开关电源相关名词解释

合集下载

开关电源工作原理

开关电源工作原理

开关电源工作原理开关电源是一种常见的电源供应装置,其工作原理是将输入电压通过开关器件进行高频开关,经过变压、整流、滤波等电路处理后,得到稳定的输出电压。

开关电源具有高效率、小体积、重量轻等优点,广泛应用于各种电子设备中。

一、开关电源的基本构成开关电源由输入端、输出端和控制电路组成。

1. 输入端:输入端主要包括输入电源和输入电路。

输入电源为交流电源,输入电路包括输入滤波电路和整流电路。

其中,输入滤波电路用于滤除输入电源中的杂波和干扰,保证输入电源的稳定性;整流电路将交流电源转换为直流电源。

2. 输出端:输出端主要包括输出电路和输出滤波电路。

输出电路通过开关器件进行高频开关,将整流后的直流电源转换为高频脉冲信号,经过输出滤波电路后得到稳定的直流输出电压。

3. 控制电路:控制电路主要包括开关控制电路和保护电路。

开关控制电路用于控制开关器件的开关频率和占空比,保证输出电压的稳定性和精度;保护电路用于监测输入输出电流电压,当超过设定值时进行过载保护。

二、开关电源的工作原理开关电源的工作原理可分为两个过程:变频过程和整流滤波过程。

1. 变频过程:变频过程即将输入电压通过开关器件进行高频开关,形成高频脉冲信号。

开关器件通常采用开关管或晶闸管进行控制,高频开关频率通常在几十kHz至几MHz之间。

当开关器件导通时,输入电源的能量通过开关管传导至输出端,形成电流;当开关器件断开时,输出端的电感储能元件将电能通过二极管进行放电,形成负电流。

通过不断的开关导通-断开操作,输入电压的能量被转换为高频脉冲信号。

2. 整流滤波过程:经过变频过程的高频脉冲信号需要通过变压、整流和滤波电路进行进一步处理。

首先,高频脉冲信号经过变压电路进行降压变换,得到适合输出电压的信号。

然后,经过整流电路将高频信号转换为直流信号,通过二极管进行单向导通。

最后,通过滤波电路对直流信号进行滤波,去除残余脉动和高频噪声,得到稳定的输出电压。

三、开关电源的工作模式开关电源的工作模式主要有两种:连续导通模式和断续导通模式。

开关电源的工作原理与接法

开关电源的工作原理与接法

开关电源的工作原理与接法开关电源(Switching power supply)是一种将电能从一种形式转换为另一种形式的电源。

它通过高频开关管将输入电能按一定的方式转化为高频交流电能,再经过变压器、整流电路和滤波电路等部分,最终得到所需要的输出电能。

开关电源因其高效率、小体积和广泛适用性而得到广泛应用。

开关电源的工作原理可以分为四个主要步骤:能量存储、开关和控制、能量释放和滤波。

能量存储是指将输入电能转化为磁能或电能,以便在输出端提供所需的电能。

这一步骤主要是通过变压器完成的。

输入电能先经过整流电路变成直流电压,再通过一个变压器将其转换为所需的电压值。

变压器通过磁耦合作用来实现高效率的能量转换。

开关和控制是指通过高频开关管控制输入电能的通断,从而实现对输出电能的调节。

开关管的通断状态由控制电路控制,控制电路根据输出电能的需求来调整开关管的工作状态。

当开关管处于导通状态时,输入电能通过变压器传输到输出端;当开关管处于断开状态时,输入电能被切断,电感储能。

能量释放是指当开关管切断时,电感储能的能量会被释放出来,并经过滤波电路转换为平滑的直流电压。

当开关管切断时,电感储能的磁场崩溃,将能量反馈到输出端。

此时,由于输出负载的存在,电感储能的能量会被输出端吸收。

通过合理选择电感元件和电容元件,可以实现对噪音和纹波的有效滤除。

滤波是指通过选择合适的滤波元件,将输出端的脉动或纹波进行滤波,使得输出电能更加平稳稳定。

滤波电路通常由电感和电容组成。

电感元件用于滤除高频噪音,而电容元件则用于平滑输出电压。

通过合理选择滤波元件的参数,可以减小输出端的纹波和噪音,提高输出电能的质量。

除了以上四个主要步骤外,开关电源还包括其他辅助电路,如输入电压的稳压保护电路、过压保护电路、过流保护电路等。

