初二数学上下册重点难点知识点总结

合集下载

八年级数学上下册知识点归纳

八年级数学上下册知识点归纳

八年级数学上下册知识点归纳八年级上册数学知识点归纳一、三角形1. 三角形的相关概念-三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形。

-三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。

2. 三角形的内角和-三角形内角和为180°。

3. 三角形的外角-三角形的外角等于与它不相邻的两个内角的和。

4. 三角形的分类-按角分类:锐角三角形、直角三角形、钝角三角形。

-按边分类:不等边三角形、等腰三角形(等边三角形是特殊的等腰三角形)二、全等三角形1. 全等三角形的概念-能够完全重合的两个三角形叫做全等三角形。

2. 全等三角形的性质-全等三角形的对应边相等,对应角相等。

3. 全等三角形的判定- SSS(边边边):三边对应相等的两个三角形全等。

- SAS(边角边):两边和它们的夹角对应相等的两个三角形全等。

- ASA(角边角):两角和它们的夹边对应相等的两个三角形全等。

- AAS(角角边):两角和其中一角的对边对应相等的两个三角形全等。

- HL(斜边、直角边):斜边和一条直角边对应相等的两个直角三角形全等。

三、轴对称1. 轴对称图形-如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。

2. 轴对称-把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。

3. 线段的垂直平分线-经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

-线段垂直平分线上的点到线段两个端点的距离相等。

4. 等腰三角形-性质:等腰三角形的两腰相等,两底角相等;等腰三角形顶角的平分线、底边上的中线、底边上的高相互重合(三线合一)。

-判定:有两边相等的三角形是等腰三角形;有两个角相等的三角形是等腰三角形。

5. 等边三角形-性质:等边三角形的三条边都相等,三个角都相等,并且每个角都等于60°。

-判定:三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形。

八年级数学下册知识点重点总结重点难点

八年级数学下册知识点重点总结重点难点

第一章 一元一次不等式和一元一次不等式组一. 不等关系1. 一般地,用符号“<”或“≤”, “>”或“≥”连接的式子叫做不等式.2. 区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系;3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数 <===> 大于等于0≥0 <===> 0和正数 <===> 不小于0 非正数 <===> 小于等于0≤0 <===> 0和负数 <===> 不大于0 二. 不等式的基本性质1. 掌握不等式的基本性质,并会灵活运用:1 不等式的两边加上或减去同一个整式,不等号的方向不变,即: 如果a>b,那么a+c>b+c, a-c>b-c.2 不等式的两边都乘以或除以同一个正数,不等号的方向不变,即 如果a>b,并且c>0,那么ac>bc,cb c a >. 3 不等式的两边都乘以或除以同一个负数,不等号的方向改变,即: 如果a>b,并且c<0,那么ac<bc,cb c a < 2. 比较大小:a 、b 分别表示两个实数或整式 一般地: 如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b; 如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b; 如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b;即:a>b <===> a-b>0 a=b <===> a-b=0 a<b <===> a-b<0 由此可见,要比较两个实数的大小,只要考察它们的差就可以了. 三. 不等式的解集:1. 能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.2. 不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.3. 不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左四. 一元一次不等式:1. 只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.2. 解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.3. 解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1不等号的改变问题 4. 一元一次不等式基本情形为ax>b 或ax<b ①当a>0时,解为abx >;②当a=0时,且b<0,则x 取一切实数;当a=0时,且b ≥0,则无解;③当a<0时, 解为ab x <; 5. 不等式应用的探索利用不等式解决实际问题列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义; ②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式; ④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意. 五. 一元一次不等式组1. 定义: 由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解.几个不等式解集的公共部分,通常是利用数轴来确定. 3. 解一元一次不等式组的步骤:1分别求出不等式组中各个不等式的解集;2利用数轴求出这些解集的公共部分,即这个不等式组的解集.