初一年级第二次月考数学试卷
扬州市七年级(下)第二次月考数学试卷(5月份)含答案

月考试卷一、选择题(本大题共8小题,共24.0分)1.下列运算中,正确的是()A. a3+a3=a6B. a2•a3=a6C. (a2)3=a6D. (2a3)2=2a62.某种细菌用肉眼是根本看不到的,用显微镜测其直径大约是0.000005米,将0.000005用科学记数法表示为()A. 50×10-7B. 50×10-5C. 50×10-3D. 5×10-63.下列式子由左到右的变形中,属于因式分解的是()A. (x+2y)2=x2+4xy+4y2B. x2-2y+4=(x-1)2+3C. 3x2-2x-1=(3x+1)(x-1)D. m(a+b+c)=ma+mb+mc4.下列多项式中是完全平方式的是()A. 2x2+4x-4B. 16x2-8y2+1C. 9a2-12a+4D. x2y2+2xy+y25.如图,∠1=∠B,∠2=20°,则∠D=()A. 20°B. 22°C. 30°D. 45°6.如果3a7x b y+7和-7a2-4y b2x是同类项,则x,y的值是()A. x=-3,y=2B. x=2,y=-3C. x=-2,y=3D. x=3,y=-27.下列命题是真命题的是()A. 内错角相等B. 如果a2=b2,那么a3=b3C. 三角形的一个外角大于任何一个内角D. 平行于同一直线的两条直线平行8.不等式组的解集是x>1,则m的取值范围是()A. m≥1B. m≤1C. m≥0D. m≤0二、填空题(本大题共10小题,共30.0分)9.若a m=2,a n=3,则a3m+n=______.10.关于x的方程3x+2a=0的根是2,则a等于______.11.计算:已知:a+b=3,ab=1,则a2+b2=______.12.分解因式:x2-25=______.13.若(x2-mx+1)(x-1)的积中x的二次项系数为零,则m的值是______.14.若代数式x2+(a-1)x+16是一个完全平方式,则a=______.15.由3x-2y=5,得到用x表示y有式子为y=______.16.不等式组的正整数解的个数有______.17.多项式ax2-4a与多项式x2-4x+4的公因式是______.18.若不等式2x<1-3a的解集中所含的最大整数为4,则a的范围为______.三、计算题(本大题共1小题,共8.0分)19.计算:(1)(-2a2)(-3ab)2;(2)(2x-y)2-4(x-y)(x+2y).四、解答题(本大题共9小题,共88.0分)20.因式分解:(1)x2-4y2;(2)9x2+18xy+9y2.21.解方程组:(1);(2).22.解下列不等式组:(1);(2).23.已知关于x,y的方程组和有相同解,求(-a)b值.24.解不等式组,并写出它的所有非负整数解.25.已知:如图,AB∥CD,MG、NH分别是∠BME、∠DNE的角平分线.求证:MG∥NH.26.已知关于x,y的方程组(实数m是常数).(1)若-1≤x-y≤5,求m的取值范围;(2)在(1)的条件下,化简:|m+2|+|m-3|27.2013年1月,由于雾霾天气持续笼罩我国中东部大部分地区,口罩市场出现热卖,某旗舰网店用8000元购进甲、乙两种口罩,销售完后共获利2800元,进价和售价如下表:()求该网店购进甲、乙两种口罩各多少袋?(2)该网店第二次以原价购进甲、乙、两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍.甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,乙种口罩最低售价为每袋多少元?28.某学校为了改善办学条件,计划购置一批A型电脑和B型电脑.经投标发现,购买1台A型电脑比购买1台B型电脑贵500元;购买2台A型电脑和3台B型电脑共需13500元.(1)购买1台A型电脑和1台B型电脑各需多少元?(2)根据学校实际情况,需购买A、B型电脑的总数为50台,购买A、B型电脑的总费用不超过145250元.①请问A型电脑最多购买多少台?②从学校教师的实际需要出发,其中A型电脑购买的台数不少于B型电脑台数的3倍,该校共有几种购买方案?试写出所有的购买方案.答案和解析1.【答案】C【解析】解:A、a3+a3=2a3,故A错误;B、a2•a3=a5,故B错误;C、(a2)3=a6,故C正确;D、(2a3)2=4a6,故D错误.故选:C.依据合并同类项法则、同底数幂的乘法法则、幂的乘方法则、积的乘方法则进行计算即可.本题主要考查的是合并同类项法则、同底数幂的乘法法则、幂的乘方法则、积的乘方法则,熟练掌握相关法则是解题的关键.2.【答案】D【解析】解:将0.000005用科学记数法表示为5×10-6.故选:D.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】C【解析】解:A、是整式的乘法,故A错误;B、没把多项式转化成几个整式积的形式,故B错误;C、把一个多项式转化成几个整式积的形式,故C正确;D、是整式乘法,故D错误;故选:C.根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.4.【答案】C【解析】解:符合完全平方公式的只有9a2-12a+4.故选:C.完全平方公式:(a±b)2=a2±2ab+b2,形如a2±2ab+b2的式子要符合完全平方公式的形式a2±2ab+b2=(a±b)2才成立.本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.要求熟练掌握完全平方公式.5.【答案】A【解析】解:∵∠1=∠B,∴AD∥BC,∴∠D=∠2=20°.故选:A.根据平行线的判定和性质即可得到结论.本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.6.【答案】B【解析】解:由同类项的定义,得,解这个方程组,得.故选:B.本题根据同类项的定义,即相同字母的指数相同,可以列出方程组,然后求出方程组的解即可.根据同类项的定义列出方程组,是解本题的关键.7.【答案】D【解析】解:A、两直线平行,内错角相等,所以A选项错误;B、如果a2=b2,那么a3=b3或a3=-b3,所以B选项错误;C、三角形的一个外角大于任何一个不相邻的一个内角,所以C选项错误;D、平行于同一直线的两条直线平行,所以D选项正确.故选:D.根据平行线的性质对A、D进行判断;根据平方根的定义对B进行判断;根据三角形外角性质对C进行判断.本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.【答案】D【解析】解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0,故选:D.表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.9.【答案】24【解析】解:∵a m=2,a n=3,∴a3m+n=(a m)3•a n=8×3=24.故答案为:24.根据幂的乘方与积的乘方和同底数幂的乘法法则求解.本题考查了幂的乘方和积的乘方以及同底数幂的乘法,掌握各知识点的运算法则是解答本题的关键.10.【答案】-3【解析】解:把x=2代入3x+2a=0得:3×2+2a=0解得:a=-3.故填-3.虽然是关于x的方程,但是含有两个未知数,其实质是知道一个未知数的值求另一个未知数的值.本题含有一个未知的系数.根据已知条件求未知系数的方法叫待定系数法,在以后的学习中,常用此法求函数解析式.11.【答案】7【解析】解:∵a+b=3,ab=1,∴a2+b2=(a+b)2-2ab=32-2=9-2=7.故答案为:7将所求式子利用完全平方公式变形后,把a+b与ab的值代入即可求出值.此题考查了完全平方公式的运用,熟练掌握完全平方公式是解本题的关键.12.【答案】(x+5)(x-5)【解析】解:x2-25=(x+5)(x-5).故答案为:(x+5)(x-5).直接利用平方差公式分解即可.本题主要考查利用平方差公式因式分解,熟记公式结构是解题的关键.13.【答案】-1【解析】解:∵(x2-mx+1)(x-1)的积中x的二次项系数为零,∴x3-x2-mx2+mx+x-1=x3-(1+m)x2+(1+m)x-1,则1+m=0,解得:m=-1.故答案为:-1.直接利用多项式乘法运算法则去括号,进而得出二次项的系数为零,求出答案.此题主要考查了多项式乘以多项式,正确掌握多项式乘法运算法则是解题关键.14.【答案】9或-7【解析】解:∵x2+(a-1)x+16是一个完全平方式,∴a-1=±8,解得:a=9或-7,故答案为:9或-7利用完全平方公式的结构特征判断即可得到a的值.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.15.【答案】【解析】解:3x-2y=5,移项得:-2y=5-3x,解得:y=.故答案为:.将x看作已知数,y看作未知数,求出y即可.此题考查了解二元一次方程,其中将x看作已知数,y看作未知数是解本题的关键.16.【答案】3【解析】解:解①得:x≤4;解②得:x>1;不等式组的解集为:1<x≤4,不等式组的正整数解为:2,3,4,有3个,故答案为3.先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其正整数解.考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.17.【答案】x-2【解析】解:∵ax2-4a=a(x2-4)=a(x+2)(x-2),x2-4x+4=(x-2)2,∴多项式ax2-4a与多项式x2-4x+4的公因式是x-2.分别将多项式ax2-4a与多项式x2-4x+4进行因式分解,再寻找他们的公因式.本题主要考查公因式的确定,先利用提公因式法和公式法分解因式,然后再确定公共因式.18.【答案】-3≤a<-【解析】解:2x<1-3a,x<,∵不等式2x<1-3a的解集中所含的最大整数为4,∴4<≤5,解得:-3≤a<-,故答案为:-3≤a<-.先求出不等式的解集,根据最大整数为4得出关于a的不等式组,求出不等式组的解集即可.本题考查了解一元一次不等式,解一元一次不等式组,一元一次不等式的整数解的应用,解此题的关键是能求出关于a的不等式组,难度适中.19.【答案】解:(1)原式=(-2a2)(9a2b2)=-18a4b2;(2)原式=4x2-4xy+y2-4x2-4xy+8y2=9y2-8xy.【解析】(1)原式先计算乘方运算,再计算乘法运算即可求出值;(2)原式利用完全平方公式,以及多项式乘多项式法则计算,去括号合并即可得到结果.此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.20.【答案】解:(1)x2-4y2;=(x+2y)(x-2y);(2)9x2+18xy+9y2=9(x2+2xy+y2)=9(x+y)2.【解析】(1)原式利用平方差公式分解即可;(2)原式提公因式后,利用完全平方公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.21.【答案】解:(1)①+②得:3x =6,解得:x =2.x =2代入①中,解得:x =3. 所以这个方程组的解是; (2)①×2-②×3②得:x =1, 把x =1代入①中,解得:y =-1. 所以这个方程组的解是.【解析】(1)利用加减法解答即可;(2)利用加减法解答即可.本题考查了二元一次方程组,此题难度不大,计算时认真审题、选择适当的方法是关键. 22.【答案】解:(1),由不等式①,得x ≥3,由不等式②,得x ≤5,故原不等式组的解集是3≤x ≤5;(2), 由不等式①,得x ≥-2,由不等式②,得x <4,故原不等式组的解集是-2≤x <4.【解析】(1)根据解一元一次不等式组的方法可以解答本题;(2)根据解一元一次不等式组的方法可以解答本题.本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式组的方法. 23.【答案】解:因为两组方程组有相同的解,所以原方程组可化为,解方程组(1)得, 代入(2)得. 所以(-a )b =(-2)3=-8.【解析】因为两个方程组有相同的解,故只要将两个方程组中不含有a ,b 的两个方程联立,组成新的方程组,求出x 和y 的值,再代入含有a ,b 的两个方程中,解关于a ,b的方程组即可得出a,b的值.此题比较复杂,考查了学生对方程组有公共解定义的理解能力及应用能力,是一道好题.24.【答案】解:,解①得x>-2,解②得x≤.则不等式组的解集是:-2<x≤.则非负整数解是:0,1、2.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后确定非负整数解即可.本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.25.【答案】证明:∵AB∥CD,∴∠BME=∠DNE.∵MG、NH分别是∠BME、∠DNE的角平分线,∴∠EMG=∠BME,∠ENH=∠DNE,∴∠EMG=∠ENH,∴MG∥NH.