这些保护电路能够保证开关电源在异常情况下能够及时停止工作,保护其自身和被供电设备的安全。

开关电源的接法主要涉及输入端和输出端的连接方式。

开关电源入门必读开关电源工作原理超详细解析

开关电源入门必读开关电源工作原理超详细解析

开关电源入门必读开关电源工作原理超详细解析开关电源是一种将直流电源转换为可变直流电压输出的电源装置。

它通过开关管的通断控制,以高频脉冲方式调节输出电压,能够实现高效、稳定、可靠的电源转换。

本文将详细解析开关电源的工作原理。

开关电源由以下几个基本组成部分组成:输入滤波电路、整流电路、能量存储元件、控制电路和输出电路。

输入滤波电路的作用是滤除输入电源中的高频噪声和干扰,确保输入电压稳定。

它一般由电容、电感和绕组构成。

输入电压经过滤波电路后,接入整流电路。

整流电路的作用是将交流电转换为脉冲直流电。

常用的整流电路有单相桥式整流电路和三相桥式整流电路。

整流电路通过整流管将输入的交流电转换为直流电,并通过电容滤波电路将脉冲形式的直流电转换为平滑的直流电压。

能量存储元件一般是电感和电容。

电感能存储电能,电容能存储电荷。

在开关电源中,电感和电容组成的电容滤波电路起到储存能量的作用。

它们能够在负载电流突然增加时,释放存储的能量,从而保持输出电压的稳定性。

控制电路是开关电源的核心部分,其中包括开关管的控制电路和反馈电路。

开关管的控制电路负责控制开关管的通断,从而改变输出电压的大小。

反馈电路用于检测输出电压的实际值与设定值之间的差异,并向控制电路提供反馈信号,用于调整开关管的通断状态。

开关电源的输出电压由开关管通断的频率和占空比决定。

开关管的通断由控制电路控制,控制信号通常由脉冲宽度调制(PWM)产生。

PWM信号通过改变脉冲的宽度和间隔,调整开关管的通断时间,从而改变输出电压的大小。

开关电源的优点是高效率、稳定性好和体积小。

相比传统的线性电源,开关电源的转换效率更高,可以达到90%以上。

此外,开关电源的输出电压稳定性好,能够在负载变化较大的情况下保持输出电压的稳定。

由于使用高频脉冲调节输出电压,在相同输出功率的情况下,开关电源体积更小。

总之,开关电源是一种高效、稳定、可靠的电源装置。

它通过开关管的通断控制,以高频脉冲方式调节输出电压,实现电源转换。

开关电源工作原理解析

开关电源工作原理解析

开关电源工作原理解析开关电源是一种利用开关器件(如MOS管、IGBT等)周期性开关和关闭的方式,将输入电源的直流电压转换为需要的输出电压的电源。

开关电源具有转换效率高、尺寸小、重量轻、可靠性高等优点,在电子设备中得到了广泛应用。

开关电源的基本工作原理如下:首先,输入电源的交流电压经过整流得到直流电压,然后经过滤波电路得到稳定的直流电压。

这个直流电压被输入到开关电源的DC/DC变换器中,由开关器件进行开关操作,将直流电压转换成需要的输出电压。

最后,输出电压经过滤波电路得到稳定的输出直流电压。

开关电源的核心是开关器件,其中常用的开关器件有MOS管、IGBT等。

开关器件分为开关周期内导通和截止两个状态,通过高频开关操作改变开关器件的导通时间和截止时间,即可以控制输出电压的大小和稳定性。

开关电源分为两个主要工作状态:开关器件导通状态和开关器件截止状态。

在导通状态下,开关器件内部的电源电压与输入电源电压相等,此时开关器件开启,通过输出电感的电流逐渐上升,同时输出电容释放能量,为输出电路提供电源电压。

在截止状态下,开关器件内部的电源电压为零,此时开关器件关闭,输出电感上的电流逐渐下降,同时输出电容储存能量,为输出电路提供电源电压。

在实际开关电源中,还有一些辅助电路来提高整个系统的性能。

常见的辅助电路包括输入滤波电路、输出滤波电路、稳压电路、保护电路等。

输入滤波电路用于消除输入电源的干扰信号,保证输入电压的稳定性和纹波小;输出滤波电路用于平滑输出电压,提供稳定的输出电源;稳压电路用于保持输出电压的稳定性,提高系统的稳定性和可靠性;保护电路用于保护开关电源和被供电设备,如过载保护、短路保护等。

