寻找全等三角形几种方法
人教版八年级数学上册第十二章全等三角形证明方法归纳及典型例题

全等三角形的证明全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.全等三角形的判定方法:(1)边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2)角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3)边边边定理(SSS):三边对应相等的两个三角形全等.(4)角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5)斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.专题1、常见辅助线的做法典型例题找全等三角形的方法:(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。
三角形中常见辅助线的作法:①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。
全等三角形证明方法总结

❸由中点想到的辅助线 在三角形中,如果已知一点是三角形某一边上的中点,那么首先应该联想到三角形的中线加倍延长及其相关性质 (等腰三角形底边中线性质),然后通过探索,找到解决问题的方法。
8
(1)中线把原三角形分成两个面积相等的小三角形 即如图 1,AD 是 ΔABC 的中线,则 SΔABD=SΔACD= SΔABC(因为 ΔABD 与 ΔACD 是等底同高的)。
成全等三角形
全等
造全等,则 P 是中点
三角形
图中有角平分线,可向两边 图中有角平分线,沿它对折 角平分线加垂线,“三线合 角平分线+平行线,等腰三
作垂线
关系现
一”试试看
角形必呈现
角平分线的常见倒角模型及相关结论 已知△ABC 中,BP,CP 分别为角平分线且交于点 P,探讨∠BPC 与∠A 的关系
角平 分线 倒角 模型
证法二:连接 AD,并延长交 BC 于 F
G
E
D
∵∠BDF 是△ABD 的外角 ∴∠BDF>∠BAD,同理,∠CDF>∠CAD ∴∠BDF+∠CDF>∠BAD+∠CAD
B
F
C
图2 1
即:∠BDC>∠BAC。
注意:利用三角形外角定理证明不等关系时,通常将大角放在某三角形的外角位置上,小角放在这个三角形的内 角位置上,再利用不等式性质证明。
分析:因为∠BDC 与∠BAC 不在同一个三角形中,没有直接的联系,可适当添加辅助线构造新的三角形,使∠
BDC 处于在外角的位置,∠BAC 处于在内角的位置;
证法一:延长 BD 交 AC 于点 E,这时∠BDC 是△EDC 的外角,
A
∴∠BDC>∠DEC,同理∠DEC>∠BAC,∴∠BDC>∠BAC
三角形全等的判定方法5种例题+练习全面

教学内容全等三角形的判定教学目标掌握全等三角形的判定方法重点全等三角形的判定探索三角形全等的条件(5种)1边角边(重点)两边及其夹角分别分别相等的两个三角形全等,可以简写成“边角边”或“SAS”.注:必须是两边及其夹角,不能是两边和其中一边的对角.原因:如图:在A ABC和A ABD中,/ A= / A,AB=AB,BC=BD,显然这两个三角形不全等.A例 1 如图,AC=AD, / CAB= / DAB,求证:A ACB义A ADB.AD例 2 如图,在四边形 ABCD 中,AD〃BC, / ABC= /DCB, AB=DC, AE=DF 求证:BF=CE.例3.(1)如图①,根据“SAS",如果BD=CE, =,那么即可判定4BDC24CEB; (2)如图②,已知BC=EC, NBCE二ACD,要使4ABC2△口£&则应添加的一个条件为例4. 如图,已知AD=AE,N1=N2, BD=CE,则有4ABD2,理由是△ABE义,理由是.例5.如图,在4ABC和4DEF中,如果AB=DE, BC=EF,只要找出N=N 或〃,就可得到4ABC2△DEF.A D例6.如图,已知AB〃DE, AB=DE, BF=CE,求证:4ABC24口£艮例 7.如图,点B 在线段AD 上,BC〃DE, AB=ED, BC=DB. 求证:NA二NE 例8.如图,点E, F 在BC 上,BE=CF, AB=DC, NB=NC.求证: NA=ND.2.角边角两角及其夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)例1.如图,在4ABC中,点D是BC的中点,作射线AD,线段AD及其延长线上分别取点E, F,连接CE,BF.