两个一元一次不等式组的解集的四种情况a 、b 为实数,且a<b第二章 分解因式一. 分解因式1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.2. 因式分解与整式乘法是互逆关系;因式分解与整式乘法的区别和联系: 1整式乘法是把几个整式相乘,化为一个多项式; 2因式分解是把一个多项式化为几个因式相乘. 二. 提公共因式法1. 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.如: )(c b a ac ab +=+2. 概念内涵:1因式分解的最后结果应当是“积”;2公因式可能是单项式,也可能是多项式;3提公因式法的理论依据是乘法对加法的分配律,即: )(c b a m mc mb ma -+=-+3. 易错点点评:1注意项的符号与幂指数是否搞错;2公因式是否提“干净”; 3多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉. 三. 运用公式法1. 如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.2. 主要公式:1平方差公式: ))((22b a b a b a -+=-2完全平方公式: 222)(2b a b ab a +=++ 222)(2b a b ab a -=+- 3. 因式分解要分解到底.如))((222244y x y x y x -+=-就没有分解到底.4. 运用公式法:1平方差公式: ①应是二项式或视作二项式的多项式;②二项式的每项不含符号都是一个单项式或多项式的平方;③二项是异号.2完全平方公式:①应是三项式;②其中两项同号,且各为一整式的平方; ③还有一项可正负,且它是前两项幂的底数乘积的2倍. 5. 因式分解的思路与解题步骤:1先看各项有没有公因式,若有,则先提取公因式;2再看能否使用公式法;3用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;4因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;5因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止. 四. 分组分解法:1. 分组分解法:利用分组来分解因式的方法叫做分组分解法.如: ))(()()(n m b a n m b n m a bn bm an am ++=+++=+++2. 概念内涵:分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可继续分解,分组后是否可利用公式法继续分解因式.3. 注意: 分组时要注意符号的变化. 五. 十字相乘法:1.对于二次三项式c bx ax ++2,将a 和c 分别分解成两个因数的乘积,21a a a ⋅= , 21c c c ⋅=, 且满足1221c a c a b +=,往往写成c 2a 2c 1a 1的形式,将二次三项式进行分解.如: ))((22112c x a c x a c bx ax ++=++ 2. 二次三项式q px x ++2的分解:3. 规律内涵:1理解:把q px x ++2分解因式时,如果常数项q 是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p 的符号相同.2如果常数项q 是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p 的符号相同,对于分解的两个因数,还要看它们的和是不是等于一次项系数p.4. 易错点点评:1十字相乘法在对系数分解时易出错;2分解的结果与原式不等,这时通常采用多项式乘法还原后检验分解的是否正确.第三章 分式一. 分式1. 两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式. 整式A 除以整式B,可以表示成B A 的形式.如果除式B 中含有字母,那么称BA为分式,对于任意一个分式,分母都不能为零.2. 整式和分式统称为有理式,即有: ⎩⎨⎧分式整式有理式3. 进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质: 分式的分子与分母都乘以或除以同一个不等于零的整式,分式的值不变.4. 一个分式的分子分母有公因式时,可以运用分式的基本性质,把这个分式的分子分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分. 二. 分式的乘除1. 分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以以分式,把除式的分子、分母颠倒位置后,与被除式相乘.即:BD AC D C B A =⋅, CB DA C DB A DC B A ⋅⋅=⋅=÷ 2. 分式乘方,把分子、分母分别乘方. 即: )(为正整数n B A B A nn n=⎪⎭⎫⎝⎛逆向运用nn n B A B A ⎪⎭⎫ ⎝⎛=,当n 为整数时,仍然有n n nB A B A =⎪⎭⎫⎝⎛成立.3. 分子与分母没有公因式的分式,叫做最简分式. 三. 分式的加减法1. 分式与分数类似,也可以通分.根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.2. 分式的加减法: 分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减.1同分母的分式相加减,分母不变,把分子相加减; 上述法则用式子表示是:CBA CBC A ±=± 2异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;上述法则用式子表示是:BDBCAD BD BC BD AD D C B A ±=±=±3. 