【解析】由AB∥CD,利用“两直线平行,同位角相等”可得出∠BME=∠DNE,结合角平分线的定义可得出∠EMG=∠ENH,再利用“同位角相等,两直线平行”可证出MG∥NH.本题考查了平行线的判定与性质以及角平分线,利用平行线的性质结合角平分线的定义,找出∠EMG=∠ENH是解题的关键.26.【答案】解:(1),①-②,得x-y=2m-1,∵-1≤x-y≤5,-1≤2m-1≤5,解得,0≤m≤3,即m的取值范围是0≤m≤3;(2)∵0≤m≤3,∴|m+2|+|m-3|=m+2+3-m=5.【解析】(1)将题目方程组中的两个方程做差,即可得到x-y与m的关系,然后根据x-y的不等式,从而可以求得m的取值范围;(2)根据(1)中m的取值范围,可以化简题目中的式子.本题考查二元一次方程组的解,解不等式组,解题的关键是明确题意,找出所求问题需要的条件.27.【答案】解;(1)设网店购进甲种口罩x袋,乙种口罩y袋,根据题意得出:,解得:,答:甲种口罩200袋,乙种口罩160袋;(2)设乙种口罩每袋售价z元,根据题意得出:160(z-25)+2×200×(26-20)≥3680,解得:z≥33,答:乙种口罩每袋售价为每袋33元.【解析】(1)分别根据旗舰网店用8000元购进甲、乙两种口罩,销售完后共获利2800元,得出等式组成方程求出即可;(2)根据甲种口罩袋数是第一次的2倍,要使第二次销售活动获利不少于3680元,得出不等式求出即可.本题考查了列二元一次方程组解实际问题的运用及二元一次方程组的解法,列一元一次不等式解实际问题的运用及解法,在解答过程中寻找能够反映整个题意的等量关系是解答本题的关键.28.【答案】解:(1)设购买1台A型电脑需要x元,购买1台B型电脑需要y元,根据题意得:,解得:.答:购买1台A型电脑需要3000元,购买1台B型电脑需要2500元.(2)①设购买A型电脑m台,则购买B型电脑(50-m)台,根据题意得:3000m+2500(50-m)≤145250,解得:m≤40.5,∵m为整数,∴m≤40.答:A型电脑最多购买40台.②设购买A型电脑m台,则购买B型电脑(50-m)台,根据题意得:m≥3(50-m),解得:m≥37.5,∵m为整数,∴m≥38.∴有3种购买方案,方案一:购买A型电脑38台,B型电脑12台;方案二:购买A型电脑39台,B型电脑11台;方案三:购买A型电脑40台,B型电脑10台.【解析】(1)设购买1台A型电脑需要x元,购买1台B型电脑需要y元,根据“购买1台A型电脑比购买1台B型电脑贵500元;购买2台A型电脑和3台B型电脑共需13500元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)①设购买A型电脑m台,则购买B型电脑(50-m)台,根据总价=单价×数量结合购买A、B型电脑的总费用不超过145250元,即可得出关于m的一元一次不等式,解之取其中的最大整数即可得出结论;②设购买A型电脑m台,则购买B型电脑(50-m)台,根据A型电脑购买的台数不少于B型电脑台数的3倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,结合①的结论即可找出各购买方案.本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量间的关系,正确列出一元一次不等式.。
福建省福州市七年级下学期数学第二次月考试卷

福建省福州市七年级下学期数学第二次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共13题;共26分)1. (2分) (2016七下·滨州期中) 下列各式正确的是()A . =3B . (﹣)2=16C . =±3D . =﹣42. (2分)下列各式中计算正确的是()A . =-9B .C .D .3. (2分)如图,数轴上的A、B、C、D四点中,与数表示的点最接近的是()A . 点AB . 点BC . 点CD . 点D4. (2分) a和b是两个连续的整数,a˂˂b,那么a和b分别是()A . 3和4B . 2和3C . 1和2D . 不能确定5. (2分)化简:(a+1)2-(a-1)2=()A . 2B . 4C . 4aD . 2a2+26. (2分)设M=(x-3)(x-7),N=(x-2)(x-8),则M与N的关系为()A . M<NB . M>NC . M=ND . 不能确定7. (2分) (2019七下·武昌期中) 如果小华在小丽北偏东40°的位置上,那么小丽在小华的()A . 南偏西50°B . 北偏东50°C . 南偏西40°D . 北偏东40°8. (2分) (2017九上·南漳期末) △ABC绕点A按顺时针方向旋转了60°得△AEF,则下列结论错误的是()A . ∠BAE=60°B . AC=AFC . EF=BCD . ∠BAF=60°9. (2分)如图,△ABC中,AB=AC,∠B=70°,则∠A的度数是()A . 70°B . 55°C . 50°D . 40°10. (2分)乘积等于m2-n2的式子是()A . (m-n)2B . (m-n)(-m-n)C . (n -m)(-m-n)D . (m+n)(-m+n)11. (2分)(2017·磴口模拟) 4的平方根是()A . 4B . 2C . ﹣2D . 2和﹣212. (2分)如果一个图形绕着一个点至少需要旋转72°才能与它本身重合,则下列说法正确的是()A . 这个图形一定是中心对称图形B . 这个图形可能是中心对称图形C . 这个图形旋转216°后能与它本身重合D . 以上都不对13. (2分)(2017·长春) 如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A . 3a+2bB . 3a+4bC . 6a+2bD . 6a+4b二、填空题 (共9题;共9分)14. (1分) (2015七下·无锡期中) 已知方程组的解满足x﹣y=2,则k的值是________.15. (1分) (2019八上·平川期中) 的算术平方根是________ ,的相反数是________,-的倒数是________.16. (1分) (2017七下·简阳期中) 若a>b,则 ________ (用“>“或“<“填空)17. (1分)计算am•a3•________=a3m+3 .18. (1分) (2017八上·滕州期末) 的平方根是________;的值是________.19. (1分) (2017八上·江阴开学考) 已知m>0,并且使得x2+2(m﹣2)x+16是完全平方式,则m的值为________.20. (1分)(2017·顺德模拟) 如图,等腰△ABC的周长是36cm,底边为10cm,则底角的正切值是________.21. (1分)如图,△ABC中,∠ACB=90°,CD是高,若∠A=30°,BD=1,则AD=________22. (1分)(2019·平谷模拟) 如图,从边长为a的大正方形中去掉一个边长为b的小正方形,然后将剩部分剪后拼成一个长方形,这个操作过程能验证的等式是________.三、解答题 (共4题;共67分)23. (40分) (2019七下·郑州开学考) 计算:(1)−14−(−2)2+(0. 125)100×(−8)101(2) (−1)2016÷(−3)−2−(−2)× +(−2)−2(3) [(2x+y)2−(2x+y)(2x−y)]÷2y(4)24. (10分) (2017八下·高阳期末) 计算(1)(2)25. (10分)小明准备用一段长40米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为a米,由于受地势限制,第二条边长只能是第一条边长的2倍多2米.(1)请用a表示第三条边长.(2)求出a的取值范围.(3)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说出你的围法;若不能,请说明理由.26. (7分) (2020七上·温州期末) 如图1,将一副直角三角板的两顶点重合叠放于点O,其中一个三角板的顶点C落在另一个三角板的边OA上,已知∠ABO=∠DCO=90°,∠AOB=45°,∠COD=60°作∠AOD的平分线交边CD于点E。
北师大版七年级数学(下)第二次月考试卷(含解析)

北师大版七年级数学(下)数学第二次月考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列运算中正确的是()A.3a+2b=5ab B.2a2+3a2=5a5C.a10÷a5=a2D.(xy2)3=x3y62.(3分)如下字体的四个汉字中,可以看作是轴对称图形的是()A.中B.国C.加D.油3.(3分)下面每组数分别是三根小木棒的长度,它们能摆成三角形的是()A.5,1,3B.2,4,2C.3,3,7D.2,3,4 4.(3分)下列事件中,是必然事件的是()A.同位角相等B.如果a2=b2,那么a=bC.对顶角相等D.两边及其一角分别相等的两个三角形全等5.(3分)如图,点E在AD的延长线上,下列条件中能判断AB∥CD的是()A.∠1=∠4B.∠2=∠3C.∠C=∠CDE D.∠C+∠CDA=180°(5题)(6题)(7题)6.(3分)如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线,这条射线就是角的平分线,在这个操作过程中,运用了三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS 7.(3分)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则矩形MNPQ的面积是()A.10B.16C.20D.368.(3分)如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是()(8题)(10题)A.6B.5C.4D.39.(3分)若a+b=3,ab=2,则a﹣b的值为()A.1B.±1C.﹣1D .±10.(3分)如图,△ACB和△DCE均为等腰直角三角形,且∠ACB=∠DCE=90°,点A、D、E在同一条直线上,CM平分∠DCE,连接BE.以下结论:①AD=CE;②CM⊥AE;③AE=BE+2CM;④CM∥BE,正确的有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共18分)11.(3分)新冠病毒的平均直径为100纳米(1米=109纳米),则100nm可以表示为米.12.(3分)已知一个等腰三角形的一个内角为40°,则它的顶角等于.13.(3分)如果x2+2(m﹣1)x+4是一个完全平方式,则m =.14.(3分)如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中的阴影部分构成轴对称图形的概率是.14题15题16题15.(3分)如图,在△ABC中,DE是边AC的垂直平分线,AE=5cm,△ABD的周长为24cm,则△ABC的周长为cm.16.(3分)如图,在△ABC中,AB=AC ,AO平分∠BAC,OD垂直平分AB,将∠C沿着EF折叠,使得点C与点O重合,∠AFO=52°,则∠OEF=.三、解答题(共52分)17.(12分)计算(1)(﹣2x2yz)2•3x2y÷(﹣15x2y2);(2)(﹣)﹣2+(3.14﹣π)0﹣(2019×2021﹣20202);(3)先化简,再求值:[(x+3y)2﹣2x(x﹣2y)+(x+y)(x﹣y)]÷2y,其中x =﹣l,y=.18.(5分)尺规作图:已知△ABC,请用尺规在AB上找一点P,使得PB=PC(不写作法,但要保留作图痕迹).19.(5分)如图,在△ABC中,∠EGF+∠BEC=180°,∠EDF=∠C,试判断DE 与BC的位置关系并说明理由.20.(6分)小亮和小颖选用同一副扑克牌中花色为红桃的扑克牌做游戏,游戏规则为:小亮先从中任意抽取一张(不放回),所抽到的牌面数字为2,小颖再从剩余的牌中任意抽取一张(A、J、Q、K分别代表1,11,12,13),如果两人抽取的牌面数字之和为3的倍数,则小颖获胜,求小颖获胜的概率.21.(6分)“五一”期间,小华约同学一起开车到距家48千米的景点旅游,出发前,汽车油箱内储油55升,行驶过程中汽车的平均耗油量为0.6升/千米.(1)写出剩余油量y(升)与行驶路程x(千米)的关系式(不要求写出x的取值范围);(2)如果往返途中不加油,他们能否回到家?请说明理由.22.(8分)小明将一个底面为正方形,高为n的无盖纸盒展开,如图(a)所示.(1)请你计算图(a)所示的无盖纸盒的表面展开图的面积S1;(2)将阴影部分剪拼成一个长方形,如图(b)所示,请你计算该长方形的面积S2.(3)比较(1)(2)的结果,你得出什么结论?23.(10分)(1)问题提出:如图(1),将长方形ABCD的一个角沿AE折叠,使点B落在对角线AC上的点B'处,若∠ACB=36°,则∠EAD=;(2)问题探究:如图(2),将长方形ABCD的两个角分别沿AE、CF折叠,使点B、D分别落在对角线AC上的B'、D'处.试说明:D'F=B'E.(3)问题解决:如图(3),长方形ABCD中,AB=6,BC=8,对角线AC=10,点E在AC上,CE=CB,连接BE,将∠EBC折叠,折痕过BE的中点M,交BC 于点N,点B对应点B'落在对角线AC上,求四边形BMB'N的面积.