2.1 识别岩性和气层不同岩性的纵波和横波时差值具有一定的分布范围,利用它们的比值特性可以定性地识别岩性。

如果是两种岩性混合组成的岩层,横波与纵波的时差比值与两种岩性成分的含量有关,借此可以求出这两种岩性的百分含量。

纵波速度对气体和轻质油敏感性强,少量的气体或轻质油会使纵波速度明显降低。

所以当岩石孔隙内充满石油和天然气时,岩层的纵波速度比含水的纵波速度要小,而对横波速度影响很小,只是使横波速度略微增大。

所以在岩石孔隙度一定的条件下,随着含气饱和度的增加,纵横波速度比值迅速下降,以此可识别页岩气层。

泊松比是纵横波速度比的函数,当含气增加时,纵波速度降低,横波速度增加,因此纵横波速度比会有大幅度降低,从而导致泊松比的变化比较明显,含气饱和度越高,其值越低。

杨氏模量随孔隙度增加而减小,气饱和与水饱和的岩石杨氏模量虽然有一些重叠,但气饱和岩石的杨氏模量是一贯而又显著地低,而且,对低孔隙度的岩石,加少量水,杨氏模量就增大。

交叉偶极子声波测井在坪北油田的裂缝识别

交叉偶极子声波测井在坪北油田的裂缝识别

交叉偶极子声波测井在坪北油田长9储层中的裂缝识别何浩然万平杰房延亮(江汉油田测录井工程公司)摘要:坪北油田长9储层较为致密,裂缝较为发育,是其主要储集空间。

本文阐述了交叉偶极子声波测井原理和裂缝识别方法,指明了长9裂缝走向,为下一步水平井钻探提供了宝贵的资料。

关键词:交叉偶极子地应力横波裂缝横波分裂斯通利波1、偶极子声波测井仪简介目前,较先进的多极子声波测井仪有斯伦贝谢的DSI偶极子横波成像仪、贝克休斯的XMAC多极阵列声波成像仪和哈里伯顿第三代Wavesonic正交偶极声波测井仪以及斯伦贝谢声波全井眼扫描仪Sonic Scanner。

哈里伯顿第三代Wavesonic正交偶极声波测井仪由1个单极发射器、2个偶极发射器和8个接收器阵列组成(图3),主要用来评价地层的岩石物理机械特性(杨氏模量、泊松比、剪切模量、体积模量、裂缝指数等)、渗透性和各向异性。

2、坪北油田基本地质概况坪北油田位于鄂尔多斯盆地伊陕斜坡,属于构造稳定区域,地层倾角约1°。

坪北油田目前主要开发中生界三叠系延长组,延长组主要特征为河流三角洲-湖泊沉积体系,向内变为浅-深湖湘,向外变为河流相。

按沉积旋回将延长组从上到下划分为10个油层组,长10~长7期为湖盆形成至发展全盛阶段;长6~长4+5期湖盆持续稳定下降阶段;长3~长1湖盆收缩至消亡阶段。

鄂尔多斯盆地构造主要受印支运动影响,构造应力场最大主应力方向主要为北南向,但坪北油田现今最大主应力方向约为75°北东东向(图1),这主要是受后期燕山运动构造影响,这种应力场影响了三叠系裂缝的发育(图2)。

3、交叉偶极子声波裂缝识别方法3.1 正交偶极子声波测井原理单极子源一般是圆管型的换能器以轴对称方式沿径向振动(膨胀或缩小),单极子声源在井孔中激发起以地层纵波为首波、横波和斯通利波的全波列。

但在软地层井眼中单极子声源只能激发起纵波和斯通利波而不能激发起地层横波模式。

偶极子阵列声波测井仪最显著的不同就在于它所使用的声波探头的振动方式与以往的声波测井仪器的探头的振动方式不同,因而它在井孔中激发的声波模式与对称声源激发的声场不同。