概念内涵: 通分的关键是确定最简分母,其方法如下:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母的最高次幂的积,如果分母是多项式,则首先对多项式进行因式分解. 四. 分式方程1. 解分式方程的一般步骤:①在方程的两边都乘最简公分母,约去分母,化成整式方程;②解这个整式方程;③把整式方程的根代入最简公分母,看结果是不是零,使最简公母为零的根是原方程的增根,必须舍去. 2. 列分式方程解应用题的一般步骤:①审清题意;②设未知数;③根据题意找相等关系,列出分式方程; ④解方程,并验根;⑤写出答案.第四章 相似图形一. 线段的比1. 如果选用同一个长度单位量得两条线段AB, CD 的长度分别是m 、n,那么就说这两条线段的比AB:CD=m:n ,或写成nm B A =. 2. 四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即dcb a =,那么这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段.3. 注意点: ①a:b=k,说明a 是b 的k 倍;②由于线段 a 、b 的长度都是正数,所以k 是正数;③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致;④除了a=b 之外,a:b ≠b:a, b a 与ab互为倒数;⑤比例的基本性质:若d c b a =, 则ad=bc; 若ad=bc, 则dc b a = 二. 黄金分割1. 如图1,点C 把线段AB 分成两条线段AC 和BC,如果ACBCAB AC =,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比. 1:618.0215:≈-=AB AC 2.黄金分割点是最优美、最令人赏心悦目的点. 四. 相似多边形1. 一般地,形状相同的图形称为相似图形.2. 对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比. 五. 相似三角形_ 图1 _B_C _A1. 在相似多边形中,最为简简单的就是相似三角形.2. 对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.3. 全等三角形是相似三角的特例,这时相似比等于1. 注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.4. 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.5. 相似三角形周长的比等于相似比.6. 相似三角形面积的比等于相似比的平方. 六.探索三角形相似的条件 1. 相似三角形的判定方法:基本定理:平行于三角形的一边且和其他两边或两边的延长线相交的直线,所截得的三角形与原三角形相似.2. 平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 如图2, l 1EF BCDE AB3. 平行于三角形一边的直线与其他两边或两边的延长线相交,所构成的三角形与原三角形相似.八. 相似的多边形的性质相似多边形的周长等于相似比;面积比等于相似比的平方.九. 图形的放大与缩小1. 如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形; 这个点叫做位似中心; 这时的相似比又称为位似比.2. 位似图形上任意一对对应点到位似中心的距离之比等于位似比.3. 位似变换: ①变换后的图形,不仅与原图相似,而且对应顶点的连线相交于一点,并且对应点到这一交点的距离成比例.像这种特殊的相似变换叫做位似变换.这个交点叫做位似中心. ②一个图形经过位似变换后得到另一个图形,这两个图形就叫做位似形. ③利用位似的方法,可以把一个图形放大或缩小.第五章 数据的收集与处理_ 图2 _F_E _D_C_B _A _l _3_l _2 _l _1一. 每周干家务活的时间1. 所要考察的对象的全体叫做总体;把组成总体的每一个考察对象叫做个体;从总体中取出的一部分个体叫做这个总体的一个样本.2. 为一特定目的而对所有考察对象作的全面调查叫做普查;为一特定目的而对部分考察对象作的调查叫做抽样调查.二. 数据的收集1. 抽样调查的特点: 调查的范围小、节省时间和人力物力优点.但不如普查得到的调查结果精确,它得到的只是估计值.而估计值是否接近实际情况还取决于样本选得是否有代表性.第六章证明一一. 定义与命题1. 一般地,能明确指出概念含义或特征的句子,称为定义.定义必须是严密的.一般避免使用含糊不清的术语,例如“一些”、“大概”、“差不多”等不能在定义中出现.2. 可以判断它是正确的或是错误的句子叫做命题.正确的命题称为真命题,错误的命题称为假命题.3. 数学中有些命题的正确性是人们在长期实践中总结出来的,并且把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理.4. 有些命题可以从公理或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理.5. 根据题设、定义以及公理、定理等,经过逻辑推理,来判断一个命题是否正确,这样的推理过程叫做证明.二. 为什么它们平行1. 平行判定公理: 同位角相等,两直线平行.并由此得到平行的判定定理2. 平行判定定理: 同旁内互补,两直线平行.3. 平行判定定理: 同错角相等,两直线平行.三. 如果两条直线平行1. 两条直线平行的性质公理: 两直线平行,同位角相等;2. 两条直线平行的性质定理: 两直线平行,内错角相等;3. 两条直线平行的性质定理: 两直线平行,同旁内角互补.四. 三角形和定理的证明1. 三角形内角和定理: 三角形三个内角的和等于180°2. 一个三角形中至多只有一个直角3. 一个三角形中至多只有一个钝角4. 一个三角形中至少有两个锐角五. 关注三角形的外角1. 三角形内角和定理的两个推论:推论1: 三角形的一个外角等于和它不相邻的两个内角的和;推论2: 三角形的一个外角大于任何一个和它不相邻的内角.。