开关电源的优点主要体现在高效率、稳定性好、尺寸小等方面。

开关电源通过高频开关操作,可以实现高转换效率,这是由于开关器件导通时的电压损耗小,截止时的电流损耗小,同时还减少了电路中的热源。

在输出电压稳定性方面,开关电源具有较高的稳定性,能够较好地适应负载的变化,并通过反馈控制保持稳定输出。

高频开关电源详细介绍

高频开关电源详细介绍

高频开关电源详细介绍高频开关电源(High-Frequency Switching Power Supply)是一种广泛应用于电子设备中的电源系统。

相比传统的线性电源,高频开关电源具有高效率、小体积、轻重量和稳定的电压输出等优点。

本文将详细介绍高频开关电源的工作原理、主要组成部分以及应用领域。

高频开关电源的工作原理如下:当输入电压接通时,由交流电源经过整流和滤波后,经过开关器件进行高频开关,然后经过变压器变换电压,之后经过滤波、稳压和反馈电路调节后输出稳定的直流电压。

整个过程中,开关器件在开关状态下,能以更高的频率进行开关操作,以提高转换效率和减小体积。

高频开关电源的主要组成部分包括输入端、整流滤波器、开关器件、变压器、输出电路以及保护电路等。

输入端主要接收交流电源,并通过整流滤波器将其转换为直流电压。

开关器件是高频开关电源的核心部分,负责快速开关操作,常见的开关器件包括MOSFET(金属氧化物半导体场效应管)和IGBT(绝缘栅双极型晶体管)等。

变压器则用于将输入电压变换为合适的电压,并通过输出电路将其稳定输出。

保护电路主要用于确保电源在工作过程中的安全性和稳定性,包括过载保护、短路保护和过温保护等。

高频开关电源具有较高的转换效率,一般可以达到85%以上,而传统的线性电源则只有60%左右的效率。

这是因为在高频开关电源中,开关器件可以迅速地通过开关操作来控制电源的输出,并通过反馈控制电路来实现稳定的电压输出,大大提高了能量转换的效率。

由于高频开关电源具有高效率的特点,可以减少电源损耗,降低能源消耗,因此在现代电子设备中得到了广泛应用。

高频开关电源的应用领域十分广泛,例如计算机、通讯设备、工业自动化设备以及医疗仪器等。

在计算机中,高频开关电源被广泛应用于各种电子设备,如主机、显示器和服务器等。

通讯设备方面,高频开关电源可以为手机、路由器和网络交换机等提供稳定的电源。

在工业自动化设备中,高频开关电源可以为机器人、PLC(可编程逻辑控制器)以及传感器等提供经济高效的电源解决方案。

《开关电源培训》课件

《开关电源培训》课件

02
开关电源的工作原理
开关电源的基本组成
开关管
控制电源的通断,实现电能的 高频开关。
输出电路
用于输出稳定的直流电,通常 包括滤波和稳压电路。
输入电路
用于接收外部输入的交流电, 并进行滤波和整流,转换为直 流电。
变压器
实现电压的变换和隔离,确保 输出电压与输入电压无关。
控制电路
监测输出电压和电流,根据需 要进行调整,确保输出稳定。
过压保护等。
温升测试
在规定条件下测量开关 电源的工作温度,评估
散热性能。
开关电源的故障诊断
故障现象
描述故障表现,如无输出、输出电压 异常等。
故障原因
分析可能导致故障的各种因素,如元 件损坏、电路设计缺陷等。
诊断方法
介绍常用的故障诊断工具和步骤,如 万用表、示波器等的使用,以及逐一 排查、替换元件等方法。
开关电源的优化方法
01
拓扑优化
根据实际需求选择合适的电路 拓扑结构,如降压、升压、反 激等,提高电源的转换效率和
稳定性。
02
元件选择与参数调整
选用高质量的电子元件,合理 设置元件参数,减小能量损失
和热损耗。
03
控制策略优化
采用先进的控制算法和技术, 如PID控制、模糊控制等,提 高电源的动态响应和稳态精度
《开关电源培训》课件
目录
• 开关电源概述 • 开关电源的工作原理 • 开关电源的设计与优化 • 开关电源的测试与维护 • 开关电源的安全与环保 • 开关电源的实际应用案例
01
开关电源概述
开关电源的定义与特点
01
总结词
02
详细描述
开关电源是一种将电能进行转换的设备,通过控制开关管的工作状态 实现电压和电流的调节。