添加一个条件,使得4BDF24CDE,你添加的条件是:.(不添加辅助线)例2. 如图,已知人口平分/8人&且N ABD=N ACD,则由“AAS”可直接判定△^A.B例 3.如图,在 RtA ABC 中,N ACB=90°, BC=2cm, CD^AB,在AC 上取一点E,使EC二BC, 过点E作EF^AC交CD的延长线于点F,若EF=5cm,那么AE=cm.例4.如图,AD〃BC,N ABC的角平分线BP与/8人口的角平分线AP相交于点P,作PE L AB于点E.若PE=2,则两平行线AD与BC间的距离为.例 5.如图,已知EC=AC, ZBCE=ZDCA, NA=NE.求证:BC=DC.例6.如图,在4ABC中,D是BC边上的点(不与B, C重合),F, E分别是AD及其延长线上的点,CF〃BE.请你添加一个条件,使4BDE24CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1)你添加的条件是:;(2)证明:例7.如图,A在DE上,F在AB上,且BC=DC,N1=N2=N3,则DE的长等于()A. DCB. BCC. ABD. AE+AC【基础训练】1 .如图,已知 AB = DC,NABC=NDCB,则有4ABC2,理由是;且有2 .如图,已知AD=AE,N1 = N2, BD = CE,则有4ABD2,理由是;△ ABF /,理由是.3 .如图,在4ABC 和ABAD 中,因为 AB = BA,NABC=NBAD, =,根 据“SAS”可以得到4ABC2ABAD.4 .如图,要用“SAS”证4ABC2AADE,若AB=AD, AC=AE,则还需条件( ).5 .如图,OA=OB, OC = OD,NO=50°,N D = 35°,则NAEC 等于( ).A. 60°B. 50°C. 45°D. 30°A.NB = ND C.N1 = N2 BNC=NED.N3 = N4(第4皿(第56.如图,如果AE=CF, AD〃BC, AD = CB,那么^ADF和ACBE全等吗?请说明理由.律f题)7.如图,已知AD与BC相交于点O,NCAB = NDBA, AC = BD.求证: (1)NC=ND;(2)AAOC^ABOD.C第T题)8.如图,AACD和4BCE都是等腰直角三角形,NACD=NBCE=90°, AE交DC于F, BD分别交CE、AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.(第8题)9.如图,在4ABC 中,AB=AC, AD 平分/BAC.求证:NDBC=NDCB.(第KJ题)10.如图,4ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE〃BC.(第门题)角角边两角分别相等且其中一组等角的对边相等的两个三角形全等,可以简写成“角角边”或“AAS”. 例1、如图,在4ABC中,N ABC=45°, H是高AD和高BE的交点,试说明BH=AC.例 2、如图,N ACB=90°, AC二BC, BE±CE, AD±CE 于 D, AD=2.5cm, DE=1.7cm. 求BE的长.例3、如图,在4ABC中,AC±BC, CE±AB于E, AF平分/CAB交CE于点F,过F作FD〃 BC交AB于点D.求证:AC=AD.例 3.如图,AD 平分/BAC, DEXAB 于 E, DFXAC 于 F,且 DB二DC,求证:EB=FC例4.如图,在4ABC中,D是BC的中点,DELAB, DFXAC,垂足分别是E, F, BE=CF. 求证:AD 是4ABC的角平分线.例5.如图,在4ABC中,AB二CB,N ABC=90°, D为AB延长线上的一点,点E在BC 边上,连接 AE, DE, DC, AE二CD.求证:NBAE二NBCD.例6.如图,D是BC上一点,DEL AB, DF±AC, E, F分别为垂足,且AE=AF.(1)AAED与4AFD全等吗?为什么?(2)AD平分/BAC吗?为什么?例 7.如图,已知 ACLBC, BDLAD, BC 与 AD 交于 O, AC=BD.试说明:ZOAB=ZOBA.例8.如图,NACB 和/ADB都是直角,BC二BD, E是AB上任意一点.求证:CE=DE.例 9.如图,已知RtAABC^RtAADE,ZABC=Z ADE=90°, BC 与 DE 相交于点 F, CD, EB.连接(1)图中还有几对全等三角形,请你一一列举;(2)求证:CF=EF.例10.如图,在四边形ABCD中,AC 平分/BAD,并且CB=CD.求/ABC+NADC的度数.