初二数学知识点总结(包括八年级人教版上下两册知识内容-非常完整)

初二数学知识点总结(包括八年级人教版上下两册知识内容-非常完整)

资料内容仅供您学习参考,如有不当之处,请联系改正或者删除八年级上册知识点总结第十一章全等三角形复习一、全等三角形1.定义:能够完全重合的两个三角形叫做全等三角形。

理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。

2、全等三角形有哪些性质(1)全等三角形的对应边相等、对应角相等。

理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。

(2)全等三角形的周长相等、面积相等。

(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4、证明两个三角形全等的基本思路:个角的平分线。

1、性质:角的平分线上的点到角的两边的距离相等.2、判定:角的内部到角的两边的距离相等的点在角的平分线上。

三、学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”(5)截长补短法证三角形全等。

第十二章轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

这时我们也说这个图形关于这条直线(成轴)对称。

北师大版初中数学各册章节知识点总结

北师大版初中数学各册章节知识点总结

北师大版初中数学各册章节知识点总结第一册:《初二上册》1.直角三角形:直角三角形的定义、直角三角形的性质、勾股定理。

2.平面图形的表示:点、线、线段、射线、角度、平行线、垂直线、相交线等基本概念。

3.二次根式:二次根式的定义、运算法则。

4.初中平面几何基本定理:垂线定理、等腰三角形的性质、三角形中位线定理、角平分线定理等。

5.多边形:多边形的定义、正多边形、变位积分、多边形的内角和、多边形的外角和。

6.梅涅劳斯定理:梅涅劳斯定理的概念、定理的应用。

第二册:《初二下册》1.线性方程:线性方程的定义、解线性方程的常用方法。

2.三角函数的定义和初步认识:三角函数的定义、正弦函数、余弦函数、正切函数等。

3.平行线与相交线:平行线的性质、平行线之间的角对、相交线之间的角对等。

4.二次函数:二次函数的基本性质、二次函数图像的性质与应用。

5.海伦公式:海伦公式的概念、海伦公式的应用。

第三册:《初三上册》1.集合:集合的概念、集合的运算、集合的表示等。

2.图形的相似:图形相似的概念、相似比、相似三角形的性质等。

3.三角形的性质:三角形的角与边的关系、角边关系等。

4.空间几何基本概念:欧几里得空间几何学的基本概念、空间图形与平面图形的关系等。

5.高中数学预修知识:比例与相似、复数等。

第四册:《初三下册》1.数系的扩充:有理数和无理数的概念、实数的分类等。

2.几何体的计算:几何体的表面积、几何体的体积等。

3.空间几何基本定理:角的平分线、角的辅助线等。

4.三角恒等式:三角函数的反函数、三角函数的周期等。

第五册:《九年级上册》1.一次函数:一次函数的定义、一次函数图像的性质、线性规律等。

2.向量几何:向量的定义、向量的运算、向量的平行和垂直等。

3.数的四则运算:整数、有理数、无理数的四则运算等。

4.二次方程与不等式:二次方程的定义、解二次方程的方法等。

5.三角形的面积:三角形的名字、面积的计算公式等。

第六册:《九年级下册》1.指数与对数:指数、对数和底数的概念、指数与对数的性质等。

初二数学下册重点难点知识归纳

初二数学下册重点难点知识归纳

初二数学下册重点难点知识归纳初二数学下册重点难点知识归纳很多初二的学生在学习的数学的时候都会选择做习题练习,其实我们也不能忽视最基本的概念、公理、定理和公式,这些基础知识点都是需要理解明白的。

下面是店铺帮大家整理的初二数学下册重点难点知识归纳,供大家参考借鉴,希望可以帮助到有需要的朋友。

初二数学下册重点难点知识归纳篇11、分式:(1)分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子A/B叫做分式。