开关电源的基本组成

开关电源的基本组成

开关电源的基本组成开关电源是一种将交流电转换成直流电的电源装置。

它由多个基本组成部分组成,包括变压器、整流器、滤波器、稳压器和保护电路。

1. 变压器:开关电源的变压器主要用于将输入的交流电转换为所需的电压。

它由铁芯和线圈组成,通过磁感应原理实现电压的转换。

变压器可以将输入电压变高或变低,以适应设备的工作电压要求。

2. 整流器:开关电源的整流器用于将交流电转换为直流电。

常见的整流器有二极管整流器和桥式整流器。

二极管整流器通过二极管将交流电的负半周截去,只保留正半周,从而实现了交流到直流的转换。

桥式整流器则通过四个二极管组成的桥路,可以同时将正半周和负半周都转换为直流电。

3. 滤波器:开关电源的滤波器用于平滑直流输出电压。

在整流后的直流电中,仍然存在一定的脉动,滤波器的作用就是通过电容器和电感器对脉动进行滤波,使输出电压更加稳定。

4. 稳压器:开关电源的稳压器用于保持输出电压的稳定。

稳压器可以根据负载的变化自动调节输出电压,确保稳定在设定的数值。

常见的稳压器有线性稳压器和开关稳压器,其中开关稳压器的效率更高,使用更广泛。

5. 保护电路:开关电源的保护电路用于保护电源和负载设备不受过电流、过电压、过温等因素的损害。

常见的保护电路包括过流保护、过压保护、过温保护等,它们可以通过监测电流、电压和温度等参数来及时切断电源或降低输出电压,以保护电源和负载设备的安全运行。

开关电源的基本组成部分相互配合,共同实现了将交流电转换为直流电,并提供稳定的输出电压给负载设备使用。

通过合理设计和选择不同的组件,可以满足各种不同负载设备的需求,例如家用电器、电子设备、通信设备等。

开关电源具有高效、稳定、可靠的特点,被广泛应用于各个领域。

开关电源的应用

开关电源的应用
3.确认:针对样机确认产品是否符合原开发的要求,包括电气 性能参数,机构尺寸.客户指定要求,安规或安全法则等.
确认需要做大量的测试数据和试验记录.
4.验证:研发样机确认完成后必须要对产品的可靠性做验证, 模拟实际使用状态或模拟使用工作环境条件.主要包括:输 入条件及输入性能参数,输出负载特性及输出性能参数.高 低温,湿度,器件的温升, 老化冲击.安全间距, 传导和辐 射测试.还有振动和跌落试验(整过过程中有多次评审).
③电源关键性指标:转换效率(必须是正确测试),关键 器件的温升参数,使用的寿命可靠性.
二.电源的设计与制造工艺流程.
1.定型:根据客户要求或市场需求的信息.确认要开发产品的 功能,性能,大小尺寸等。
2.设计:根据要开发的产品设计相关图纸(电路图,PCB图,机 构图,变压器图,材料清单等)资料,由资料做出样品.
①LED电源的分类:从使用场合分LED室内照明电源,LED 显示屏电源,LED路灯电源.从使用要求分为普通电源, 防雨电源,防水电源,三防处理电源,从功能上分:高 效率电源,带PFC电源,直流转直流电源,调亮度电源, 恒压电源,恒流电源.还可从尺寸空间分类.
②优质电源的评定:优质从设计可靠性,设计功率余量, 设计温升余量,设计选材及用料余量;从功能上看保 护功能齐全;从检验参数上看符合规格要求,从工艺 上看美观,内部器横平竖直,干净整洁;从寿命看使用 时间长;从合理配置使用的返修不良率看相对更低.
③PFC:是指功率因数校正器,它是将在交流转换为直流 时提高电源对市电的利用率,有主动式和被动式.常 规不带PFC功能的开关电源只有0.5到0.58,加了PFC 的最高可以做到0.99.
④纹波&杂讯:纹波是直流电压中所含交流成份的电压 值;在内外产生的传导或辐射信号参杂其中为杂讯.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