例11. (1)如图①,A, E, F, C四点在一条直线上,AE二CF,过点E, F分别作DELAC, 8尸,八0连接BD交AC于点G,若AB二CD,试说明FG=EG.(2)若将4DCE沿AC方向移动变为如图②的图形,(1)中其他条件不变,上述结论是否仍成立?请说明理由.B BD D①. ②课后练习:1.如图,点C在线段AB的延长线上,AD = AE, BD = BE, CD = CE,则图中共有对全等三角形,它们是2.如图,若AB = CD, AC=BD,则可用“SSS”证 23.如图,已知 AB = DC, BE=CF,若要利用“SSS”得到4ABE2△DCF,还需增加的一个条件是.i第3题)(第-I题)4.如图所示是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若想固定其形状不变,需要加钉一根木条,可钉在().A. AE 上B. EF 上C. CF 上D. AC 上5.如图,已知E、C两点在线段BF上,BE=CF, AB=DE, AC=DF.求证:AABC2A DEF.& E C F(第三⑦6.如图,在4ABC和4DCB中,AC与BD相交于点O, AB=DC, AC=BD.(1)求证:4ABC 2ADCB;(2)AOBC的形状是.(直接写出结论,不需证明)<第6题)7、如图,在口ABCD中,点E、F分别是AD、BC的中点,AC 与EF相交于点O.(1)过点B作AC的平行线BG,延长EF交BG于点H;(2)在(1)的图中,找出一个与4BFH全等的三角形,并证明你的结论.8、如图,已知BD±AB, DC,AC,垂足分别为点B、C, CD=BD, AD 平分/BAC吗,为什么?9.如图,四边形ABCD是正方形,点G是BC上的任意一点,DELAG于E, BF#DE,交 AG于F.那NAF与BF+EF相等吗?请说明理由.B G C10.如图,BD、CE分别是4ABC的边AC和边AB上的高,如果BD = CE,试证明AB = AC.11.如图,在RtAABC和RtABAD中,AB为斜边,AC=BD, BC、AD相交于点E (1)请说明AE=BE 的理由;(2)若N AEC=45°, AC = 1,求 CE 的长.12.如图,在4ABC中,D是BC的中点,DELAB, DFLAC,垂足分别是点E、F, BE= CF.(1)图中有几对全等的三角形?请一一列出;(2)选择一对你认为全等的三角形进行证明.4练习21.如图,已知NB = NDEF, AB=DE,要证明△ ABC2△DEF.(1)若以“ASA”为依据,还缺条件;(2)若以“AAS”为依据,还缺条件£(第1期】《第2题)2.如图,已知AD平分/BAC,且NABD=NACD,则由“AAS”可直接判定△2 △.3.如图,已知AB=AC,要根据“ASA”得到以BE2AACD,应增加一个条件是 _______________(第3 (第4(第54.如图,点P是/AOB的平分线OC上的一点,PD±OA, PE LOB,垂足分别为点D、E, 则图中有对全等三角形,它们分别是.5.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是().A.带①去B.带②去C.带③去D.带①和②去6.如图,已知AC平分/8八口,/1 = /2, AB与AD相等吗?请说明理由.C£第67.如图,点B、E、F、C在同一直线上,已知NA=ND, 需要补充的一个条件是.(写出一个即可)NB = NC,要使4ABF 2ADCE,8.如图,在4ABC中,N ABC=45°, H是高AD和高BE的交点,试说明BH=AC.A9.如图,已知点A、D、B、E在同一条直线上,且AD=BE,NA=NFDE,则AABC2A DEF.请你判断上面这个判断是否正确,如果正确,请给出说明;如果不正确,请添加一个适当条件使它成为正确的判断,并加以说明.10.已知:如图,AB=AE,N1 = N2,NB = NE.求证:BC=ED.21。
全等三角形的证明几种方法

一、倍长中线(线段)造全等例1、(“希望杯”试题)已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________.例2、如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小.例3、如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE.二、截长补短1、如图,ABC ∆中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC2、如图,AC ∥BD ,EA,EB 分别平分∠CAB,∠DBA ,CD 过点E ,求证;AB =AC+BD3、如图,已知在ABC 内,060BAC ∠=,040C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,BQ 分别是BAC ∠,ABC ∠的角平分线。