(2)分式是否有意义的条件:分式的分母是否等于0,有意义则分母不为0,无意义则分母为0。

(3)分式值为零的条件:分式A/B=0的条件是A=0,且B≠0。

注意:求出使分子为0的字母的值,一定要注意检验这个字母的值是否使分母的值为0,一般当分母的值不为0时,就是所要求的字母的值。

(4)分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

(5)分式的通分:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。

注意:通分的关键是确定几个式子的最简公分母。

几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的分母就叫做最简公分母。

求最简公分母时应注意以下几点:● “各分母所有因式的最高次幂”是指凡出现的字母(或含字母的式子)为底数的幂选取指数最大的;● 如果各分母的系数都是整数时,取它们系数的最小公倍数作为最简公分母的系数;● 如果分母是多项式,一般应先分解因式。

(6)分式的约分:根据分式的基本性质,约去分式的分子和分母中的公因式,不改变分式的值,这样的分式变形叫做分式的约分。

约分后分式的分子、分母中不再含有公因式,这样的分式叫最简公因式。

注意:约分的关键是找出分式中分子和分母的公因式◆(1)约分时注意分式的分子、分母都是乘积形式才能进行约分;分子、分母是多项式时,通常将分子、分母分解因式,然后再约分;◆(2)找公因式的方法:① 当分子、分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式;②当分子、分母都是多项式时,先把多项式因式分解。

初二数学知识点总结(包括八年级人教版上下两册知识内容非常完整)

初二数学知识点总结(包括八年级人教版上下两册知识内容非常完整)

初二数学知识点总结(包括八年级人教版上下两册知识内容非常完整)八年级上册知识点总结第十一章全等三角形复一、全等三角形1.定义:能够完全重合的两个三角形叫做全等三角形。

理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。

2.全等三角形有哪些性质1)全等三角形的对应边相等、对应角相等。

理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。

2)全等三角形的周长相等、面积相等。

3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3.全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)方法指引斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4.证明两个三角形全等的基本思路:1)已知两边----找第三边(SSS)找夹角(SAS)找是否有直角(HL)找这边的另一个邻角(ASA)已知一边和它的邻角2)已知一边一角---已知一边和它的对角找这个角的另一个边(SAS) 找这边的对角(AAS)找一角(AAS)已知角是直角,找一边(HL) 找两角的夹边(ASA)找夹边外的任意边(AAS)练3)已知两角---二、角的平分线从一个角的顶点得出一条射线把这个角分成两个相等的角,称这条射线为这个角的平分线。

1.性质:角的平分线上的点到角的两边的距离相等。

2.判定:角的内部到角的两边的距离相等的点在角的平分线上。

三、研究全等三角形应注意以下几个问题:1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;4)时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”。

北师大版八年级数学下册知识点重点总结精选-重点-难点

第一章 一元一次不等式和一元一次不等式组一. 不等关系1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式.2. 区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系。

3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数 <===> 大于等于0(≥0) <===> 0和正数 <===> 不小于0 非正数 <===> 小于等于0(≤0) <===> 0和负数 <===> 不大于0 二. 不等式的基本性质1. 掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即: 如果a>b,那么a+c>b+c, a-c>b-c. (2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即 如果a>b,并且c>0,那么ac>bc,cb c a >. (3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即: 如果a>b,并且c<0,那么ac<bc,cb c a < 2. 比较大小:(a 、b 分别表示两个实数或整式) 一般地: 如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b; 如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b; 如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b;即:a>b <===> a-b>0 a=b <===> a-b=0 a<b <===> a-b<0 (由此可见,要比较两个实数的大小,只要考察它们的差就可以了. 三. 不等式的解集:1. 能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.2. 不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.3. 不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左 四. 一元一次不等式:1. 只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.2. 解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.3. 解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(不等号的改变问题) 4. 一元一次不等式基本情形为ax>b(或ax<b) ①当a>0时,解为abx>;②当a=0时,且b<0,则x 取一切实数;当a=0时,且b ≥0,则无解;③当a<0时, 解为ab x <; 5. 不等式应用的探索(利用不等式解决实际问题) 列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义;②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式; ④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意. 五. 一元一次不等式组1. 定义: 由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解.几个不等式解集的公共部分,通常是利用数轴来确定. 3. 解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.两个一元一次不等式组的解集的四种情况(a 、b 为实数,且a<b)第二章 分解因式一. 分解因式1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.2. 因式分解与整式乘法是互逆关系。