. ;. 开关电源主要名词解释 开关电源

1.脉宽调制(Pulse Width Modulation–PWM) 开关电源中常用的一种调制控制方式。其特点是保持开关频率恒定,即开关周期不变,改变脉冲宽度,使电网电压和负载变化时,开关电源的输出电压变化最少。 2.占空比(Duty Cycle Ratio) 一个周期T内,晶体管导通时间t oN所占比例。占空比D=t oN/T。 3.硬开关(Hard Switching) 晶体管上的电压(或电流)尚未到零时,强迫开关管开通(或关断),这是开关管电压下降(或上升)和电流上升(或下降)有一个交叠过程,因而,开关过程中管子有损耗,这种开关方式称为硬开关。 4.软开关(Soft Switching) 使晶体管开关在其中电压为零时开通,或电流为零关断,从而在开关过程中管子损耗接近于零,这种开关方式称为软开关。 5.谐振(Resonance) 谐振是交流电路中的一种物理现象。在理想的(无寄生电阻)电感和电容串联电路输入端,加正弦电压源,当电源的频率为某–频率时,容抗与感抗相等,电路阻抗为零,电流可达无穷大,这一现象称为串联谐振。同理,在理想的LC并联电路加正弦电流源时,电路的总导纳为零,元件上的电压为无穷大,称为并联谐振。电路谐振时有两个重要参数: 谐振频率–谐振时的电路频率,w0=1/√LC,称为谐振频率。 特征阻抗–谐振时,感抗等于容抗。其值为:Zo=√L/C,称为特征阻抗。当LC串联突加直流电压时,电路中电流按正弦规律无阻尼振荡,其频率即电路的谐振频率,或称振荡频率. 6.准谐振(Quasi–Resonance) 对于有开关的LC串联电路,当电流按谐振频率振荡时,如果开关动作,使电流正弦振荡只在一个周期的部分时间内发生,电流呈准正弦,这一现象称为准谐振。同样,在LC并联电路中,借助开关动作,也可获得准谐振。 7.零电压开通(Zero–Voltage–Switching,简称ZVS) 利用谐振现象,在开关变换器中器件电压按正弦规律振荡到零时,使器件开通,称为ZVS。 8.零电流关断(Zero–Current–Switching,简称ZCS) 同理,当开关变换器的器件电流按正弦规律振荡到零时,使器件关断,称为ZCS。 9.PWM开关变换器(PWM Switching Converler) 用脉宽调制方式控制晶体管开关通、断的开关变换器。它属于恒频控制的硬开关类型。 10.离线式开关变换器(Off–Line Switching Converter) 是一种AC/DC变换器,其输入端整流器和平波电容直接接在交流电网上。 11.谐振变换器(Resonant Converter) 利用谐振现象,使开关变换器中器件上的电压或电流按正弦规律变化,从而创造了ZVS或ZCS的条件,称为谐振变换器。分串联和并联谐振变换器两种。在桥式变换器的输出端串联LC网络,再接变换器和整流器,可得串联谐振DC/DC变换器;在桥式变换器串联LC网络的电容两端并联负载(包括变压器及整流器),可得DC/DC并联谐振变换器。 12.准谐振变换器(Quasi–Resonant Converter) 利用准谐振现象,使开关变换器中器件上的电压或电流按准正弦规律变化,从而创造了ZVS或ZCS的条件,称为准谐振变换器。在单端、半桥或全桥变换器中,利用寄生电感和电容(如变压器漏感、晶体开关管或整流管的结电容)或外加谐振电感和电容,可得相应的准谐振变换器。谐振参数可以超过两个,例如三个或更多,这时又称为多谐振变换器。为保持输出电压基本恒定,谐振和准谐振变换器均必须应有变频控制。 13.零开关–PWM变换器(Zero–Switching Converter) . ;. 在准谐振变换器中,增加一个辅助开关,以控制谐振网络的工作使变换器一周期内,一部分时间按ZCS或ZVS准谐振变换器工作,另一部分时间按PWM变换器工作,称为ZCS–PWM或ZVS–PWM变换器。它兼有ZCS(或ZVS)软开关和PWM恒频控制的特点。这时谐振网络中的电感是与主开关串联的。 14.