七年级(下)第二次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列运算中正确的是()A.3a+2b=5ab B.2a2+3a2=5a5C.a10÷a5=a2D.(xy2)3=x3y6【分析】分别根据合并同类项法则,同底数幂的除法法则以及积的乘方运算法则逐一判断即可.【解答】解:A.3a与2b不是同类项,所以不能合并,故本选项不合题意;B.2a2+3a2=5a2,故本选项不合题意;C.a10÷a5=a5,故本选项不合题意;D.(xy2)3=x3y6,正确.故选:D.【点评】本题主要考查了合并同类项、同底数幂的除法,幂的乘方与积的乘方,熟记相关运算法则是解答本题的关键.2.(3分)如下字体的四个汉字中,可以看作是轴对称图形的是()A.中B.国C.加D.油【分析】根据轴对称图形的概念求解.【解答】解:A、“中”可以看作是轴对称图形,故本选项符合题意;B、“国”不是轴对称图形,故本选项不合题意;C、“加”不是轴对称图形,故本选项不合题意;D、“油”不是轴对称图形,故本选项不合题意.故选:A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.(3分)下面每组数分别是三根小木棒的长度,它们能摆成三角形的是()A.5,1,3B.2,4,2C.3,3,7D.2,3,4【分析】看哪个选项中两条较小的边的和不大于最大的边即可.【解答】解:A、3+1<5,不能构成三角形,故A错误;B、2+2=4,不能构成三角形,故B错误;C、3+3<7,不能构成三角形,故C错误;D、2+3>4,能构成三角形,故D正确,故选:D.【点评】本题主要考查了三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.4.(3分)下列事件中,是必然事件的是()A.同位角相等B.如果a2=b2,那么a=bC.对顶角相等D.两边及其一角分别相等的两个三角形全等【分析】根据平行线的性质、有理数的乘方、对顶角相等、全等三角形的判定定理判断即可.【解答】解:A、两直线平行,同位角相等,∴同位角相等,是随机事件;B、如果a2=b2,那么a=b,是随机事件;C、对顶角相等,是必然事件;D、两边及其一角分别相等的两个三角形全等,是随机事件;故选:C.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(3分)如图,点E在AD的延长线上,下列条件中能判断AB∥CD的是()A.∠1=∠4B.∠2=∠3C.∠C=∠CDE D.∠C+∠CDA=180°【分析】结合图形分析两角的位置关系,根据平行线的判定方法判断.【解答】解:A、∠1和∠4是AD、BC被BD所截得到的一对内错角,∴当∠1=∠4时,可得AD∥BC,故A不正确;B、∠2和∠3是AB、CD被BD所截得到的一对内错角,∴当∠2=∠3时,可得AB∥CD,故B正确;C、∠C和∠CDE是AD、BC被CD所截得到的一对内错角,∴当∠C=∠CDE时,可得AD∥BC,故C不正确;D、∠C和∠ADC是AD、BC被CD所截得到的一对同旁内角,∴当∠C+∠ADC=180°时,可得AD∥BC,故D不正确;故选:B.【点评】本题主要考查平行线的判定,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a∥b,b∥c⇒a∥c.6.(3分)如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线,这条射线就是角的平分线,在这个操作过程中,运用了三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS【分析】根据题目所给条件可利用SSS定理判定△ADC≌△ABC,进而得到∠DAC =∠BAC.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,∴AC就是∠DAB的平分线.故选:A.【点评】此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定定理:SSS、SAS、ASA、AAS、HL.7.(3分)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则矩形MNPQ的面积是()A.10B.16C.20D.36【分析】易得当R在PN上运动时,面积不断在增大,当到达点P时,面积开始不变,到达Q后面积不断减小,得到PN和QP的长度,相乘即可得所求的面积.【解答】解:∵x=4时,及R从N到达点P时,面积开始不变,∴PN=4,同理可得QP=5,∴矩形的面积为4×5=20.故选:C.【点评】考查动点问题的函数的有关计算;根据所给图形得到矩形的边长是解决本题的关键.8.(3分)如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是()A.6B.5C.4D.3【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【解答】解:过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,∴S△ABC =×4×2+AC×2=7,解得AC=3.故选:D.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.9.(3分)若a+b=3,ab=2,则a﹣b的值为()A.1B.±1C.﹣1D .±【分析】原式利用完全平方公式变形,将已知等式代入计算即可求出值.【解答】解:∵a+b=3,ab=2,∴(a﹣b)2=(a+b)2﹣4ab=9﹣8=1,则a﹣b=±1,故选:B.【点评】此题考查了平方根,以及完全平方公式,熟练掌握平方根定义及公式是解本题的关键.10.(3分)如图,△ACB和△DCE均为等腰直角三角形,且∠ACB=∠DCE=90°,点A、D、E在同一条直线上,CM平分∠DCE,连接BE.以下结论:①AD=CE;②CM⊥AE;③AE=BE+2CM;④CM∥BE,正确的有()A.1个B.2个C.3个D.4个【分析】由“SAS”可证△ACD≌△BCE,可得AD=BE,∠ADC=∠BEC,可判断①,由等腰直角三角形的性质可得∠CDE=∠CED=45°.CM⊥AE,可判断②,由全等三角形的性质可求∠AEB=∠CME=90°,可判断④,由线段和差关系可判断③,即可求解.【解答】解:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC,故①错误,∵△DCE为等腰直角三角形,CM平分∠DCE,∴∠CDE=∠CED=45°,CM⊥AE,故②正确,∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°,∴∠AEB=∠CME=90°,∴CM∥BE,故④正确,∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.故③正确,故选:C.【点评】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,证明△ACD≌△BCE是本题的关键.二、填空题(每小题3分,共18分)11.(3分)新冠病毒的平均直径为100纳米(1米=109纳米),则100nm可以表示为1×10﹣7米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:100nm可以表示为100×10﹣9=1×10﹣7米.故答案为:1×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)已知一个等腰三角形的一个内角为40°,则它的顶角等于40°或100°.【分析】分两种情况:当40°的内角为顶角时;当40°的角为底角时,利用三角形的内角和结合等腰三角形的性质可计算求解.【解答】解:当40°的内角为顶角时,这个等腰三角形的顶角为40°;当40°的角为底角时,则该等腰三角形的另一底角为40°,∴顶角为:180°﹣40°﹣40°=100°,故答案为40°或100°.【点评】本题主要考查等腰三角形的性质,三角形的内角和定理,注意分类讨论.13.(3分)如果x2+2(m﹣1)x+4是一个完全平方式,则m=3或﹣1.【分析】利用完全平方公式的结构特征判断即可得到m的值.【解答】解:∵x2+2(m﹣1)x+4是完全平方式,∴m﹣1=±2,m=3或﹣1故答案为:3或﹣1【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.(3分)如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中的阴影部分构成轴对称图形的概率是.【分析】直接利用轴对称图形的性质结合概率公式得出答案.【解答】解:只有将②③④中的一个小正方形涂黑,图中的阴影部分才构成轴对称图形,故图中的阴影部分构成轴对称图形的概率为:=.故答案为:.【点评】此题主要考查了利用轴对称设计图案以及概率公式,正确掌握轴对称图形的性质是解题关键.15.(3分)如图,在△ABC中,DE是边AC的垂直平分线,AE=5cm,△ABD的周长为24cm,则△ABC的周长为34cm.【分析】根据线段垂直平分线的性质结合△ABD的周长可求AB+BC=24,进而可求解△ABC的周长.【解答】解:∵DE是边AC的垂直平分线,AE=5cm,∴AD=CD,AC=2AE=10,∵△ABD的周长为24cm,∴AB+BD+AD=AB+BD+CD=AB+BC=24(cm),∴C△ABC=AB+BC+AC=24+10=34(cm).故答案为34.【点评】本题主要考查线段垂直平分线的性质,灵活运用线段垂直平分线的性质是解题的关键.16.(3分)如图,在△ABC中,AB=AC,AO平分∠BAC,OD垂直平分AB,将∠C沿着EF折叠,使得点C与点O重合,∠AFO=52°,则∠OEF =104°.【分析】连接OB、OC,根据线段垂直平分线上的点到两端点的距离相等可得OA =OB,再由角平分线条件与等腰三角形的条件证明△OAB≌△OAC,得OA=OB =OC,得∠OBA=∠OAB=∠OAC=∠OCA,根据折叠性质得OF=CF,进而求得∠OCF,再由三角形内角和定理,求得∠OBC+∠OCB,进而由等腰三角形的性质求得∠OCB ,再由折叠性质求得结果.【解答】解:连接OB、OC,∵OD垂直平分AB,∴OA=OB,∴∠OAB=∠OBA,∵AO平分∠BAC,∴∠BAO=∠CAO,∵AB=AC,AO=AO,∴△OAB≌△OAC(SAS),∴OB=OC,∠ABO=∠ACO,∴OA=OB=OC,∴∠OBA=∠OAB=∠OAC=∠OCA,∵∠AFO=52°,∴∠OFC=180°﹣∠AFO=128°,由折叠知,OF=CF,∴∠OCF=∠COF=,∴∠OBA=∠OAB=∠OAC=∠OCA=26°,∴∠OBC+∠OCB=180°﹣4×26°=76°,∵OB=OC,∴∠OBC=∠OCB=38°,由折叠知,OE=CE,∠OEF=∠CEF,∴∠COE=∠OCE=38°,∴∠OEC=180°﹣2×38°=104°.故答案为:104°.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,作辅助线,构造出等腰三角形是解题的关键.三、解答题(共52分)17.(12分)计算(1)(﹣2x2yz)2•3x2y÷(﹣15x2y2);(2)(﹣)﹣2+(3.14﹣π)0﹣(2019×2021﹣20202);(3)先化简,再求值:[(x+3y)2﹣2x(x﹣2y)+(x+y)(x﹣y)]÷2y,其中x =﹣l,y =.【分析】(1)先算积的乘方、再算乘法,最后算除法即可求解;(2)先根据负整数指数幂、零指数幂,平方差公式计算,再算加减法即可求解;(3)原式中括号中第一项利用完全平方公式展开,第二项利用单项式乘多项式法则化简,第二项利用平方差公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,将x与y的值代入计算即可求出值.【解答】解:(1)(﹣2x2yz)2•3x2y÷(﹣15x2y2)=4x4y2z2•3x2y÷(﹣15x2y2)=12x6y3z2÷(﹣15x2y2)=﹣x4yz2;(2)(﹣)﹣2+(3.14﹣π)0﹣(2019×2021﹣20202)=9+1﹣[(2020﹣1)×(2020+1)﹣20202]=9+1﹣(20202﹣1﹣20202)=9+1+1=11;(3)[(x+3y)2﹣2x(x﹣2y)+(x+y)(x﹣y)]÷2y=(x2+6xy+9y2﹣2x2+4xy+x2﹣y2)÷2y=(10xy+8y2)÷2y=5x+4y,当x=﹣l,y =时,原式=﹣5+2=﹣3.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.18.(5分)尺规作图:已知△ABC,请用尺规在AB上找一点P,使得PB=PC(不写作法,但要保留作图痕迹).【分析】作线段AB的垂直平分线交AB于点P,点P即为所求.【解答】解:如图,点P即为所求.