八年级下册数学重要知识点重点难点归纳整理

八年级下册数学重要知识点归纳整理八年级下册数学重要知识点归纳整理平行四边形的性质:⑴从边看:平行四边形两组对边分别平行;平行四边形两组对边分别相等.⑵从角看:平行四边形的两组对角分别相等,邻角互补.⑶从对角线看:平行四边形的两条对角线互相平分.平行四边形的判定方法:⑴按边:①一组对边平行且相等的四边形是平行四边形.②两组对边分别相等的四边形是平行四边形.③两组对边分别平行的四边形是平行四边形⑵按角:两组对角分别相等的四边形是平行四边形.⑶按对角线:两条对角线互相平分的四边形是平行四边形.(难点)平行四边形知识的应用:⑴运用平行四边形的性质求角的度数,线段的长度,证明线段相等或倍分.⑵先判定一个四边形是平行四边形,然后再用平行四边形的性质解决某些问题.矩形(1)矩形的定义:有一个角是直角的平行四边形是矩形;(2)性质定理:矩形的四个角都是直角;矩形的对角线互相平分且相等.(3)判定定理:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形.[方法] 证明矩形可以先证明它是一个平行四边形,再证明它有一个角是直角或对角线相等;也可以直接证明其中有三个角是直角.菱形(1)矩形的定义:有一组邻边相等的平行四边形是菱形;(2)性质定理:菱形四条边都相等;菱形对角线互相平分且垂直;每条对角线平分一组对角;(3)判定定理:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四条边都相等的四边形是菱形.[方法] 证明菱形可以先证明它是一个平行四边形,再证明它有一组邻边相等或对角线互相垂直;也可以直接证四条边都相等.正方形(1)正方形的定义:有一个角是直角,有一组邻边相等的平行四边形是正方形(2)性质定理:正方形的四个角都是直角,四条边都等.正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角(3)判定定理:有一个角是直角,且有一组邻边相等的平行四边形是正方形; [方法] 有一个角是直角的菱形是正方形:有一组邻边相等的矩形是方形.。

八年级数学上下册知识点归纳

八年级数学上下册知识点归纳一、八年级上册知识点(一)三角形1.三角形的性质-三角形三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。

-三角形内角和定理:三角形三个内角的和等于180°。

-三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于任何一个与它不相邻的内角。

2.全等三角形-全等三角形的性质:全等三角形的对应边相等,对应角相等。

-全等三角形的判定:SSS(边边边)、SAS(边角边)、ASA(角边角)、AAS(角角边)、HL(斜边、直角边)。

(二)轴对称1.轴对称图形的概念-如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

2.轴对称的性质-关于某条直线对称的两个图形是全等形。

-如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。

-两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

3.线段的垂直平分线-性质:线段垂直平分线上的点与这条线段两个端点的距离相等。

-判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(三)整式的乘法与因式分解1.整式的乘法-同底数幂的乘法:a^m×a^n = a^(m + n)(m、n 都是正整数)。