零过渡–PWM变换器(Zero–Transition Converter) 如果将谐振网络与主开关并联,仍用辅助开关控制,则也可得到与ZCS–PWM或ZVS–PWM变换器相同的特点,分别称为ZCT–PWM或ZVT–PWM变换器(ZCT–零电流过渡,ZVT–零电流过渡,ZVT–零电压过渡)。它本质上仍属于ZCS或ZVS软开关–PWM变换器。 15.移相式全桥ZVS–PWM变换器(Phase–Shift FB ZVS–PWM Conveter) 在全桥开关变换器中,利用开关管结电容和变压器漏感(必要时外加谐振元件)的谐振和移相控制驱动脉冲,以实现ZVS的条件,称为移相式全桥ZVS–PWM变换器。它也是软开关–PWM变换器,适用于大功率、低电压输出。 16.高频开关变换器 60年代PWM开关变换器的开关频率为20kHz,所用开关器件为功率双极晶体管。提高开关频率,可以降低变换器的体积、重量,提高功率密度,控制音频噪声,改善动态响应。但为了提高开关频率,先决条件是必须有高频功率晶体管。此外,频率越高,PWM开关(一种硬开关)的开关过程损耗也越大,不能保证高频高效运行。高频功率MOSFET的广泛应用,使开关变换器高频化有了可能,PWM开关变换器的开关频率提高到30kHz以上。80年代软开关变换技术的开发, 使高频、高效率开关变换器有可能商品化。例如:准谐振开关电源,开关频率达到1–10MHz,功率密度达到80W/in³(PWM开关变换器受频率限制,功率密度最高为0.5–3W/in³);移相式全桥ZVS–PWM变换器,功率250W以上,开关频率可达0.5–1MHz。但当应用1GBT做开关器件时,开关频率一般只限于20–40kHz。但有些高频1GBT如1RGBC30U可工作到300kHz。 17.DC/DC开关变换器 由直流电源供电时,输送直流功率的开关变换器。它是开关电源的功率电路,包括功率变换及整流滤波两部分。其输出电压可低于或高于输入电压。按输入、输出有无变压器分有隔离、无隔离两类。无隔离变压器的DC/DC变换器的典型拓扑有:Buck,Boost,Buck–Boost, Cuk,Sepic和Zeta六种。其中Buck,Boost和Buck–Boost是基本的拓扑。它们的核心部分是T形(或Y形)开关网络。 注:T形开关网络由功率晶体管S、整流二极管D及电感L组成,不同接法得到不同拓扑,如下表,设T形网络三个端点标为a,b及c,中点为o,T形网络的输入(ab)端和输出(cb)端分别接直流电源和并有滤波电容的负载。 拓扑名称 串联支路oa 并联支路ob 串联支路oc Buck Boost Buck- Boost 18.连续导电模式CCM(Continueous Conducting Mode) 一周期内电感电流(或传送能量的电容电压)始终大于零。 19.不连续导电模式DCM(Discontinueous Conducting Mode) 一周期内上述电量波形不连续。 20.Buck变换器 又称降压变换器,由简单的电压斩波加LC滤波电路组成。CCM时(下同),理论上其稳态电压比V o/V=D﹤1,D为占空比,故输出电压V o小于输入电压V o但输入端电流不连续,而输出端电流连续。 21.Boost变换器 又称升压变换器,也是斩波和滤波的组合电路,滤波电感接在输入端。理论上电压比V o/V i=1/(1–D),故输出电压高于输入电压。输入电流连续,适合于做有源功率因数校正电路。但输出电流不连续。Boost电路与Buck电路对偶。 22.Buck–Boost变换器 由电压斩波器和滤波器组成。其特点是依靠电感储能,将功率由电源传送到负载。稳态电压比V o/V i=D/(1–D),输出电压可高于或低于输入电压,取决于D大于或小于0.5。输入和输出电流均不连续。 23.Cuk(丘克)变换器 . ;. Buck–Boost的T形开关网络经过对偶变换可得Cuk变换器的△形(或II形)开关网络。设△网络的三端标号为a、b、c、(c为共地端),则a c支路接开关S,bc支路接二极管D,a b(串联)支路接电容C。