【点评】本题考查作图﹣复杂作图,线段的垂直平分线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.19.(5分)如图,在△ABC中,∠EGF+∠BEC=180°,∠EDF=∠C,试判断DE 与BC的位置关系并说明理由.【分析】本题主要考查平行线的性质与判定,根据同旁内角互补两直线平行可判断DF∥AC,进而可得∠EDF=∠BFD,再利用平行线的判定可求解.【解答】解:DE∥BC.理由如下:∵∠EGF+∠BEC=180°,∴DF∥AC,∴∠BFD=∠C,∵∠EDF=∠C,∴∠EDF=∠BFD,∴DE∥BC.【点评】本题主要考查平行线的性质与判定,掌握平行线的性质与判定定理是解题的关键.20.(6分)小亮和小颖选用同一副扑克牌中花色为红桃的扑克牌做游戏,游戏规则为:小亮先从中任意抽取一张(不放回),所抽到的牌面数字为2,小颖再从剩余的牌中任意抽取一张(A、J、Q、K分别代表1,11,12,13),如果两人抽取的牌面数字之和为3的倍数,则小颖获胜,求小颖获胜的概率.【分析】用列表法列举出所有可能出现的结果,从中找出“两人抽取的牌面数字之和为3的倍数”的结果数,进而求出概率.【解答】解:用列表法表示所有可能出现的结果情况如下:共有12种等可能出现的结果,其中“两人抽取的牌面数字之和为3的倍数”的有5种,∴P(两人抽取的牌面数字之和为3的倍数)=,即小颖获胜的概率为.【点评】本题考查列表法或树状图法求等可能事件发生的概率,使用此方法一定注意每一种结果出现的可能性是均等的,即为等可能事件.21.(6分)“五一”期间,小华约同学一起开车到距家48千米的景点旅游,出发前,汽车油箱内储油55升,行驶过程中汽车的平均耗油量为0.6升/千米.(1)写出剩余油量y(升)与行驶路程x(千米)的关系式(不要求写出x的取值范围);(2)如果往返途中不加油,他们能否回到家?请说明理由.【分析】(1)由剩余油量=55升﹣耗油量,可求解析式;(2)先求出55升油能行驶的路程,与往返的总路程比较,可求解.【解答】解:(1)由题意可得:y=55﹣0.6x;(2)当y=0时,0=55﹣0.6x,∴x =,∵<48×2,∴往返途中不加油,他们不能回到家.【点评】本题考查了一次函数关系式,根据数量关系列出函数关系式是解题的关键.22.(8分)小明将一个底面为正方形,高为n的无盖纸盒展开,如图(a)所示.(1)请你计算图(a)所示的无盖纸盒的表面展开图的面积S1;(2)将阴影部分剪拼成一个长方形,如图(b)所示,请你计算该长方形的面积S2.(3)比较(1)(2)的结果,你得出什么结论?【分析】(1)大正方形的面积减去4个小正方形的面积的差,即为无盖纸盒的表面展开图的面积S1;(2)利用矩形的面积公式即可计算该长方形的面积S2;(3)根据(1)(2)表示的面积相等即可得到结论.【解答】解:(1)无盖纸盒的表面展开图的面积S1=32﹣4n2=9﹣4n2;(2)长方形的长是:3+2n,宽是:3﹣2n,∴长方形的面积S2=(3+2n)(3﹣2n);(3)由题可得,9﹣4n2=(3+2n)(3﹣2n).【点评】本题主要考查了平方差公式的几何背景,表示出图形阴影部分面积是解题的关键.立体图形的侧面展开图体现了平面图形与立体图形的联系,立体图形问题可以转化为平面图形问题解决.23.(10分)(1)问题提出:如图(1),将长方形ABCD的一个角沿AE折叠,使点B落在对角线AC上的点B'处,若∠ACB=36°,则∠EAD =63°;(2)问题探究:如图(2),将长方形ABCD的两个角分别沿AE、CF折叠,使点B、D分别落在对角线AC上的B'、D'处.试说明:D'F=B'E.(3)问题解决:如图(3),长方形ABCD中,AB=6,BC =8,对角线AC=10,点E在AC上,CE=CB,连接BE,将∠EBC折叠,折痕过BE的中点M,交BC 于点N,点B对应点B'落在对角线AC上,求四边形BMB'N的面积.【分析】(1)依据三角形内角和定理以及折叠的性质,即可得到∠BAE的度数,进而得出∠DAE的度数;(2)依据平行线的性质以及折叠的性质,即可得到△CB'E≌△AD'F,依据全等三角形的性质即可得出D'F=B'E;(3)连接BB',依据折叠的性质以及三角形内角和定理,即可得到BB'⊥AC,N 是BC的中点,进而得出S四边形BMB'N=S△BCE,求得△BCE的面积,即可得出结论.【解答】解:(1)∵∠B=90°,∠ACB=36°,∴Rt△ABC中,∠BAC=54°,由折叠可得,∠BAE=∠BAC=27°,∵∠BAD=90°,∴∠DAE=90°﹣27°=63°,故答案为:63°;(2)证明:∵AD∥BC,∴∠ECB'=∠F AD',由折叠可得,∠B=∠AB'E=90°,∠D=∠CD'F=90°,AB=AB'=CD=CD',∴∠CB'E=∠AD'F=90°,CB'=AD',在△CB'E和△AD'F中,,∴△CB'E≌△AD'F(ASA),∴D'F=B'E;(3)如图3,连接BB',由折叠可得,BM=B'M,∴∠MBB'=∠MB'B,∵M是BE的中点,∴BM=ME,∴ME=MB',∴∠MEB'=∠MB'E,又∵∠MEB'+∠MB'E+∠MB'B+∠MBB'=180°,∴∠MB'E+∠MB'B=90°,即BB'⊥AC,∴∠BB'C=90°,∴∠BB'N+∠CB'N=90°,∠B'BN+∠B'CN=90°,由折叠可得,BN=B'N,∴∠BB'N=∠B'BN,∴∠CB'N=∠B'CN,∴NC=NB',∴BN=CN,即N是BC的中点,∴S△BB'N =S△BB'C,∵M是BE的中点,∴S△BB'M =S△BB'E,∴S四边形BMB'N =S△BCE,∵长方形ABCD中,AB=6,BC=8,对角线AC=10,∴AB×BC =AC×BB',即BB'===4.8,又∵CE=CB=8,BB'⊥AC,∴S△BCE =CE×BB'=×8×4.8=19.2,∴S四边形BMB'N =×19.2=9.6.【点评】本题主要考查了折叠问题,平行线的性质以及三角形内角和定理的综合运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.。
2022-2023学年江苏省盐城市盐都区第一共同体七年级第二学期第二次月考数学试卷

盐城市盐都区第一共同体七年级第二学期5月份数学试题时间:100分钟分值:120分一、选择题(本大题共8小题,每小题3分,共24分)1.化简(a4)3的结果为····························································()A.a7B.a12C.a11D.a82. 下列各式从左到右的变形不属于...因式分解的是·····································()A.a2+2ab+b2=(a+b)2B.xy−4x+y−4=(x+1)(y−4)C.x2+6x−9=(x+3)(x−3)+6xD.x2+3x−10=(x+5)(x−2)3.已知某三角形三边长分别为4,x,11,其中x为正整数,则满足条件的x值的个数是····()A.6B.7C.8D.94.一块含45°角的直角三角板与一把直尺如图放置,若∠1=60°,则∠2度数是··········()A.85°B.75°C.60°D.45°第4题第5题第8题5.如图,下列结论不正确...的是······················································()A.若AD∥BC,则∠1=∠BB.若∠1=∠2,则AD∥BCC.若∠2=∠C,则AE∥CDD.若AE∥CD,则∠1+∠3=180°6.已知二元一次方程x+y=1,下列说法正确..的是····································()A.它有一组正整数解B.它只有有限组解C.它只有一组非负整数解D.它的整数解有无穷多组7.在△ABC中,∠A+∠B=141°,∠C+∠B=165°,则△ABC的形状是·····················()A.锐角三角形B.直角三角形C.钝角三角形D.不存在这样的三角形8. 如图,∠A0B=70°,点M,N分别在OA,OB上运动(不与点O重合〉,ME平分∠AMN,ME的反向延长线与∠MNO的平分线交于点F,在M, N的运动过程中,∠F的度数·······························()A.变大B.变小C.等于55°D.等于35°二、填空题(本大题共10小题,每小题2分,共20分)9.新冠病毒“奥密克戎”的直径约为0.00000011m,用科学记数法可表示为m.10.六边形的内角和是°.11.使等式a 0 = 1成立的条件是.12.如图,将△ABC平移到△A′B′C′的位置(点B′在AC边上).若∠B=55°,∠C=100°,则∠AB′A′的度数为 .13.已知a =−(0.2)2,b =−2−2,c =(−12)−2,则a ,b ,c 从小到大....的排序是 . 14.关于x 的不等式2ax+3x >2a+3的解集为x <1,则a 的取值范围是 . 15.已知 ax +by =16bx −ay =−12的一组解为 x =2y =4,则a 、b 分别为 .16.已知关于x 的不等式组 x −a >0 3−2x ≥−11 的整数解共有5个,则a 的取值范围是 .17.定义:对于任何数a ,符号[a ]表示不大于a 的最大整数.例:[5.7]=5,[5]=5,[﹣1.5]=﹣2.如果[554-x ]=﹣5,满足条件的所有整数x 是 . 18.如图,AB//CD ,则∠1+∠2+∠3+……+∠n-1+∠n= .三、解答题(本大题共10小题,共76分)19.(本题满分6分)计算: (1)()()11322π--+-- (2)()326323a a a a a -⋅+÷20.(本题满分6分)因式分解:(1)2436x - (2)x 3−2x 2y +xy 221.(本题满分6分)解不等式组()211113x x x x ⎧--≤⎪⎨+>-⎪⎩,并把解集在数轴上表示出来第12题第18题22.(本题满分6分)解方程组:(1)213417x yx y=-⎧⎨+=⎩(2)20325x yx y-=⎧⎨-=⎩23.(本题满分6分)先化简,再求值:(a−1)2−a(a+3)+2(a+2)(a−2),其中a=−2.24.(本题满分6分)如图,每个小正方形的边长为1个单位,每个小方格的顶点叫做格点. (1)画出△ABC先向右平移4个单位,再向上平移两个单位后得到的△A1B1C1;(2)画出△A1B1C1的高C1H;(3)连结AA1 、CC1,求四边形ACC1A1 的面积.25.(本题满分8分)如图,△ABC中,AD⊥BC于点D,EF⊥BC于点F,EF交AB于点G,交CA延长线于点E,AD平分∠BAC.求证:∠E=∠BGF.26.(本题满分10分)某电器超巿销售每台进价分别为200元,170元的A、B两种型号的电风扇,表中是近两周的销售情况:((1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.27.(本题满分10分)【项目学习】“我们把多项式a2+2ab+b2及a2―2ab+b2叫做完全平方式”.如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式中出现完全平方式,再减去这个项,使整个式的值不变,这种方法叫做配方法,配方法是一种重要的解决问题的数学方法.例如:求当a取何值,代数式a2+6a+8有最小值?最小值是多少?解: a2+6a+8=a2+6a+32—32+8=(a+3 )2—1因为(a+3)2≥0,所以a2+6a+8≥—1,因此,当a=―3时,代数式α2+6a+8有最小值,最小值是-1.【问题解决】利用配方法解决下列问题:(1))当x= 时,代数式x2—2x一1有最小值,最小值为.(2)当x取何值时,代数式2x2+8x+12有最小值?最小值是多少?【拓展提高】(3)当x,y何值时,代数式5x2—4xy+y2+6x+25取得最小值,最小值为多少?(4)如图所示的第一个长方形边长分别是2α十5、3α十2,面积为S1;如图所示的第二个长方形边长分别是5a、a+5,面积为S2.试比较S1与S2的大小,并说明理由.28.(本题满分12分)已知∠MON=40°,0E平分∠MON,点A,B,C分别是射线OM,OE,ON上的动点(A,B,C 不与点O重合),连接AB,连AC交射线OE于点D,设∠BAC=α.(1)如图1,若AB∥ON,①∠ABO的度数是° ;②当∠BAD=∠ABD时,∠0AC的度数是°;当∠BAD=∠BDA时,∠0AC的度数是°;( 2 )在一个四边形中,若存在一个内角是它的对角的2倍,我们称这样的四边形为“完美四边形”,如图2,若AB⊥OM,延长AB交射线ON于点F,当四边形DCFB为“完美四边形”时,求α的值.图1 图2 备用图。
人教版七年级数学上册第二次月考试卷(含答案)