-幂的乘方:(a^m)^n = a^(mn)(m、n 都是正整数)。

-积的乘方:(ab)^n = a^n×b^n(n 是正整数)。

-单项式乘以单项式:系数相乘,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

-单项式乘以多项式:m(a + b + c) = ma + mb + mc。

-多项式乘以多项式:(a + b)(m + n) = am + an + bm + bn。

2.乘法公式-平方差公式:(a + b)(a - b) = a^2 - b^2。

-完全平方公式:(a ± b)^2 = a^2 ± 2ab + b^2。

八年级数学重难点总结归纳

八年级数学重难点总结归纳数学作为一门重要的学科,对于八年级学生来说,可能会遇到一些比较难理解和把握的知识点。

为了帮助同学们更好地掌握这些难点,本文将对八年级数学的一些重难点进行总结和归纳,希望能够带给大家更多的帮助。

一、代数运算1. 平方差公式:平方差公式是指两个数的平方差可以通过两个数的和、差及乘积来表示。

具体公式如下:(a + b)(a - b) = a^2 - b^2掌握平方差公式的运用,可以快速求得两个数的平方差,简化计算过程。

2. 分式运算:分式运算是指涉及到分数的四则运算。

在进行分式运算时,需要注意分母的处理、化简及约分等问题。

此外,还需要掌握分数的相加、相减、相乘和相除的运算规则。

二、图形几何1. 平行线与转角线:平行线和转角线是图形几何中常见的概念。

平行线指在同一个平面内永不相交的直线,而转角线指两条平行线之间的交叉线段。

在解题过程中,要注意运用平行线和转角线的性质,推导出所需的结论。

2. 三角形的判定与性质:在八年级学习中,三角形的判定与性质也是一个重难点。

常见的三角形判定包括三边长关系、两边夹角和夹边关系等,这些判定对于解决一些几何问题非常重要。

三、函数与方程1. 一次函数与二次函数:一次函数和二次函数是数学中常见的函数类型。

需要掌握一次函数和二次函数的定义、性质和图像表示,以及对二次函数的判别式、顶点公式的运用等。

2. 一元一次方程与二元一次方程:一元一次方程和二元一次方程是代数方程组中的重要内容。

解一元一次方程需要掌握方程的等价变形、消元法等解方程的方法;而解二元一次方程需要补充方程、消元法和代入法等技巧。

四、概率与统计1. 事件与概率:概率与统计是数学中一个具有实际意义的分支。

在概率与统计中,需要学会理解事件的概念、概率的计算方法和常见的概率分布等内容。

2. 数据统计与分析:数据统计与分析是通过统计手段对一组数据进行整理、分析和描述。

在数据统计与分析中,需要掌握频数表、频率表、带频数字形式和统计图表等的制作和解读方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学(上)应知应会的知识点 因式分解 1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化. 2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”. 3.公因式的确定:系数的最大公约数·相同因式的最低次幂. 注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3. 4.因式分解的公式: (1)平方差公式: a2-b2=(a+ b)(a- b); (2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2. 5.因式分解的注意事项: (1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字; (2)使用因式分解公式时要特别注意公式中的字母都具有整体性; (3)因式分解的最后结果要求分解到每一个因式都不能分解为止; (4)因式分解的最后结果要求每一个因式的首项符号为正; (5)因式分解的最后结果要求加以整理; (6)因式分解的最后结果要求相同因式写成乘方的形式. 6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项. 7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q,

有“ x2+px+q是完全平方式  q2p2”. 分式

1.分式:一般地,用A、B表示两个整式,A÷B就可以表示为BA的形式,如果B中含有字母,式子BA 叫做分式. 2.有理式:整式与分式统称有理式;即 分式整式有理式. 3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义. 4.分式的基本性质与应用: (1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变; (2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变; 即 分母分子分母分子分母分子分母分子 (3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单. 5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解. 6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.

7.分式的乘除法法则:,bdacdcba bcadcdbadcba.

8.分式的乘方:为正整数)(n.babannn. 9.负整指数计算法则:

(1)公式: a0=1(a≠0), a-n=na1 (a≠0); (2)正整指数的运算法则都可用于负整指数计算;

(3)公式:nnabba,nmmnabba; (4)公式: (-1)-2=1, (-1)-3=-1. 10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母. 11.最简公分母的确定:系数的最小公倍数·相同因式的最高次幂. 12.同分母与异分母的分式加减法法则:

;cbacbcabdbcadbdbcbdaddcba.

13.含有字母系数的一元一次方程:在方程ax+b=0(a≠0)中,x是未知数,a和b是用字母表示的已知数,对x来说,字母a是x的系数,叫做字母系数,字母b是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数. 14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0. 15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程. 16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根. 17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根. 18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序. 数的开方 1.平方根的定义:若x2=a,那么x叫a的平方根,(即a的平方根是x);注意:(1)a叫x的平方数,(2)已知x求a叫乘方,已知a求x叫开方,乘方与开方互为逆运算. 2.平方根的性质: (1)正数的平方根是一对相反数; (2)0的平方根还是0; (3)负数没有平方根.

3.平方根的表示方法:a的平方根表示为a和a.注意:a可以看作是一个数,也可以认为是一个数开二次方的运算.

4.算术平方根:正数a的正的平方根叫a的算术平方根,表示为a.注意:0的算术平方根还是0.