XMAC测井技术处理解释与应用

XMAC测井技术处理解释与应用

7、套管井中评价水力压裂裂缝
过套管X-MAC各向异性分析综合图
1582-1610m
1583-1601m
4、岩石机械特性和裂缝应力分析模块
岩石机械特性计算是利用纵波时差、横波时差、岩 性密度、自然伽玛等曲线计算弹性模量、井周应力、岩
石破裂压力等20多个参数,反映岩石抗压缩、抗剪 切、抗张裂的能力。可进行裂缝识别、泥浆比重选择、
地层破裂压力预测等方面应用。 三方面研究: 岩石强度、地应力、岩石破裂机理
全波波形的裂缝识别
38
横波各向异性识别高角度裂缝实例
高角度裂缝引起的各向异性
2、裂缝孔洞评价 低角度裂缝引起的各向异性
2、裂缝孔洞评价
全波能量衰减识别裂缝实例2Biblioteka 裂缝孔洞评价斯通利波的裂缝识别
3 地层各向异性分析
快慢横波示意图
XReceiver
Fast
Slow
Y Receiver
X Source q
一、测井仪器简介 二、数据处理
三、地质应用
XMAC 测井原理
仪 器 特 点:
8个独立的偶极接收器阵列 2个单极子声源 2个垂直摆放的偶极声源 每个深度点可记录12条单极源波形 (4个普通声波时差波形,8个阵列 全波波形);32条偶极源波形。
8 Receiver Array
Isolator
Transmitter Section
偶极发射器 X
单极发射器 T1 偶极发射器 Y 单极发射器 T 2
Y接收器 Y发射源
X接收器 X发射源
接收器
X
Y
X 发射器
Y
接收器
发射器
XY
X
XX XY
Y

交叉偶极阵列声波测井在海拉尔油田的应用

交叉偶极阵列声波测井在海拉尔油田的应用
每个接 收器记录 4 偶极 源波形 ,因此每个 深度记 个
油 田的油 气储 层评价 中,提 高 了该地 区的测
录3 2个偶 极 源 波 形 ,具 有 丰富 的阵 列 波形 数 据 ,
井解释 符 合 率 ,解 决 了有 效 裂 缝 和 C :气 O
体识 别等疑 难 问题 ,为海拉 尔油 田勘探 开发
G = (, 一 、慢) V慢 、快 , / () 1
到声 波全 波列 ( 波 、横 波 、斯通 利波 等 )信 息 , 纵
对单 极波 列 数 据 进 行 数 字 处理 ,即 可 获得 地 层 纵
波 、地层 横波和斯 通利 波时差等信 息 。单极声 波的
特 点是发 射声脉 冲的穿透 能力强 ,探测深度 深 ,信 号 衰减小 ,测量信 号强且 受井眼环 境影响小 。偶极
维普资讯
4 4
国 外 油 田工 程 第 2 卷 第 9期 (0 7 9 3 20 . )
交叉 偶 极 阵 列声 波测 井在 海 拉尔 油 田的 应 用
俞军 ( 中国地质大学 ( 北京) 、大庆石油管理局测井公司)
黄 宝华 ( 大庆 石油管理局测井公司)
呼舒 凹陷 、东 明凹陷等 。海拉 尔地 的储层 主要是 侏 罗系地 层 ,以伊敏组 、大磨拐 河组 、南 屯组 、铜
钵 庙组 为主 。该 地 区的储 层岩性 较复杂 ,长期 以来
很多地质 问题得 不到解 决 ,尤其是 裂 缝储层 、C 。 O
气层 的识 别 问题 ,直接 影响该地 区的勘探 效益 。通
摘 要 本 文介 绍 了交 叉偶极 阵列声 波测
井 技 术 的 原 理 及 其 特 点 , 研 究 了测 井 资 料 处 理 及 解释 方 法 ,并 将 研 究 成 果 应 用 到 海 拉 尔

偶极子声波测井原理

偶极子声波测井原理

偶极子声波测井原理下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!Download tips: This document is carefully compiled by theeditor. l hope that after you downloadthem,they can help yousolve practical problems. The document can be customized andmodified afterdownloading,please adjust and use it according toactual needs, thank you!偶极子声波测井原理:①声波激发:在钻孔中,使用偶极子声波测井仪发射高频声波。