人教版七年级数学上册第二次月考试卷(含答案)第二次月考测试范围:章〜第三时间:120分钟满分:120分班级:姓名:得分:一、选择题下列各式结果是负数的是A. —B. — | — 3|c.3D.2下列说法正确的是A.x2 + 1是二次单项式B. -a2的次数是2,系数是1c. -23兀ab的系数是一23D.数字0也是单项式下列方程:① 3x —y = 2;②x + 1x —2=0;③ 12x = 12;④x2 + 3x-2=0.其中属于一元一次方程的有A.1个B.2个c.3个D.4个如果a=b,那么下列等式中不一定成立的是A.a + 1 = b+1B.a-3=b-3c. -12a = - 12bD.a = b下列计算正确的是A.3x2 — x2 = 3B. — 3a2—2a2= — a2c.3 =3a- 1D.-2=- 2x-2若x=—1是关于x的方程5x+2—7=0的解,则的值是A. —1B.1c.6D. —6如果2x3ny+ 4与—3x9y6是同类项,那么,n的值分别为A. = 2, n= 3B. =2, n = 3c. =—3, n=2D. = 3, n = 2甲、乙两地相距270千米,从甲地开由一辆快车,速度为120千米/时,从乙地开由一辆慢车,速度为75千米/时. 如果两车相向而行,慢车先开由1小时后,快车开由,那么再经过多长时间两车相遇?若设再经过x小时两车相遇,则根据题意可列方程为A.75 X 1 + x = 270B.75 X 1 + x = 270c.120 +75x = 270D.120 X 1 + x = 270一家商店将莫种服装按成本价提高20而标价,又以9折优惠卖生,结果每件服装仍可获利8元,则这种服装每件的成本是A.100 元B.105 元c.110 元D.115 元0.定义运算ab= a,下列给由了关于这种运算的几个结论:①2=6;②23=32;③若a=0,则ab=0;④若2x + x— 12 = 3,则x = —2.其中正确结论的序号是A.①②③B.②③④c.①③④D.①②③④二、填空题1.比较大小:一67— 56.“社会主义核心价值观” 要求我们牢记心间,小明在“百度”搜索“社会主义核心价值观”,找到相关结果约为4280000 个,数据4280000用科学记数法表示为3.若a+12 = 0,则a3 =若方程x|a| —1+3 = 0是关于x的一元一次方程,则a =若a, b互为相反数,c, d互为倒数,的绝对值是2, 则2 —XX— cd的值是若关于a, b的多项式3—中不含有ab项,则=已知一列单项式一x2,3x3 ,一5x4,7x5 ,…,若按此规律排列,则第9个单项式是爷爷快八十大寿,小明想在日历上把这一天圈起来,但不知道是哪一天,于是便去问爸爸,爸爸笑着说:“在日历上,那一天的上下左右4个日期的和正好等于爷爷的年龄.”则小明爷爷的生日是号.三、解答题计算及解方程:1—2—19X3; — 12 —12—23+13X [ —2+2];x —3=—4; 2x- 13-5-x6 = - 1.0.先化简,再求值:4-13X,其中x=1, y=—1.1.莫种商品因换季准备打折由售,如果按照原价的七五折由售,每件将赔10元,而按原价的九折由售,每件将赚38元,求这种商品的原价.2. 一个正两位数的个位数字是a,十位数字比个位数字大2.用含a的代数式表示这个两位数;把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新数与原数的和能被22整除.3.小明解方程2x-13 = x + a4- 1,去分母时方程右边的—1漏乘了12,因而求得方程的解为x=3,试求a的值,并正确求生方程的解.用正方形硬纸板做三棱柱盒子,每个盒子由3个长方形侧面和2个正三角形底面组成.硬纸板以如图所示两种方法裁剪.A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.分别求裁剪由的侧面和底面的个数;若裁剪由的侧面和底面恰好全部用完,问能做多少个盒子?阅读下列材料,在数轴上A点表示的数为a, B点表示的数为b,则A, B两点的距离可以用右边的数减去左边的数表示,即AB= b—a.请用这个知识解答下面的问题:已知数轴上A, B两点对应的数分别为一2和4, P为数轴上一点,其对应的数为x.如图①,若P至U A, B两点的距离相等,则P点对应的数为;如图②,数轴上是否存在点P,使P点到A, B两点的距离和为10?若存在,求由x的值;若不存在,请说明理由.参考答案与典题详析B 2.D 3.A 4.D 5.Dc 7.B 8.B 9.A 10.c1. < 12.4.28 X 106 13. — 18 14. -23 或—5 16. —6 17. - 17x1020 解析:设那一天是x号,依题意得x—1+x+1 + x -7 + x + 7 = 80,解得x=20.解:原式=81+9+3=9+3=12.原式=—1 + 16+13X = — 1 + 12X7=52.去括号,得4x —60+3x=—4,移项、合并同类项,得7x=56,系数化为1,得x=8.去分母,得2— = — 6,去括号,得4x-2-5 + x=- 6, 移项、合并同类项,得5x=1,系数化为1,得x=0.2.0.解:原式=4xy2 + 4xy — 4xy + 2xy2 = 6xy2.当x = 1, y =-1时,原式=6.1.解:设这种商品的原价是x元,根据题意得75%肝10 = 90%x— 38,解得x=320.答:这种商品的原价是320元.2.解:这个两位数为10 + a=11a + 20.新的两位数为10a+a+2=11a+2.因为11a+2+11a + 20=22a+22=22, a+1为整数,所以新数与原数的和能被22整除.3.解:由题意得x = 3是方程12X2x—13=12Xx+a4 -1的解,所以4X= 3—1,解得a =4.将a = 4代入原方程,得2x—13=x+44—1,去分母得4=3—12,去括号,得8x —4 = 3x+ 12 — 12,移项、合并同类项得5x=4,解得x = 45.解:因为裁剪时x张用A方法,所以裁剪时张用B方法. 所以裁剪由侧面的个数为6x+4 =个,裁剪由底面的个数为5 =个.由题意得2=3,解得x= 7.则2X 7+763=30.答:能做30个盒子.解:1存在.分以下三种情况:①当点P在点A左侧时,PA= —2 —x , PBJ= 4— x.由题意得一2— x+4 — x=10,解得x =— 4;②当点P在点A, B之间时,PA= x —=x+2, PB= 4-x. 因为PA+ PB= x+2 + 4—x=6wl0,即此时不存在点P至UA, B两点的距离和为10;③当点P在点B右侧时,PA= x+2, PB= x - 4.由题意得x + 2 + x—4 = 10,解得x = 6.综上所述,当x=—4或x = 6时,点P 至UA, B两点的距离和为10.。
浙教版七年级上第二次月考数学试卷

浙教版第一学期七年级数学第二次月考卷试题卷考生须知:1.本试卷分试题卷和答题卷两部分,满分120分。
2.答题前,必须在答题卷的密封区内填写校名、班级、姓名、座位号等。
3.所有答案都必须写在答题卷标定的位置上,务必注意试题序号和答题序号相对应。
试题卷一、选择题(本题有10小题,每小题3分,共计30分)1.-3 的相反数是(▲)1 C.313-A.3B.-3D.2. 用代数式表示“a 的 3 倍与 b 的差的平方”,正确的是(▲)A.3(a−b)2B.(3a−b)2C.3a−2D.(a−3b)2 3.下列说法中,正确的是(▲)2A.(-3)没有平方根B.√16的平方根是±4C.1的平方根是1D.立方根等于本身的数是0和±14. 下列合并同类项正确的是(▲)A.5x−2x=3B.4ab−3ab=ab C.3+3=6D.2a+3b=6ab −=5. 在解方程时,去分母后,下列选项中正确的是(▲)36A.2(2x+1)−x−1=x C.2(2x+1)−(x−1)=x B.2(2x+1)−x−1=6x D.2(2x+1)−(x−1)=6x6.若4a+3b=1,那么代数式8a+6b−3的值是(▲)A.1 7.若代数式A.-5B.-1C.5D.-41(2x−3)3−2与的值互为相反数,则 x 的值为(▲)53B.-3C.3D.98.多项式(4xy−2−xy+2)−(3xy+2y−2)的值(▲)A.只与x的值有关C.与x,y的值有关B.只与y的值有关D.与x,y的值无关9.有m 辆客车及n 个人.若每辆客车乘40 人,则有10 人不能上车.若辆每客车乘43人,则还有1 人不能上车.下列所列的方程:①40m+10=43m−1;==,正确的是( ▲ )40434043B .②③④D .②③;(2)当 a=0,b=0 时,方程有无数解;(3)当 a=0,b ≠0 时,方程无解.请你根据以 1(6上知识作答:已知关于 x 的方程a 的值是( ▲ ) D .不等于 1 的任意实数3 2 B .-1C .±1二、填空题(本题有 6 小题,每小题 4 分,共计 24 分)121 ,的平方根是912.若∣a ∣=2,且 a ﹤0,那么∣a -4∣= .13.若关于 x 的方程ax 6 = 0的解为 x=2,则 a 的值为.14.已知 (m 1) 2 = 0 是关于 x 的一元一次方程,则此方程的解为.2 15.若多项式53化简的结果是一个单项式,则=.22A BEDC×1(3) ÷ (1) × (11)(1)3( )√4 ÷ 8 3√2 2 2 392 418. (本小题满分 8 分)解方程:3219. (本小题满分 8 分)先化简,再求值:2( 2 −) − 3(22 −,其中 = −2,b = 3.320.(本小题满分10 分)小明在求一个多项式减去 2 − 得到的答案是2−+ 4,请你帮小明算出正确答案.+ 5 时,误以为加上2 −+ 5,21 . (本小题满分 10 分)甲班有 45 人,乙班有 39 人.现在需要从甲、乙两班各抽调一 些同学去参加歌咏比赛.如果从甲班抽调的人数比乙班多 1 人,那么甲班剩余人数恰好是 乙班剩余人数的 2 倍.请问从甲、乙两班各抽调了多少参加歌咏比赛?22. (本小题满分 12 分)若 b 是最大的负整数,且 a ,b ,c 满足√ − 2 + 且 a ,b ,c 在数轴上对应的点分别是 A ,B ,C. (1)求 a ,b ,c 的值;+2 = 0,并(2)若点 B 以每秒 1 个单位长度的速度向左运动,点 C 以每秒 2 个单位长度的速度向右运 动,试求几秒后点 B 与点 C 相距 9 个单位长度.(3)若点 B 以每秒 1 个单位长度的速度向右运动,点 C 以每秒 2 个单位长度的速度向左运 动,试求几秒后点 B 与点 C 相距 12 个单位长度.23. (本小题满分 12 分)某超市经营甲、乙两种商品,甲每件进价10 元,售价15 元;乙每件进价15 元,售价25元;元旦前夕,超市购进甲、乙两种商品共90 件,总进价恰好为1100 元;(1)求超市购进甲、乙两种商品各多少件?(2)超市把甲商品的售价提高20%,乙商品按售价打折销售,将这些商品全部售完后可获利500 元,那么超市将乙商品打几折售出?(3)在元旦当天,该超市对甲、乙两种商品进行如下的优惠促销活动总购买费用超过 300 元,但不超过 500 元超过 500 元全部打九折全部打八折按上述优惠条件,若小明买这两种商品共付款315 元,小华购买乙种商品共付款432元;如果你替他们一次性够买这些商品可以省多少钱?19. (本小题满分 8 分)先化简,再求值:2( 2 −) − 3(22 −,其中 = −2,b = 3.320.(本小题满分10 分)小明在求一个多项式减去 2 − 得到的答案是2−+ 4,请你帮小明算出正确答案.+ 5 时,误以为加上2 −+ 5,21 . (本小题满分 10 分)甲班有 45 人,乙班有 39 人.现在需要从甲、乙两班各抽调一 些同学去参加歌咏比赛.如果从甲班抽调的人数比乙班多 1 人,那么甲班剩余人数恰好是 乙班剩余人数的 2 倍.请问从甲、乙两班各抽调了多少参加歌咏比赛?22. (本小题满分 12 分)若 b 是最大的负整数,且 a ,b ,c 满足√ − 2 + 且 a ,b ,c 在数轴上对应的点分别是 A ,B ,C. (1)求 a ,b ,c 的值;+2 = 0,并(2)若点 B 以每秒 1 个单位长度的速度向左运动,点 C 以每秒 2 个单位长度的速度向右运 动,试求几秒后点 B 与点 C 相距 9 个单位长度.(3)若点 B 以每秒 1 个单位长度的速度向右运动,点 C 以每秒 2 个单位长度的速度向左运 动,试求几秒后点 B 与点 C 相距 12 个单位长度.23. (本小题满分 12 分)某超市经营甲、乙两种商品,甲每件进价10 元,售价15 元;乙每件进价15 元,售价25元;元旦前夕,超市购进甲、乙两种商品共90 件,总进价恰好为1100 元;(1)求超市购进甲、乙两种商品各多少件?(2)超市把甲商品的售价提高20%,乙商品按售价打折销售,将这些商品全部售完后可获利500 元,那么超市将乙商品打几折售出?(3)在元旦当天,该超市对甲、乙两种商品进行如下的优惠促销活动总购买费用超过 300 元,但不超过 500 元超过 500 元全部打九折全部打八折按上述优惠条件,若小明买这两种商品共付款315 元,小华购买乙种商品共付款432元;如果你替他们一次性够买这些商品可以省多少钱?19. (本小题满分 8 分)先化简,再求值:2( 2 −) − 3(22 −,其中 = −2,b = 3.320.(本小题满分10 分)小明在求一个多项式减去 2 − 得到的答案是2−+ 4,请你帮小明算出正确答案.+ 5 时,误以为加上2 −+ 5,21 . (本小题满分 10 分)甲班有 45 人,乙班有 39 人.现在需要从甲、乙两班各抽调一 些同学去参加歌咏比赛.如果从甲班抽调的人数比乙班多 1 人,那么甲班剩余人数恰好是 乙班剩余人数的 2 倍.请问从甲、乙两班各抽调了多少参加歌咏比赛?22. (本小题满分 12 分)若 b 是最大的负整数,且 a ,b ,c 满足√ − 2 + 且 a ,b ,c 在数轴上对应的点分别是 A ,B ,C. (1)求 a ,b ,c 的值;+2 = 0,并(2)若点 B 以每秒 1 个单位长度的速度向左运动,点 C 以每秒 2 个单位长度的速度向右运 动,试求几秒后点 B 与点 C 相距 9 个单位长度.(3)若点 B 以每秒 1 个单位长度的速度向右运动,点 C 以每秒 2 个单位长度的速度向左运 动,试求几秒后点 B 与点 C 相距 12 个单位长度.23. (本小题满分 12 分)某超市经营甲、乙两种商品,甲每件进价10 元,售价15 元;乙每件进价15 元,售价25元;元旦前夕,超市购进甲、乙两种商品共90 件,总进价恰好为1100 元;(1)求超市购进甲、乙两种商品各多少件?(2)超市把甲商品的售价提高20%,乙商品按售价打折销售,将这些商品全部售完后可获利500 元,那么超市将乙商品打几折售出?(3)在元旦当天,该超市对甲、乙两种商品进行如下的优惠促销活动总购买费用超过 300 元,但不超过 500 元超过 500 元全部打九折全部打八折按上述优惠条件,若小明买这两种商品共付款315 元,小华购买乙种商品共付款432元;如果你替他们一次性够买这些商品可以省多少钱?。