5.三个重要非负数: a2≥0 ,|a|≥0 ,a≥0 .注意:非负数之和为0,说明它们都是0. 6.两个重要公式:

(1) aa2; (a≥0)

(2) )0a(a)0a(aaa2 . 7.立方根的定义:若x3=a,那么x叫a的立方根,(即a的立方根是x).注意:(1)

a叫x的立方数;(2)a的立方根表示为3a;即把a开三次方. 8.立方根的性质: (1)正数的立方根是一个正数; (2)0的立方根还是0; (3)负数的立方根是一个负数.

9.立方根的特性:33aa. 10.无理数:无限不循环小数叫做无理数.注意:和开方开不尽的数是无理数. 11.实数:有理数和无理数统称实数. 12.实数的分类:(1)无限不循环小数负无理数正无理数无理数数有限小数与无限循环小负有理数正有理数有理数实数0(2)



负实数正实数

实数0

. 13.数轴的性质:数轴上的点与实数一一对应. 14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.

注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:414.12 732.13 236.25.

三角形 几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明) 1.三角形的角平分线定义: 三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.(如图) ABCD 几何表达式举例: (1) ∵AD平分∠BAC ∴∠BAD=∠CAD (2) ∵∠BAD=∠CAD ∴AD是角平分线 2.三角形的中线定义: 在三角形中,连结一个顶点和它的对边的中点的线段叫做三角形的中线.(如图) ABCD 几何表达式举例: (1) ∵AD是三角形的中线 ∴ BD = CD (2) ∵ BD = CD ∴AD是三角形的中线

3.三角形的高线定义: 从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线. (如图) ABCD 几何表达式举例: (1) ∵AD是ΔABC的高 ∴∠ADB=90° (2) ∵∠ADB=90° ∴AD是ΔABC的高

※4.三角形的三边关系定理: 三角形的两边之和大于第三边,三角形的两边之差小于第三边.(如图) ABC 几何表达式举例: (1) ∵AB+BC>AC ∴…………… (2) ∵ AB-BC<AC ∴…………… 5.等腰三角形的定义: 有两条边相等的三角形叫做等腰三角形. (如图) ABC 几何表达式举例: (1) ∵ΔABC是等腰三角形 ∴ AB = AC (2) ∵AB = AC ∴ΔABC是等腰三角形

6.等边三角形的定义: 有三条边相等的三角形叫做等边三角形. (如图) ABC 几何表达式举例: (1)∵ΔABC是等边三角形 ∴AB=BC=AC (2) ∵AB=BC=AC ∴ΔABC是等边三角形 7.三角形的内角和定理及推论: (1)三角形的内角和180°;(如图) (2)直角三角形的两个锐角互余;(如图) (3)三角形的一个外角等于和它不相邻的两个内角的和;(如图) ※(4)三角形的一个外角大于任何一个和它不相邻的内角. (1) (2) (3)(4) 几何表达式举例: (1) ∵∠A+∠B+∠C=180° ∴………………… (2) ∵∠C=90° ∴∠A+∠B=90° (3) ∵∠ACD=∠A+∠B ∴………………… (4) ∵∠ACD >∠A ∴…………………

8.直角三角形的定义: 有一个角是直角的三角形叫直角三角形.(如图) ABC 几何表达式举例: (1) ∵∠C=90° ∴ΔABC是直角三角形 (2) ∵ΔABC是直角三角形 ∴∠C=90°

9.等腰直角三角形的定义: 两条直角边相等的直角三角形叫等腰直角三角形.(如图) ABC 几何表达式举例: (1) ∵∠C=90° CA=CB ∴ΔABC是等腰直角三角形 (2) ∵ΔABC是等腰直角三角形 ∴∠C=90° CA=CB

10.全等三角形的性质: (1)全等三角形的对应边相等;(如图) (2)全等三角形的对应角相等.(如图) 几何表达式举例: (1) ∵ΔABC≌ΔEFG ∴ AB = EF ……… (2) ∵ΔABC≌ΔEFG ∴∠A=∠E ………

11.全等三角形的判定: “SAS”“ASA”“AAS”“SSS”“HL”. (如图) 几何表达式举例: (1) ∵ AB = EF

ABCGE

F

DABCA

BCA

BC

相关文档
最新文档