求证:BQ+AQ=AB+BP4、如图,在四边形ABCD 中,BC >BA,AD =CD ,BD 平分ABC ∠, 求证: 0180=∠+∠C A5、如图在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任意一点,求证;AB-AC >PB-PCD C B AEDFCBAED CB AEDCBACDBADCBAP21DCBAPQCBA三、平移变换例1 AD 为△ABC 的角平分线,直线MN ⊥AD 于A.E 为MN 上一点,△ABC 周长记为A P ,△EBC周长记为B P .求证B P >A P .例2 如图,在△ABC 的边上取两点D 、E ,且BD=CE ,求证:AB+AC>AD+AE.四、借助角平分线造全等1、如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O ,求证:OE=OD2、如图,△ABC 中,AD 平分∠BAC ,DG ⊥BC 且平分BC ,DE ⊥AB 于E ,DF ⊥AC 于F. (1)说明BE=CF 的理由;(2)如果AB=a ,AC=b ,求AE 、BE 的长.五、旋转例1 正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,BE+DF=EF ,求∠EAF 的度数.例2 D 为等腰Rt ABC ∆斜边AB 的中点,DM ⊥DN,DM,DN 分别交BC,CA 于点E,F 。
三角形的相似和全等的判断方法

三角形的相似和全等的判断方法三角形是几何图形中最基本的形状之一,相似和全等是用来描述三角形之间关系的重要概念。
相似和全等三角形的判断方法对于解决几何问题和计算三角形的性质非常有用。
本文将介绍三角形的相似和全等的判断方法,并提供相关示例。
一、相似三角形的判断方法相似三角形指具有相同形状但尺寸不同的三角形。
判断两个三角形是否相似有以下几种方法:1. AA相似定理(角-角相似定理)AA相似定理是指两个三角形的对应角度相等时,这两个三角形相似。
例如,如果两个三角形的两个内角相等,则它们是相似的。
具体表达式如下:∠A₁ = ∠A₂,∠B₁ = ∠B₂,那么△ABC ~ △A'B'C'2. SAS相似定理(边-角-边相似定理)SAS相似定理是指两个三角形的某一对相对边的比例相等,加上对应的两个内角相等,则这两个三角形相似。
具体表达式如下:AB/CD = AC/BD,∠A = ∠D,那么△ABC ~ △ADC3. SSS相似定理(边-边-边相似定理)SSS相似定理是指两个三角形的对应边的比例相等,则这两个三角形相似。
具体表达式如下:AB/CD = BC/DE = AC/CE,那么△ABC ~ △CDE二、全等三角形的判断方法全等三角形指具有相同形状且尺寸完全相等的三角形。
判断两个三角形是否全等的方法有以下几种:1. SSS全等定理(边-边-边全等定理)SSS全等定理是指两个三角形的对应边长相等,则这两个三角形全等。
具体表达式如下:AB=CD,BC=DE,AC=CE,那么△ABC ≌△CDE2. SAS全等定理(边-角-边全等定理)SAS全等定理是指两个三角形的某一对相对边的比例相等,加上夹角相等和对应边相等,则这两个三角形全等。
具体表达式如下:AB=CD,BC=DE,∠B=∠E,那么△ABC ≌△ADE3. ASA全等定理(角-边-角全等定理)ASA全等定理是指两个三角形的两个对应角相等,加上夹边相等,则这两个三角形全等。
全等三角形的证明过程

全等三角形的证明过程引言:全等三角形是几何学中的基本概念之一,它意味着两个三角形的所有对应边长和对应角度完全相等。
全等三角形的证明过程可以通过多种方法展示,其中包括SSS(边边边)法、SAS(边角边)法、ASA(角边角)法、AAS(角角边)法和HL(斜边直角边)法等。
本文将重点介绍这些方法的证明过程,以帮助读者更好地理解全等三角形的概念和性质。
一、SSS法(边边边法):SSS法是最直接和简单的证明方法之一。
它要求两个三角形的所有三条边分别相等,即边边边相等。
具体证明过程如下:步骤1:已知两个三角形ABC和DEF,其中AB = DE,BC = EF,AC = DF。
步骤2:由于AB = DE,BC = EF,AC = DF,所以三角形ABC和三角形DEF的三条边分别相等。
步骤3:根据边边边相等的定义,可以得出结论:三角形ABC全等于三角形DEF。