这些声波包括具有特定极化的纵波(P波)、横波(S波)以及转换波等。

②极化接收:测井仪配备多个正交排列的偶极子接收器,能够分别接收沿X 轴和Y轴传播的声波信号。

这包括线性轴组分(X to X, Y to Y)和交叉轴组分(X to Y, Y to X)。

③地层响应分析:不同类型的声波在穿过地层时,其速度和衰减受地层岩石性质及各向异性影响。

偶极子测井能捕捉到这些差异,特别是对地层的横向异性和裂缝分布敏感。

④数据处理:收集到的声波到达时间、幅度及波形数据经过复杂处理,用于计算岩石力学参数,如弹性模量、泊松比等。

⑤地质解释:通过分析处理后的数据,可以识别岩性、评估地层各向异性程度及方向,辅助判断裂缝发育情况、流体饱和度及岩石应力状态。

⑥成果应用:最终,这些信息应用于油气藏开发的多个环节,如储层描述、油水界面识别、地质建模及生产优化等。

偶极子声波测井技术因其对地层特性高度敏感性,在复杂地质结构分析中发挥着重要作用。

利用偶极子声波测井进行储层可压性评价

利用偶极子声波测井进行储层可压性评价

利用偶极子声波测井进行储层可压性评价摘要:随着油气田开发进度的深入,储层压裂效果直接影响到后期储层产量及增产措施。

本文应用气田应用较多的偶极子声波测井,构建一套储层可压性评价方法,在评价压裂效果的同时,为后期压裂提供指导参数,为油气公司的工程压裂施工提供测井技术支撑。

关键词:偶极横波;各向异性;裂缝检测;压裂鄂尔多斯盆地上古生界裂缝性气藏不断取得突破,但是每口井产能差较大,而且几乎每口井都需要压裂改造,因此有效的压裂检测技术,不仅能评价压裂效果好坏,还能有效评价压裂规模与产能之间的关系,指导后期压裂改造方案。

本文总结利用压后偶极子声波测井进行压裂改造效果评价效果,在实践中取得了显著效果。

由于偶极子声波测井不仅可以获得地层纵波,而且可以获得地层发射回来的横波及斯通利波,从而拓展了声波测井的应用范围。

在构造应力不均衡或裂缝性地层中,横波在传播过程中通常分离成快横波、慢横波,且显示出方位各向异性,沿裂缝走向或最大主应力方向上传播速度比垂直于裂缝走向或最小主应力方向上传播的横波速度要快,这就称之为地层横波速度的各向异性。

1 偶极子声波压裂检测原理偶极技术采用偶极声波源,当偶极子声源振动时,很像一个活塞,能使井壁一侧的压力增加,而另一侧压力减小,使井壁产生扰动,形成轻微的扰曲,这种由井眼扰曲运动产生的剪切扰曲波具有频散特性,在适当的低频范围内该扰曲波的传播速度趋近于横波,其传播方向与井轴平行。

交互式多极子阵列声波仪是将一个单极阵列和一个偶极阵列交叉组合在一起,两个阵列配置是完全独立的,各自具有不同的传感器。

一般将裂缝按地质成因、裂缝开度、裂缝力学成因等来进行划分。

根据裂缝成因可将裂缝分为两种,即地应力造成的天然裂缝和压裂时形成的人工裂缝。

通过实验可以证明,由压裂造成的人工裂缝产生的快慢横波的频散曲线平行,而地应力造成的天然裂缝产生的快慢横波的频散曲线交叉。

因此可以根据横波频散曲线的特征,区分地层不同裂缝的成因。

5700测井技术介绍—阵列声波测井原理及地质应用

5700测井技术介绍—阵列声波测井原理及地质应用

5700测井技术介绍——阵列声波测井原理及地质应用目录一、前言 (2)二、阵列声波测井原理 (2)1、多极子阵列声波仪器的测量原理 (2)2、交叉偶极子阵列声波仪器的测量原理 (3)3、阵列声波的测量方式 (4)4、阵列声波测井波形分析 (4)三、阵列声波的处理 (6)1、提取纵波、横波及斯通利波 (6)2、数据处理STC算法 (6)3、全波列分析处理程序 (7)四、阵列声波的基本地质应用 (8)1、利用纵波、横波及斯通利波识别裂缝 (8)2、鉴别岩性和识别气层 (9)3、在计算岩石机械特性中的应用 (10)4、压裂施工分析 (11)5、利用时滞频移识别裂缝带 (13)6、判断地层各向异性 (14)7、计算地层应力和确定应力方位 (16)五、总结及建议 (17)一、前言阵列声波仪器能够测量地层的纵波、横波、斯通利波,通过一定的数学计算方法便能提取这些波的首波传播时间,计算频散特性,从而分析出岩石的声学特性,再结合密度、泥质含量、孔隙度等曲线能够计算地层弹性力学参数、机械特性参数、泥浆参数、地层渗透率等参数,并且能够计算各向异性地层的各向异性大小和方位。