最新2022-2022年七年级下第二次月考数学试卷含答案
七年级(下)第二次月考数学试卷一、选择题1.(3分)下列说法(shuōfǎ)正确的是()A.若两个(liǎnɡ ɡè)角相等,则这两个角是对顶角B.若两个(liǎnɡ ɡè)角是对顶角,则这两个角是相等C.若两个角不是(bù shi)对顶角,则这两个角不相等D.所有(suǒyǒu)的对顶角相等2.(3分)已知一个圆的半径为Rcm,若这个圆的半径增加2cm,则它的面积增加()A.4cm2B.(2R+4)cm2C.(4R+4)cm2D.以上都不对3.(3分)在同一平面内,a、b、c是直线,下列说法正确的是()A.若a∥b,b∥c 则 a∥c B.若a⊥b,b⊥c,则a⊥cC.若a∥b,b⊥c,则a∥c D.若a∥b,b∥c,则a⊥c4.(3分)下列计算正确的是()A.(a4)3=a7B.a8÷a4=a2C.(ab)3=a3b3D.(a+b)2=a2+b2 5.(3分)已知∠α与∠β互为补角,∠α=120°30′,则∠β的余角是()A.29°30′B.30°30′C.31°30′D.59°30′6.(3分)下列式子正确的是()A.a2﹣4b2=(a+2b)(a﹣2b)B.(a﹣b)2=a2﹣b2C.(a+b)2=a2+b2D.(x+3y)(x﹣3y)=x2﹣3y27.(3分)下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.8.(3分)计算(jì suàn)的结果(jiē guǒ)是()A.﹣B.C.﹣D.9.(3分)在同一平面内,有8条互不重合(chónghé)的直线,l1,l2,l3 (8)若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推(yǐ cǐ lèi tuī),则l1和l8的位置(wèi zhi)关系是()A.平行B.垂直C.平行或垂直D.无法确定10.(3分)算式(2+1)×(22+1)×(24+1)×…×(232+1)+1计算结果的个位数字是()A.4 B.2 C.8 D.6二、填空题11.(3分)某学校有A、B、C三栋教学楼,B楼在A楼的正北方向上,与A 楼相距40米;C楼在A楼的东偏南30°方向上,与A楼相距80米,通过画图(用1厘米代表20米),量出B、C两楼间的距离为米(精确到米).12.(3分)如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为.13.(3分)直线a外有一定点A,A到直线a的距离是5cm,P是直线a上的任意一点,则AP5cm(填写<或>或=或≤或≥)14.(3分)若x2﹣16x+m2是一个完全平方式,则m=;若m﹣=9,则m2+=.15.(3分)若一个角是34°,则这个角的余角是°.16.(3分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作(cāozuò),分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点(jiāodiǎn)为E n.若∠E n=1度,那∠BEC等于(děngyú)度三、解答(jiědá)题17.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数(jiā shù)起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2021(a≠0且a≠1)的值.18.如图,某工程队从A点出发,沿北偏西67°方向修一条公路AD,在BD路段出现塌陷区,就改变方向,由B点沿北偏东23°的方向继续修建BC段,到达C点又改变方向,从C点继续修建CE段,若使所修路段CE∥AB,∠ECB应为多少度?试说明理由.此时CE与BC有怎样的位置关系?以下是小刚不完整的解答,请帮她补充完整.解:由已知,根据得∠1=∠A=67°所以,∠CBD=23°+67°=°;根据当∠ECB+∠CBD=°时,可得CE∥AB.所以∠ECB=°此时CE与BC的位置关系为.19.一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择(xuǎnzé)若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到(dá dào)预设的要求?在图1中画出安装点的示意图,并用大写字母M、N、P、Q表示安装点;(2)能否找到这样(zhèyàng)的3个安装点,使得在这些点安装了这种转发装置后能达到预设的要求?在图2中画出示意图说明,并用大写字母M、N、P表示安装点,用计算、推理和文字来说明你的理由.20.如图,已知两条射线(shèxiàn)OM∥CN,动线段(xiànduàn)AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF,OE平分∠COF.(1)请在图中找出与∠AOC相等的角,并说明理由;(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由.21.问题(wèntí)再现:数形结合是解决数学问题的一种(yī zhǒnɡ)重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形(túxíng)的几何意义证明完全平方公式.证明:将一个边长为a的正方形的边长增加b,形成(xíngchéng)两个矩形和两个正方形,如图1:这个图形的面积可以(kěyǐ)表示成:(a+b)2或a2+2ab+b2∴(a+b)2 =a2+2ab+b2这就验证了两数和的完全平方公式.类比解决:(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:13+23=32?如图2,A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=(1+2)2=32尝试解决:(2)请你类比上述推导过程,利用图形的几何意义确定:13+23+33=.(要求写出结论并构造图形写出推证过程).(3)问题拓广:请用上面(shàng miɑn)的表示几何图形面积的方法探究:13+23+33+…+n3=.(直接(zhíjiē)写出结论即可,不必写出解题过程)22.计算(jì suàn):(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2(2)a•a3•(﹣a2)3.23.已知,AB∥CD,点E为射线(shèxiàn)FG上一点.(1)如图1,直接(zhíjiē)写出∠EAF、∠AED、∠EDG之间的数量关系;(2)如图2,当点E在FG延长线上时,求证:∠EAF=∠AED+∠EDG;(3)如图3,AI平分∠BAE,DI交AI于点I,交AE于点K,且∠EDI:∠CDI=2:1,∠AED=20°,∠I=30°,求∠EKD的度数.参考答案与试题(shìtí)解析一、选择题1.(3分)下列说法(shuōfǎ)正确的是()A.若两个(liǎnɡ ɡè)角相等,则这两个角是对顶角B.若两个(liǎnɡ ɡè)角是对顶角,则这两个角是相等C.若两个(liǎnɡ ɡè)角不是对顶角,则这两个角不相等D.所有的对顶角相等【解答】解:根据对顶角的定义:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角;∴选项A、C错误;根据对顶角的性质:对顶角相等;∴选项D错误;故选:B.2.(3分)已知一个圆的半径为Rcm,若这个圆的半径增加2cm,则它的面积增加()A.4cm2B.(2R+4)cm2C.(4R+4)cm2D.以上都不对【解答】解:∵S2﹣S1=π(R+2)2﹣πR2,=π(R+2﹣R)(R+2+R),=4π(R+1),∴它的面积增加4π(R+1)cm2.故选:D.3.(3分)在同一平面内,a、b、c是直线,下列说法正确的是()A.若a∥b,b∥c 则 a∥c B.若a⊥b,b⊥c,则a⊥cC.若a∥b,b⊥c,则a∥c D.若a∥b,b∥c,则a⊥c【解答】解:A、∵a∥b,b∥c,∴a∥c,故本选项符合(fúhé)题意;B、在同一(tóngyī)平面内,当a⊥b,b⊥c时,a∥c,故本选项不符合(fúhé)题意;C、当a∥b,b⊥c时,a⊥c,故本选项不符合(fúhé)题意;D、当a∥b,b∥c时,a∥c,故本选项不符合(fúhé)题意;故选:A.4.(3分)下列计算正确的是()A.(a4)3=a7B.a8÷a4=a2C.(ab)3=a3b3D.(a+b)2=a2+b2【解答】解:∵(a4)3=a12,∴选项A不符合题意;∵a8÷a4=a4,∴选项B不符合题意;∵(ab)3=a3b3,∴选项C符合题意;∵(a+b)2=a2+b2+2ab,∴选项D不符合题意.故选:C.5.(3分)已知∠α与∠β互为补角,∠α=120°30′,则∠β的余角是()A.29°30′B.30°30′C.31°30′D.59°30′【解答】解:∵∠α与∠β互为补角,∠α=120°30′,∴∠β=180°﹣120°30′=59°30′,∴∠β的余角=90°﹣59°30′=30°30′.故选:B.6.(3分)下列式子正确的是()A.a2﹣4b2=(a+2b)(a﹣2b)B.(a﹣b)2=a2﹣b2C.(a+b)2=a2+b2D.(x+3y)(x﹣3y)=x2﹣3y2【解答(jiědá)】解:A、a2﹣4b2=(a+2b)(a﹣2b),故原题分解(fēnjiě)正确;B、(a﹣b)2=a2﹣2ab+b2,故原题计算错误;C、(a+b)2=a2+2ab+b2,故原题计算错误;D、(x+3y)(x﹣3y)=x2﹣9y2,故原题计算错误;故选:A.7.(3分)下列图形中,线段(xiànduàn)AD的长表示点A到直线BC距离的是()A.B.C.D.【解答(jiědá)】解:线段AD的长表示点A到直线(zhíxiàn)BC距离的是图D,故选:D.8.(3分)计算的结果是()A.﹣B.C.﹣D.【解答】解:原式=(﹣×1.5)2021×(﹣1.5)=﹣1.5=﹣,故选:A.9.(3分)在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直D.无法(wúfǎ)确定【解答(jiědá)】解:∵l2∥l3,l3⊥l4,l4∥l5,l5⊥l6,l6∥l7,l7⊥l8,∴l2⊥l4,l4⊥l6,l6⊥l8,∴l2⊥l8.∵l1⊥l2,∴l1∥l8.故选:A.10.(3分)算式(suànshì)(2+1)×(22+1)×(24+1)×…×(232+1)+1计算结果的个位数字是()A.4 B.2 C.8 D.6【解答(jiědá)】解:原式=(2﹣1)(2+1)×(22+1)×(24+1)×…×(232+1)+1=(22﹣1)×(22+1)×(24+1)×…×(232+1)+1=(24﹣1)×(24+1)×…×(232+1)+1=(232﹣1)×(232+1)+1=264﹣1+1=264,因为(yīn wèi)21=2,22=4,23=8,24=16,25=32,所以底数为2的正整数次幂的个位数是2、4、8、6的循环,所以264的个位数是6.故选:D.二、填空题11.(3分)某学校有A、B、C三栋教学楼,B楼在A楼的正北方向上,与A 楼相距40米;C楼在A楼的东偏南30°方向上,与A楼相距80米,通过画图(用1厘米代表20米),量出B、C两楼间的距离为106米(精确到米).【解答】解:在图形上测量知B,C两楼之间的距离为106米.12.(3分)如图,已知AB∥CD,F为CD上一点(yī diǎn),∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数(dù shu)为整数,则∠C的度数(dù shu)为36°或37°.