Cuk变换器与Buck–Boost变换器对偶,左半部分电路与Boost类似,右半部分电路与Buck类似,左右两部分用电容耦合。其电压比也是D/(1–D),即输出电压可高于或低于输入电压。但输出电流连续,输入一般串联电感,因此输入电流也连续。Cuk电路的特点是靠耦合电容储能,将功率又电源传送到负载,该电容称为能量传送元件。 24.Sepic变换器 Sepic变换器左半部分与Boost电路类似,右半部分与Buck–Boost类似,中间以电容(传送能量的元件)耦合,Sepic变换器是Cuk变换器的派生电路。 25.Zeta变换器 Zeta变换器也是Cuk变换器的派生电路。传送能量的元件是电容,与Sepic变换器有类似之处。但左半部分类似Buck–Boost,而右半部分类似Buck。 26.单端变换器(Single–Ended Converter) 电路形式最简单的有隔离变压器的DC/DC变换器。其主要特征是高频变压器的磁心被单向脉动电流激磁,一周期内磁心中的磁通只在磁滞回线(即B–H回线的第一象限)上变化,因而磁心的磁性能不能充分利用。按一周期内激磁方向不同,有正激、反激变换器;还有带隔离的Cuk变换器等。可以有多路输出。 27.(单管)正激变换器(Forward Converter) 结构简单的一种单端变换器,本质上是有隔离变压器的Buck变换器,副边输出端除串联一个二极管外,还并联一个续流二极管。其特点是开关管导通时,能量由原边传送到副边;开关管关断时,副边依靠电感续流。但两种情况下磁心所受激磁方向相同。因此必须采取“复位”措施(如变压器加去磁绕组),使一周期内结束时磁通恢复到周期开始时的原位置。单管正激变换器适用于小功率(几十到几百W),开关管承受电压按2Vi计算。Vi为输入电压。 28.双管正激变换器(Two–Transistor Forward Converter) 正激变换器中有两个开关管与变压器原边绕组串联,同时开通或关断。变压器原边接法象一个电桥,桥臂对角分别为两个开关管和两个二极管。桥的输出接变压器原边,副边电路形式和单管正激一样。其运行模式和桥式变换器完全不同。由于toff时有去磁电流经过二极管及原边绕组,故无需另设去磁绕组。双管正激变换器可用于中等功率(1–2kW以下),每管承受电压约为Vi。两套相同的双管正激变换器副边并联,输入串联或并联,接于AC/DC整流器后,可用于大功率(5–10kW)输出、输入端接AC 400W或220电网的整流输出端。 29.反激变换器(Flyback Converter) 一种最简单的单端变换器。与正激电路不同的是:电压器副边接反向(Flyback)二极管。在toff时变压器副边绕组中流过去磁电流,无需另设去磁绕组。反激变压器实质上是有隔离的Buck–Boost变换器,其变压器起了传送能量元件(电感)的作用,因此变压器磁心应有较大气隙,使磁性能利用更不充分。适用于小功率(100W)。开关承受电压和单管正激电路一样。 30.推挽变换器(Push Pull Converter) 两个对称正激电路接成推挽形式,构成方波逆变器,功率变压器副边接推挽整流及LC滤波电路,形成Buck型推挽变换器,但输出无需另加续流二极管。主要优点是设计简单,变换器磁心利用充分,无需另加去磁绕组。每管承受电压大于2Vi。缺点是两管可能同时导电。可用于中等功率及需要多路输出时。电感接在输入端时,称为Boost型推挽变换器。 31.半桥变换器(Half–Bridge Converter) 由两个功率晶体管和两个电容组成桥式方波逆变器,两电容串联接输入电压,变压器副边接推挽或桥式整流滤波电路,适用于中等功率。 32.全桥变换器(Full–Bridge Converter) 由四个功率晶体管组成电桥。适用于大功率,半桥和全桥变换器的优点是每个管子的电压承受Vi,变压器磁性能可充分利用。缺点是要考虑对称问题,并且一个支路中,两个桥臂的晶体管都导通时,是很危险的。滤波电感可接在电源输入端或整流输出端,分别称为Boost或Buck型桥式变换器。

相关文档
最新文档