利用这些参数能够评价井眼的稳定性,评价裂缝的发育带,确定应力大小及方位,为压裂施工提供压力参数,为钻井泥浆的配制提供泥浆参数,并能判断岩石裂缝的有效性。

由于这些特点,目前阵列声波测井已得到了广泛的应用。

尤其在解决复杂的地质问题,为油田增产、增效服务方面,起到了非常重要的作用。

二、阵列声波测井原理1、多极子阵列声波仪器的测量原理多极子阵列声波测井仪器(MAC)将单极子阵列和偶极子阵列进行有效地组合,两个阵列的配置是完全独立的(如图2-1)。

该仪器的声系包括1个单极子声系和1个偶极子声系。

单极子声系包括2个单极子发射换能器T1、T2和8个接收换能器,发射换能器带宽为2KHz-15KHz,中心频率为8KHz,可以激发地层纵波、斯通利波,在地层中激发转换横波。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

石灰岩:
47.6
石 英:
52.9
岩 盐:
66.6
套 管:
57.0
饱和原生水的孔隙岩石:
材料
时 差 (us/ft )
白云岩(孔隙度 5-20% )
50-66.6
石灰岩(孔隙度 5-20% )
54-76.9
砂 岩(孔隙度 5-20% )
62.ቤተ መጻሕፍቲ ባይዱ-86.9
砂岩(未固结)孔隙度 20-35% 86.9-111.1
1、岩石力学参数的计算 2、岩性的识别 3、识别气层 4、判断裂缝发育井段、类型及区域有效性 5、地层各向异性分析 6、地应力参数计算及井眼稳定性分析
五、总结
偶极声波测井仪的测量原理
偶极技术采用偶极声 波源,当偶极子声源振动 时,很像一个活塞,能使 井壁一侧的压力增加,而 另一侧压力减小,使井壁 产生扰动,形成轻微的扰 曲,这种由井眼扰曲运动 产生的剪切扰曲波具有频 散特性,在适当的低频范 围内该扰曲波的传播速度 趋近于横波,其传播方向 与井轴平行。
MAC、XMAC仪器是目前国际上非常先进的 声波测井仪,由于声波换能器的响应频带较 宽,低频响应更好,在井下实现数字化,信 号动态范围更大,因此记录的波形更完整, 更有利于获得准确的纵波、横波、斯通利波 的时差、幅度等参数,特别是 XMAC仪器在分 析地层速度各向异性方面具有独特的优势。
一、声波基础理论概述 二、偶极子及交叉偶极子阵列声波测量原理 三、所提供的基本成果及图件 四、偶极子及交叉偶极子阵列声波地质应用
偶极子、交叉偶极子阵列声波测井
2019/11/16
1
一、声波基础理论概述 二、偶极子及交叉偶极子阵列声波测量原理 三、所提供的基本成果及图件 四、偶极子及交叉偶极子阵列声波地质应用
1、岩石力学参数的计算 2、岩性的识别 3、识别气层 4、判断裂缝发育井段、类型及区域有效性 5、地层各向异性分析 6、地应力参数计算及井眼稳定性分析
常规全波列声波测井仪的测量原理
常规声波测井仪采 用单极子技术,在快速 地层中可以从波形数据 中提取纵、横、斯通利 波慢度,但在软地层中 只能探测到纵、斯通利 波信号,且仪器稳定性 较差。
利用测井资料中的纵波时差、横波时差、 体积密度、岩性指示曲线(自然伽马等)、 双井径、井斜角等曲线,计算泊松比、杨氏 模量、切变模量、体积弹性模量、体积压缩 系数等岩石力学参数及地层孔隙压力、地层 破裂压力、垂向主应力(岩层上覆压力)、 最大水平主应力、最小水平主应力、最大水 平主应力方向等应力参数。测井资料中的横 波时差是计算岩石力学参数、应力参数及地 层各向异性的重要基础资料,因此准确获取 横波资料致关重要。
每个深度点记录 12个单极源波形,其中 8 个为阵列全波波形(TFWV10),4个为记录普 通声波时差的全波波形( TNWV10)。每个深 度点记录 32个偶极源波形,即每个接收器记 录XX、XY、YX、YY 4个偶极源波形, X、Y表 示不同方位的发射器或接收器的方向,例如 XY表示X方向发射器发射, Y方向接收器接收; YY则表示Y方向发射器发射 Y方向接收器接收。 8个接收器共记录 32个偶极源波形( TXXWV10、 TXYWV10、TYXWV10、TYYWV10)。
Vs=(μ/ρ)0.5
对于大多数岩石, Vs比Vp小1.6至2.4倍
2019/11/16
8
软地层中声波的传播
由于软的固结松散的岩石 具有较小的弹性硬度,使 得软地层中声速相对较慢。 因此在硬地层中可以获得 横波和纵波时差,然而在 慢速的固结较差的地层中, 由于横波速度小于井内流 体声速,横波首波与井中 钻井液一起传播,不能产 生临界折射的滑行横波, 使得单极声波测井无法测 出横波的首波。
斯通利波
斯通利波在泥浆中产生,通过仪器外壳和 井壁间的泥浆传播,斯通利波对井壁的刚性及 地层的渗透性非常敏感。斯通利波的能量是以 低频及低衰减的形式传播。其速度低于泥浆的 声速。
2019/11/16
10
硬地层中声波测井仪探测到的波形分析
纵波
斯通利波
横波
软地层中声波测井仪探测到的波形分析
纵波
斯通利波
在被流体饱和的岩石中,其机械特性取决于所含流
体的类型和含量、岩石颗粒的构成以及颗粒间的胶结程
度。软的松散的岩石具有较小弹性硬度,因此声波在软
地层中的传播速度比在硬地层中的传播速度慢。
2019/11/16
3