【解答(jiědá)】解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x﹣60°,又∵6°<∠BAE<15°,∴6°<3x﹣60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角(wài jiǎo),∠C的度数为整数,∴∠C=60°﹣23°=37°或∠C=60°﹣24°=36°,故答案为:36°或37°.13.(3分)直线a外有一定点A,A到直线a的距离(jùlí)是5cm,P是直线a 上的任意一点,则AP≥5cm(填写(tiánxiě)<或>或=或≤或≥)【解答(jiědá)】解:根据题意,得A到直线(zhíxiàn)a的垂线段的长是5cm,由垂线(chuí xiàn)段最短,得AP≥5cm.故填:≥.14.(3分)若x2﹣16x+m2是一个完全平方式,则m=±8;若m﹣=9,则m2+=83.【解答】解:∵x2﹣16x+m2是完全平方式,∴16x=2×8•x,∴m2=82,解得m=±8;∵m﹣=9,∴(m﹣)2=m2﹣2+=81,解得m2+=81+2=83.15.(3分)若一个角是34°,则这个角的余角是56°.【解答】解:若一个角是34°,则这个角的余角是90°﹣34°=56°,故答案为:56.16.(3分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.若∠E n=1度,那∠BEC等于2n 度【解答(jiědá)】解:如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;如图②,∵∠ABE和∠DCE的平分线交点(jiāodiǎn)为E1,∴∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BEC.∵∠ABE1和∠DCE1的平分线交点(jiāodiǎn)为E2,∴∠BE2C=∠ABE2+∠DCE2=∠ABE1+∠DCE1=∠CE1B=∠BEC;如图②,∵∠ABE2和∠DCE2的平分线,交点(jiāodiǎn)为E3,∴∠BE3C=∠ABE3+∠DCE3=∠ABE2+∠DCE2=∠CE2B=∠BEC;…以此类推(yǐ cǐ lèi tuī),∠E n=∠BEC.∴当∠E n=1度时,∠BEC等于2n度.故答案为:2n .三、解答(jiědá)题17.在求1+2+22+23+24+25+26的值时,小明发现(fāxiàn):从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后(ránhòu)在①式的两边(liǎngbiān)都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2021(a≠0且a≠1)的值.【解答(jiědá)】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2186÷2=1093;(2)1+a+a2+a3+…+a2021(a≠0且a≠1)═[(1+a+a2+a3+…+a2021)×a﹣(1+a+a2+a3+…+a2021)]÷(a﹣1)=[(a+a2+a3+…+a2021+a2021)﹣(1+a+a2+a3+…+a2021)]÷(a﹣1)=(a2021﹣1)÷(a﹣1)=.18.如图,某工程队从A点出发,沿北偏西67°方向修一条公路AD,在BD路段出现塌陷区,就改变方向,由B点沿北偏东23°的方向继续修建BC段,到达C点又改变方向,从C点继续修建CE段,若使所修路段CE∥AB,∠ECB应为多少度?试说明理由.此时CE与BC有怎样的位置关系?以下是小刚不完整的解答,请帮她补充完整.解:由已知,根据两直线平行,同位角相等得∠1=∠A=67°所以,∠CBD=23°+67°=90°;根据(gēnjù)同旁内角(tónɡ pánɡ nèi jiǎo)互补,两直线平行当∠ECB+∠CBD=180°时,可得CE∥AB.所以(suǒyǐ)∠ECB=90°此时CE与BC的位置(wèi zhi)关系为垂直(chuízhí).【解答】解:由已知,根据两直线平行,同位角相等得:∠1=∠A=67°,所以,∠CBD=23°+67°=90°,根据同旁内角互补,两直线平行,当∠ECB+∠CBD=180°时,可得CE∥AB,所以∠ECB=90°,此时CE与BC的位置关系为垂直,故答案为:两直线平行,同位角相等,90,同旁内角互补,两直线平行,180,90,垂直.19.一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?在图1中画出安装点的示意图,并用大写字母M、N、P、Q表示安装点;(2)能否找到这样的3个安装点,使得在这些点安装了这种转发装置后能达到预设的要求?在图2中画出示意图说明,并用大写字母M、N、P表示安装点,用计算、推理和文字来说明你的理由.【解答(jiědá)】解:(1)如图1,将正方形等分成如图的四个小正方形,将这4个转发装置(zhuāngzhì)安装在这4个小正方形对角线的交点处,此时(cǐ shí),每个小正方形的对角线长为,每个转发装置都能完全覆盖一个(yī ɡè)小正方形区域,故安装(ānzhuāng)4个这种装置可以达到预设的要求;(2)(画图正确给1分)将原正方形分割成如图2中的3个矩形,使得BE=31,OD=OC.将每个装置安装在这些矩形的对角线交点处,则AE=,,∴OD=,即如此安装三个这个转发装置,也能达到预设要求.20.如图,已知两条射线(shèxiàn)OM∥CN,动线段(xiànduàn)AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段(xiànduàn)CB 上,OB平分∠AOF,OE平分(píngfēn)∠COF.(1)请在图中找出与∠AOC相等的角,并说明(shuōmíng)理由;(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由.【解答】解:(1)∵OM∥CN,∴∠AOC=180°﹣∠C=180°﹣108°=72°,∠ABC=180°﹣∠OAB=180°﹣108°=72°,又∵∠BAM=∠180°﹣∠OAB=180°﹣108°=72°,∴与∠AOC相等的角是∠AOC,∠ABC,∠BAM;(2)∵OM∥CN,∴∠OBC=∠AOB,∠OFC=∠AOF,∵OB平分∠AOF,∴∠AOF=2∠AOB,∴∠OFC=2∠OBC,∴∠OBC:∠OFC=;(3)设∠OBA=x,则∠OEC=2x,在△AOB中,∠AOB=180°﹣∠OAB﹣∠ABO=180°﹣x﹣108°=72°﹣x,在△OCE中,∠COE=180°﹣∠C﹣∠OEC=180°﹣108°﹣2x=72°﹣2x,∵OB平分∠AOF,OE平分∠COF,∴∠COE+∠AOB=∠COF+∠AOF=∠AOC=×72°=36°,∴72°﹣x+72°﹣2x=36°,解得x=36°,即∠OBA=36°,此时(cǐ shí),∠OEC=2×36°=72°,∠COE=72°﹣2×36°=0°,点C、E重合(chónghé),所以(suǒyǐ),不存在.21.问题(wèntí)再现:数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数(dàishù)公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形的几何意义证明完全平方公式.证明:将一个边长为a的正方形的边长增加b,形成两个矩形和两个正方形,如图1:这个图形的面积可以表示成:(a+b)2或a2+2ab+b2∴(a+b)2 =a2+2ab+b2这就验证了两数和的完全平方公式.类比解决:(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:13+23=32?如图2,A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=(1+2)2=32尝试(chángshì)解决:(2)请你类比上述推导(tuīdǎo)过程,利用图形的几何意义确定:13+23+33= 62.(要求写出结论(jiélùn)并构造图形写出推证过程).(3)问题(wèntí)拓广:请用上面的表示几何图形面积(miàn jī)的方法探究:13+23+33+…+n3=[n (n+1)]2.(直接写出结论即可,不必写出解题过程)【解答】解:(1)∵如图,左图的阴影部分的面积是a2﹣b2,右图的阴影部分的面积是(a+b)(a﹣b),∴a2﹣b2=(a+b)(a﹣b),这就验证了平方差公式;(2)如图,A表示1个1×1的正方形,即1×1×1=13;B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23;G与H,E与F和I可以表示3个3×3的正方形,即3×3×3=33;而整个图形恰好可以拼成一个(1+2+3)×(1+2+3)的大正方形,由此可得:13+23+33=(1+2+3)2=62;故答案(dá àn)为:62;(3)由上面表示几何图形的面积(miàn jī)探究可知,13+23+33+…+n3=(1+2+3+…+n)2,又∵1+2+3+…+n=n(n+1),∴13+23+33+…+n3=[n(n+1)]2.故答案(dá àn)为:[n(n+1)]2.22.计算(jì suàn):(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2(2)a•a3•(﹣a2)3.【解答(jiědá)】解:(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2=4+1+4=9;(2)a•a3•(﹣a2)3=a•a3•(﹣a6)=﹣a10.23.已知,AB∥CD,点E为射线FG上一点.(1)如图1,直接写出∠EAF、∠AED、∠EDG之间的数量关系;(2)如图2,当点E在FG延长线上时,求证:∠EAF=∠AED+∠EDG;(3)如图3,AI平分(píngfēn)∠BAE,DI交AI于点I,交AE于点K,且∠EDI:∠CDI=2:1,∠AED=20°,∠I=30°,求∠EKD的度数(dù shu).【解答(jiědá)】解:(1)∠AED=∠EAF+∠EDG.理由(lǐyóu):如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)证明(zhèngmíng):如图2,设CD与AE交于点H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分(píngfēn)∠BAE,∴可设∠EAI=∠BAI=α,则∠BAE=2α,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°﹣20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=∠EDK=α+5°,∵∠CHE是△DEH的外角(wài jiǎo),∴∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°﹣80°﹣20°=80°.内容总结(1)+a2021(a≠0且a≠1)的值.【解答】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2186÷2=1093。
人教版(五四学制)2022-2023学年七年级数学上册第二次月考测试题(附答案)