二、SAS法(边角边法):SAS法是另一种常用的证明方法,它要求两个三角形的两条边和它们之间的夹角分别相等,即边角边相等。
具体证明过程如下:步骤1:已知两个三角形ABC和DEF,其中AB = DE,∠BAC = ∠EDF,BC = EF。
步骤2:由于AB = DE,∠BAC = ∠EDF,BC = EF,所以三角形ABC的两条边和夹角分别等于三角形DEF的两条边和夹角。
步骤3:根据边角边相等的定义,可以得出结论:三角形ABC全等于三角形DEF。
三、ASA法(角边角法):ASA法要求两个三角形的两个角和它们之间的边分别相等,即角边角相等。
具体证明过程如下:步骤1:已知两个三角形ABC和DEF,其中∠BAC = ∠EDF,AC = DF,∠ABC = ∠DEF。
步骤2:由于∠BAC = ∠EDF,AC = DF,∠ABC = ∠DEF,所以三角形ABC的两个角和边分别等于三角形DEF的两个角和边。
步骤3:根据角边角相等的定义,可以得出结论:三角形ABC全等于三角形DEF。
三角形全等证明方法
D
C
例8
已知,如图,AC=BD,AD⊥AC,BC⊥BD, 求证:AO=BO
A B
O
D
C
(1)文字语言:
斜边和一条直角边分别相等的两个直角三角形全等。 D
(2)图形语言: (3)几何语言:
在RtΔABC和Rt ΔDEF中, ∠ACB= ∠DFE=90 AB=DE AC=DF ∴ Rt ΔABC≌Δ Rt DEF(HL)
0
A
F
C B
E
例7
已知,如图,AC=BD,AD⊥AC,BC⊥BD, 求证:AD=BC
在ΔABC和ΔDEF中, ∠BAC= ∠EDF AB=DE ∠ ABC=∠DEF ∴ ΔABC≌ΔDEF(ASA)
C B
E
⌒
F
⌒
例4
已知,如图,O是AB中点,∠A=∠B,求证: (1)Δ AOC≌ Δ BOD B C (2)点O是CD的中点
O D
A
3、角角边(AAS)
(1)文字语言:
⌒
),就可以
O
⌒
C
D
例2
如图,AB=AC,AE=AD,∠BAD=∠CAE,求 证:ΔABD≌ΔACE
A
A
D
E C
B
例3如图,AB=AC,AE来自AD,求证:ΔABD≌ΔACE
A
E
D
B
C
2、角边角(ASA)
(1)文字语言:
两角及其夹边分别相等的两个三角形全等。
(2)图形语言: (3)几何语言:
A
D
4、边边边(SSS)
(1)文字语言:
三边分别相等的两个三角形全等。
(2)图形语言: (3)几何语言:
全等三角形的证明过程
全等三角形的证明过程全等三角形是指具有相同形状和大小的三角形。
证明两个三角形全等的方法主要有以下几种:SSS(边边边)、SAS(边角边)、ASA (角边角)、AAS(角角边)和HL(斜边和直角边)。
一、SSS(边边边)法SSS法是通过已知两个三角形的三边分别相等来证明两个三角形全等。
具体证明过程如下:已知:△ABC≌△XYZ证明:AB=XY,BC=YZ,AC=XZ证明过程:1. 画出△ABC和△XYZ,假设AB=XY,BC=YZ,AC=XZ;2. 分别连接AC和XZ,假设它们的交点为点O;3. 根据三角形的性质,△ABC和△XYZ的内角和相等,即∠ABC=∠XYZ,∠ACB=∠XZY;4. 根据三角形内角和为180°的性质,可得∠BAC=∠YXZ;5. 由∠BAC=∠YXZ,可得△ABC≌△XYZ,即两个三角形全等。
二、SAS(边角边)法SAS法是通过已知两个三角形的两边和夹角分别相等来证明两个三角形全等。
具体证明过程如下:已知:△ABC≌△XYZ证明:AB=XY,∠BAC=∠YXZ,BC=YZ1. 画出△ABC和△XYZ,假设AB=XY,∠BAC=∠YXZ,BC=YZ;2. 根据SAS法则,如果两个三角形的两边和夹角分别相等,则两个三角形全等;3. 可以得出结论:△ABC≌△XYZ。
三、ASA(角边角)法ASA法是通过已知两个三角形的两个角和夹边分别相等来证明两个三角形全等。
具体证明过程如下:已知:△ABC≌△XYZ证明:∠BAC=∠YXZ,AC=XZ,∠ACB=∠XZY证明过程:1. 画出△ABC和△XYZ,假设∠BAC=∠YXZ,AC=XZ,∠ACB=∠XZY;2. 根据ASA法则,如果两个三角形的两个角和夹边分别相等,则两个三角形全等;3. 可以得出结论:△ABC≌△XYZ。
四、AAS(角角边)法AAS法是通过已知两个三角形的两个角和一条边分别相等来证明两个三角形全等。
具体证明过程如下:已知:△ABC≌△XYZ证明:∠BAC=∠YXZ,∠ACB=∠XZY,AB=XY1. 画出△ABC和△XYZ,假设∠BAC=∠YXZ,∠ACB=∠XZY,AB=XY;2. 根据AAS法则,如果两个三角形的两个角和一条边分别相等,则两个三角形全等;3. 可以得出结论:△ABC≌△XYZ。