纵波,有时称为“压缩波”,是一种典型的纵向波。 纵波按“压缩模式”传播,即波的传播方向与质点位移 方向平行。气体、液体及固体都能反抗压缩,因此,纵 波能通过气体、液体及固体传播。纵波的速度为:
2019/11/16
18
2019/11/16
19
ECLIPS—5700 测井系统中的交互式多极 子阵列声波仪( XMAC-II)是将一个单极阵列 和一个偶极阵列交叉组合在一起,两个阵列 配置是完全独立的,各自具有不同的传感器。 单极阵列包括两个单极声源和 8个接收器。声 源发射器发射的声波是全方位的,既是柱状 对称的,中心频率为 8kHz。偶极阵列是由两 个交叉摆放(相差 900)的偶极声源及 8个交 叉式偶极接收器组成。接收器间距为 0.5英尺。
页岩
58.8-143
液体及气体:
材料
时 差 (us/ft )
水(淡水): 水(含NaCl 100,000mg/L ) 水(含NaCl 200,000mg/L ) 石 油: 泥 浆: 氢: 甲 烷:
208 192.3 181.8
238.1 189 235.3 666.6
横波
横波,有时称“畸变波”,是一种典型的横向波, 横波按“剪切模式”传播,即波的传播方向垂直于质 点的位移方向。固体由于其刚性,趋向反抗剪切,即 这种固体的力能引起一个物体的两个连续部分彼此相 对的滑动。因此,横波能通过固体传播。液体及气体 不具有刚性(若其粘滞性可以忽略),而且不能反抗 剪切,因此横波不能通过液体及固体传播。横波的速 度为:
Vp={(K+1.33 μ)/ρ}0.5
ρ:传播波的物质的密度
K :体积模量
μ:剪切模量
2019/11/16
4
没有孔隙的固体:
材 料 时 差(us/ft )
硬石膏:
50
方解石:
49.7
水 泥 (固结): 83.3
白云石:
43.5
钢:
50
花岗岩:
50.7
材 料 时 差(us/ft )
石 膏:
52.6
五、总结
声波在地层中传播的原理
声波在岩石中传播的体波有两种,即纵波和横波, 面波有斯通利波。纵波也叫 P波,是一种岩石的压缩和膨 胀所产生的波,传播方向于岩石中的质子的震动方向一 致;横波也叫S波,是岩石受剪切力的作用而产生的一种 波,传播方向与岩石中质子的震动方向垂直。声波的传 播速度受岩石机械特性的控制,岩石的机械特性可以用 岩石的密度和弹性力学参数来表示。
相关文档
最新文档