12.2三角形全等的判定-小结4种方法
D
1
A
2
B
E
C
基本图形证明全等
• 已知:如图,AC=BD,AC∥BD • 求证:△AOC≌△BOD
C A O B D
基本图形证明全等
• • • • 如图,AD=AE, 若要判定△ADC≌△AEB 1利用“SAS” ,则需添加条件________ 2利用“ASA” ,则需添加条件________ 3利用“AAS” ,则需添加条件________
A D E
B
C
基本图形证明全等
• 已知:如图,AB∥DC,AD∥BC • 求证:△ABC≌△CDA
D
C
A
B
基本图形证明全等
• 已知:AB=AD,BE=DE,C为AE延长线上一点. • 求证:CB=CD
D C
A B=DF,BE=CF • 求证:⑴△ABC≌△DEF; • ⑵AB∥DE; • ⑶AC∥DF
A D
B
E
C
F
基本图形证明全等
• 已知:如图,AB=DC,∠A=∠D • 求证:⑴△ABE≌△DCE; • ⑵△ABC≌△DCB
A E
D
B
C
基本图形证明全等
• 已知:如图,AD=AB,AE=AC,∠1=∠2 • 求证:⑴△ADE≌△ABC; • ⑵∠D=∠B
12.2 三角形全等的判定
利用“三边”判断全等
利用“两边及夹角”判断 全等
利用“两角及夹边”判断 全等
利用“两角及一角对边”判断全 等
基本图形证明全等
• 已知:如图,AD=CE,DC=EB,C是AB中点, • 求证:⑴△ACD≌△CBE; • ⑵AD∥CE; • ⑶DC∥EB
D
E
全等三角形证明方法总结
敷学培fit 方法*»1-2価明三廊形全箸(舍倦段相著、角相等)的几种方法一、三角形全等的判定:① 三组对应边分别相等的两个三角形全等(SSSJo 【最简单,考得也最少,考试过程中没有注意点】② 有两边及其夹角对应相等的两个三角形全等(SAS)。
【最常考,而且考试就考“角是不是两边夹角”】 r 当题目中得出“2对边及1对角相等”时,一定要检査“角是不是两边夹角“。
i ③ E鬲爲反養美另另航蒔京满不三浦花荃,新忑「① 有两角及一角的对边对应相等的两个三角形全等(AAS)o⑤直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)o F ............................ } j 直角三角形全等的特殊证法。
但当该方法不行时,前面的4种方法也能用来证明直角三角形全等。
: !如何找斜边:斜边是直角所对的边,只要找90。
的角所对的边就能找到斜边: ................................................................................................. J 二、全等三角形的性质: ① 全等三角形的对应边相等;全等三角形的对应角相等。
② 全等三角形的周长、面积相等。
③全等三角形的对应边上的高对应相等。
①全等三角形的对应角的角平分线相等。
⑤全等三角形的对应边上的中线相等。
几种常见全等三箱形的基本图形: 【平移】i 题目中只要得出“1对边及2对角相等",那就能证明三角\ ;形全等,唯一要做的就是区分好是ASA 还是AAS三、找全等三痢形的方法:①可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中:②可以从己知条件出发,看己知条件可以确定哪两个三角形相等;③从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;①若上述方法均不行,可考虑添加辅助线,构造全等三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
寻找全等三角形的几种方法
利用全等三角形的性质可以证明分别属于两个三角形中的线段或角相等. 在证明线段或角相等时,解题的
关键往往是根据条件找到两个可能全等的三角形,再证明这两个三角形全等,最后得出结论.下面介绍寻找
全等三角形的几种方法,供同学们参考.
一、利用公共角
例 1 如图 1,AB = AC, AE = AF. 求证: ∠B =∠C.
分析:要证明∠B =∠C,只需证明△BOE≌△COF 或△ABF≌△ACE. 而由图形可知∠A 是公共角,又由
已知条件 AB = AC, AE= AF,所以△ABF≌△ACE,于是问题获证.
二、利用对顶角(题目中的隐含条件)
例 2 如图 2,B、E、F、D 在同一直线上,AB = CD,BE =DF,AE = CF,连接 AC 交 BD 于点 O.
求证: AO = CO.
分析:要证明 AO = CO,只需证明△AOE≌△COF 或△AOB≌△COD 即可.根据现有条件都无法直接证
明.而由已知条件 AB =CD,BE = DF, AE = CF 可直接证明△ABE≌△CDF,则 有∠AEB=∠CFD,
进而有∠AEO =∠CFO,再 利 用 对 顶 角 相 等,即可 证 明。
三、利用公共边(题目中的隐含条件)
例 3 如图 3,AB = CD,AC = BD.求证:∠B =∠C.
分析:设 AC 与 BD 交于点 O,此时∠B 与∠C 分别在△AOB和△DOC 中,而用现有的已知条件是不可
能直接证明这两个三角形全等的,需添加辅助线来构造另一对全等三角形.此时可以连接 AD,那么 AD
是△ABD 和△DCA 的公共边,这样可以证明△ABD≌△DCA.
四、利用相等线段中的公共部分
例 4 如图 4,E、F 是平行四边形 ABCD 的对角线 AC 上的两点,AF = CE. 求证:BE∥DF.
分析:要证明 BE∥DF, 只需证明∠BEC =∠DFA,此时可以转换为证明∠AEB =∠CFD, 进而证明△AEB
≌△CFD.
图3
图2
图1
图4
F
C
O
A
C
E
O
BOECAACDA
D
B
F
F
B
D
B
E
五、利用等角中的公共部分
例 5 如图 5,已知∠E = 30°,AB = AD,AC = AE,∠BAE=∠DAC.求∠C 的度数.
分析:已知∠E = 30°,要求∠C,可考虑证明△ABC≌△ADE,由∠BAE =∠DAC,结合图形可知∠BAC =
∠DAE,于是问题获解.
六、利用互余或互补角的性质
考点:同角或等角的余角相等
例 6 如图 6,已知∠DCE = 90°,∠DAC = 90°,BE⊥AC 于B, 且 DC = EC, 能否找出与 AB+AD 相
等的线段,并说明理由.
分析:由于 AC = AB+BC,可以猜想 AC = AB+AD,或 BE =AB+AD,此时只需证明 AD = BC 即可.而
事实上,用同角的余角相等可得到∠DCA =∠E,从而证明△ADC≌△BCE,问题获证.
例7,如图7—1,在正方形ABCD中,M,N分别是CD,AD上的点,BM与CN相交于点O,若∠BON=90°,
求证:△DNC ≌△CMB.
变式:如图7—2,在等边△ABC中,M,N分别是AC,AB上的点,BM与CN相交于点O,若∠BON=60°,
求证:△ANC≌△CMB
图7-2图6图7-1
图5
O
M
C
O
N
BC
B
E
C
C
AD
A
B
B
A
E
D
D
A
M
N
七、利用角平分线的性质(角平分线上的点到角两边的距离相等)构造全等三角形
考点一:利用角平分线上的点到角两边的距离相等
例8,如图8,点P是∠ABC的平分线BN上一点,PE垂直AB所在的直线与E,PF垂直BC所在的直线于F,
∠PAB+∠PCB=180°。求证PA=PC.
考点二:利用截长补短法构造全等三角形
所谓截长法是指在较长得到线段上截取一条线段等于较短线段,而补短法是指延长较短的线段等于较长
的线段,通过截长补短可把分散的条件相对集中,以便构造全等三角形。
例9,如图9,在△ABC中,∠C=2∠B,∠1=∠2. 求证:AB=AC+CD.
分析:从结论分析,“截长”或“补短”都可实现问题的转化,即延长AC至E使CE=CD,或在AB上截取AF=AC.
八、利用“一线三等角”模型构造全等三角形。
所谓“一线三等角”是指一条直线上有三个相等角,如果有一条边相等则可以构造全等三角形.
类型一:直角三角形中的“一线三等角”
例10,如图10,△ABC中,∠B=90°,CD⊥AC,过D作DE⊥AB交BC延长线与E。且AC=CD ,
求证:△ABC≌△CED 。
类型二:等腰三角形中地边上的“一线三等角”
例11,如图11,在△ABC中, AB=AC,点D,E分别在AB,BC上,作∠DEF=∠B,射线EF交线段AC于F.
若DE=EF,求证:△DBE≌△ECF;
2
1
图 11
图 10
图 9
图 8
C
C
DDFEBBCABEAAFPN
A
C
B
D
E