2022-2023学年七年级数学上册第二次月考测试题(附答案)一、选择题(共计30分)1.﹣2的倒数是()A.﹣2B.﹣C.D.22.下列计算正确的是()A.2a+3b=5ab B.(﹣a3b4)2=a6b8C.a6÷a2=a3D.(a+b)2=a2+b23.下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.4.如图所示的几何体的左视图是()A.B.C.D.5.方程=的解为()A.x=2B.x=﹣4C.x=4D.x=﹣26.如图,点A,B,C,D都在⊙O上,∠BAC=15°,∠BOD=70°,DE切⊙O于D,则∠CDE的度数是()A.15°B.20°C.25°D.55°7.如图.BC是⊙O的直径,点A、D在⊙O上,P A切⊙O于A,若∠ADC=48°,则∠P AB =()A.42°B.48°C.46°D.50°8.在菱形ABCD中,AB=5,∠BCD=120°,则对角线BD等于()A.20B.C.10D.59.在△ABC中,∠C=90°,a,b,c分别是∠A、∠B、∠C的对边,则有()A.b=a•tan A B.b=c•sin A C.a=c•cos B D.c=a•sin A 10.如图,点D,E,F分别在△ABC的边AB,AC,BC上,连接DE,EF,若DE∥BC,EF∥AB,则下列比例式正确的是()A.=B.=C.=D.=二、填空题(共计30分)11.实数16800000用科学记数法表示为.12.在函数中,自变量x的取值范围是.13.计算:=.14.在实数范围内分解因式:a2m﹣5m=.15.关于x的不等式组的整数解是.16.某种过季绿茶的价格两次大幅下降,原来每袋250元,现在每袋90元,则平均每次下调的百分率是.17.在△ABC中,AB=AC=5,BD是高,且cos∠ABD=,则BC=.18.如图,分别过⊙O上A、B、C三点作⊙O切线,切线两两交于P、M、N,P A=9,则△PMN的周长为.19.在△ABC中,∠ACB=90°,CA=CB,点D为AB边上一点,AD=3BD,CD=2,点E在直线AC上,∠CDE=45°,则AE=.20.如图,△ABC中,AB=AC,AD⊥BC于D,DE平分∠ADC,EF⊥AB交AD于G,AG =1,BC=6,则BF=.三、解答题(共计60分)21.先化简,再求代数式的值,其中a=tan60°﹣6sin30°.22.△ABC在平面直角坐标系中的位置如图所示.(1)将△ABC向右平移5个单位长度,同时向下平移4个单位长度得到△A1B1C1;(2)将△ABC绕点A顺时针旋转90°得到△AB2C2,连接A1C2,直接写出A1C2的长.23.为了丰富同学们的课余生活,某中学开展以“我最喜欢的书籍种类”为主题的调查活动,围绕“在文学类、科普类、艺术类、其它类四类书籍中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图.请根据图中提供的信息回答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若该中学共有1200名学生,请你估计该中学最喜欢科普类书籍的学生有多少名.24.在▱ABCD中,E,F分别为对角线BD上两点,连接AE、CE、AF、CF,且AE∥CF.(1)如图1,求证:四边形AECF是平行四边形;(2)如图2,若2BE=3EF,在不添加任何字母及辅助线的情况下,请直接写出图2中面积是△ABD面积的的四个三角形.25.某文教店用1200元购进了甲、乙两种钢笔.已知甲种钢笔进价为每支12元,乙种钢笔进价为每支10元.文教店在销售时甲种钢笔售价为每支15元,乙种钢笔售价为每支12元,全部售完后共获利270元.(1)求这个文教店购进甲、乙两种钢笔各多少支?(2)若该文教店以原进价再次购进甲、乙两种钢笔,且购进甲种钢笔的数量不变,而购进乙种钢笔的数量是第一次的2倍,乙种钢笔按原售价销售,而甲种钢笔降价销售.当两种钢笔销售完毕时,要使再次购进的钢笔获利不少于340元,甲种钢笔最低售价每支应为多少元?26.如图,四边形ABCD内接于⊙O,AC平分∠BCD.(1)如图1,求证:AB=AD;(2)如图2,点E在弧AD上,弧CE=弧BC,延长CD、AE交于点F,求证:AF=AD.(3)在(2)的条件下,如图3,连接ED并延长ED交AC延长线于点P,连接PF,若PF=AF=4,PE=10,求⊙O的半径.27.如图,在平面直角坐标系中,O为坐标原点,直线AC的解析式为:y=﹣x+3,点B在x轴负半轴上,且AB=5.(1)求直线BC的解析式;(2)点P从点C出发,沿射线CO方向以每秒1个单位的速度运动,点T在AO上,且BT=CO,连接PT,设点P运动时间为t秒,S△OTP=S,求S与t之间的函数解析式(直接写出自变量t的取值范围);(3)在(2)的条件下,过点T作AB的垂线,交AC于E,连接BE,过点A作CT的平行线AL,将线段BP绕P点顺时针方向旋转得PQ点Q恰好落在直线AL上,若∠BPQ=2∠BET,求t值.参考答案一、选择题(共计30分)1.解:∵﹣2×=1.∴﹣2的倒数是﹣,故选:B.2.解:A、2a与3b不是同类项,不能合并,原计算错误,故此选项不符合题意;B、(﹣a3b4)2=a6b8,原计算正确,故此选项符合题意;C、a6÷a2=a4,原计算错误,故此选项不符合题意;D、(a+b)2=a2+2ab+b2,原计算错误,故此选项不符合题意.故选:B.3.解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.4.解:这个组合体的左视图为:故选:A.5.解:去分母得:5x=8x﹣12,解得:x=4,检验:把x=4代入得:x(2x﹣3)≠0,∴分式方程的解为x=4.故选:C.6.解:连接OC,∵∠BAC=15°,∴∠BOC=2∠BAC=30°,∵∠BOD=70°,∴∠COD=70°﹣30°=40°,∵OC=OD,∴∠ODC=∠OCD=(180°﹣40°)=70°,∵DE切⊙O于D,∴OD⊥DE,∴∠CDE=90°﹣70°=20°,故选:B.7.解:连接OA,∵P A切⊙O于A,∴∠OP A=90°,∵∠ADC=48°,∴∠ABC=∠ADC=48°,∵OA=OB,∴∠OAB=∠ABC=48°,∴∠P AB=90°﹣∠OAB=42°,故选:A.8.解:∵四边形ABCD是菱形,∴∠ACB=∠BCD=×120°=60°,AC⊥BD,OC=AC=×5=2.5,BD=2OB,∴在Rt△OBC中,OB=OC•tan∠ACB=2.5×=,∴BD=2OB=5.故选:B.9.解:在△ABC中,∠C=90°,a,b,c分别是∠A、∠B、∠C的对边,tan A=,则a=b•tan A,A错误;sin A=,则a=c•sin A,B错误;cos B=,则a=c•cos B,C正确;sin A=,则a=c•sin A,D错误;故选:C.10.解:∵DE∥BC,∴△ADE∽△ABC,∴=,∴≠,故A错误;∵EF∥AB,∴∠CEF=∠A,∵∠C=∠AED,∴△CEF∽△EAD,∴=,∵△ADE∽△ABC,∴=,∵四边形BDEF是平行四边形,∴DE=BF,∴=,∵≠,∴≠,故B错误;∵EF∥AB,∴=,故C正确;∵△CEF∽△CAB,∴=,∵DE=BF,∴=,∵≠,∴≠,故D错误,综上所述,C正确,故选:C.二、填空题(共计30分)11.解:16800000=1.68×107.故答案为:1.68×107.12.解:由题意得:x+2>0,解得:x>﹣2,故答案为:x>﹣2.13.解:原式=4×2﹣2=8﹣2=6.故答案为:6.14.解:a2m﹣5m=m(a2﹣5)=m(a+)(a﹣),故答案为:m(a+)(a﹣).15.解:,由①得:x≤2,由②得:x>,∴不等式组的解集为<x≤2,则不等式组的整数解为1,2.故答案为:1,2.16.解:设平均每次下调的百分率为x,依题意得250(1﹣x)2=90,(1﹣x)2=,1﹣x=±,x1=40%,x2=160%(舍去).答:平均每次下调的百分率为40%.故答案为:40%.17.解:分两种情况:①如图一,当△ABC是锐角三角形时,在△ABD中,BD是AC边上的高,AB=5,cos∠ABD=,∴BD=3,∴AD==4,∴CD=AC﹣AD=5﹣4=1,在Rt△BDC中,BC=;②如图二,当△ABC是钝角三角形时,在△ABD中,BD是AC边上的高,AB=5,cos∠ABD=,∴BD=3,∴AD==4,∴CD=AC+AD=5+4=9,在Rt△BDC中,BC==3.故答案为:或3.18.解:∵P A、PB、MN分别与⊙O切于A、B、C,∴P A=PB,MA=MC,NB=NC,∴△PMN的周长=PM+MN+PN=PM+MC+CN+PN=PM+MA+NB+PN=P A+PB=9+9=18,故答案为:18.19.解:①如图,点E在AC上时,在△ABC,∠ACB=90°,CA=CB,∴∠EAD=∠CBA=45°,∵∠CDE=45°,∠CDA=∠CDE+∠ADE=∠B+∠BCD,∴∠ADE=∠BCD,∴△ADE∽△BCD,∴,∴AD=,BD=,∴,∴AE=,∵∠CDE=∠A=45°,∴△CED∽△CDA,∴,∵CD=2,∴AC•CE=40,∴,即AE•CE=15,∵AE+CE=AC,即AE+CE=,∴CE=,∴AE,∴AE=3;②如图,点E在AC的延长线上,∵∠CDE=45°,∠DCM=∠BCD,∴△CDE∽△BCD,∴,∵CD=2,CB=AC,∴BC•CM=40,即AC•CM=40,∵∠EDB=∠A+∠E,∠DCA=∠E+∠CDE,∠A=∠CDE=45°,∴∠EDB=∠DCA,∵∠A=∠B=45°,∴△BDM∽△ACD,∴,∵AC=BC,AB=AC,AD=3BD,∴AD=,BD=,,∴BM=,∵BM+CM=AC,∴CM=,∴AC=8,作DN∥BC,∴,∴DN=BC×=8×=6,AN=AC×=8×=6,∴CN=8﹣6=2,∵CM=,∴,∴,∴CE=10,∴AE=AC+CE=8+10=18,综上,AE=3或18,故答案为:3或18.20.解:如图,连接BG,∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,BD=CD=BC=3,∵EF⊥AB,∴∠AFG=90°,∵∠AFG=∠ADC=90°,∴∠AGF=∠C,∵∠AGF=∠DGE,∴∠DGE=∠C,∵DE平分∠ADC,∴∠CDE=∠EDG,∵DE=DE,∴△CDE≌△GDE(AAS),∴DG=CD=3,∵AG=1,∴AD=AG+DG=1+3=4,由勾股定理得:AB===5,∵S△ABG=•AB•FG=•AG•BD,∴×5FG=×1×3,∴FG=,由勾股定理得:AF===,∴BF=AB﹣AF=5﹣=.故答案为:.三、解答题(共计60分)21.解:原式=÷=﹣•=﹣,当a=tan60°﹣6sin30°=﹣3时,原式=﹣=﹣.22.解:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求,A1C2==3.23.解:(1)在这次调查中,一共抽取的学生数是:8÷20%=40(名);(2)其它类的人数有:40﹣8﹣14﹣12=6(名),补全统计图如下:(3)根据题意得:1200×=360(名),答:估计该中学最喜欢科普类书籍的学生有360名.24.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ABE=∠CDF,∵AE∥CF,∴∠AEF=∠CFE,∴∠AEB=∠CFD,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF,又∵AE∥CF,∴四边形AECF是平行四边形;(2)解:△ABE、△CDF、△BCE、△ADF,理由如下:由(1)得:△ABE≌△CDF,∴BE=DF,∵2BE=3EF,∴BE:BD=3:8,∴△ABE的面积=△CDF的面积=△BCE的面积=△ADF的面积=△ABD面积的.25.解:(1)设文具店购进甲种钢笔x支,乙种钢笔y支,由题意,得,解得.答:这个文具店购进甲种钢笔50支,乙种钢笔60支.(2)设甲种钢笔每只的最低售价为m元,由题意,得50(m﹣12)+2×60(12﹣10)≥340,解得:m≥14.故甲种钢笔每只的最低售价为14元.26.(1)证明:∵四边形ABCD内接于⊙O,AC平分∠BCD,∴∠BCA=∠DCA,∴AB=AD;(2)证明:由(1)知,∠BCA=∠DCA,AB=AD,∵弧CE=弧BC,∴∠BAC=∠CAE,在△ABC和△AFC中,,∴△ABC≌△AFC(ASA),∴AB=AF,∵AB=AD,∴AF=AD;(3)解:连接BE、BP,过点E作EG⊥BP于点G,∵PF=AF=4,AF=AB=AD,∴AB=PF=4,∠APF=∠P AF,由(2)知,∠BAP=∠P AF,∴∠BAP=∠APF,∴AB∥PF,又∵AB=PF,∴四边形ABPF是平行四边形,又∵AB=AF,∴四边形ABPF是菱形,∴AF∥BP,BP=AB=4,∴∠AEB=∠EBP,∠FEP=∠EPB,∵点A、C、D、E在⊙O上,∴∠FEP=∠ACD,∵∠AEB=∠ACB,∴∠EBP=∠EPB,∴EB=EP=10,∵EG⊥BP,∴PG=BP=2,在Rt△PEG中,PE=10,∴EG===4,∴AB=EG,又∵EG⊥BP,∴∠ABP=90°,∴菱形ABPF是正方形,∴∠BAE=90°,∴EB是⊙O的直径,∴⊙O的半径是5.27.解:(1)在y=﹣x+3中,令x=0得y=3,令y=0得x=3,∴A(3,0),C(0,3),∴OA=3,OC=3,∵AB=5,∴OB=2,∵B在x轴负半轴上,∴B(﹣2,0),设直线BC解析式为y=kx+b,将B(﹣2,0),C(0,3)代入得:,解得,∴直线BC解析式为y=x+3;(2)∵OC=3,点T在AO上,且BT=CO,B(﹣2,0),∴T(1,0),OT=1,∵点P从点C出发,沿射线CO方向以每秒1个单位的速度运动,点P运动时间为t秒,∴CP=t,当t<3时,如图:∴OP=OC﹣CP=3﹣t,∴S=OT•OP=×1×(3﹣t)=﹣t+,当t>3时,如图:同理可得S=OP•OT=t﹣,∴S=;(3)由(2)知T(1,0),在y=﹣x+3中令x=1得y=2,∴E(1,2),∵B(﹣2,0),∴ET=2,BT=3,由C(0,3),T(1,0)可得直线CT解析式为y=﹣3x+3,由AL∥CT,A(3,0)可得AL解析式为y=﹣3x+9,设Q(m,﹣3m+9),取BQ中点M,∵B(﹣2,0),∴M(,),过M作MN⊥x轴于N,过P作PH⊥MN于H,当P在x轴上方时,如图:∵将线段BP绕P点顺时针方向旋转得PQ,∴BP=PQ,∵M是BQ中点,∴∠BPQ=2∠BPM,∠BMP=90°,∵∠BPQ=2∠BET,∴∠BPM=∠BET,∵∠BMP=∠BTE=90°,∴△BMP∽△BTE,∴==,∵∠PMH=90°﹣∠BMN=∠MBN,∠PHM=∠MNB=90°,∴△PMH∽△MBN,∴===,∴=,解得m=,∴M(,),∴BN=OB+ON=,而=,∴MH=,∴NH=MH+MN=+==OP,∴CP=OC﹣OP=3﹣=,∴t=CP÷1=;当P在x轴下方时,如图:同理可得==,∴=,解得m=4,∴M'(1,﹣),∴BN'=OB+ON'=3,M'H'=2,∴OP=N'H'=M'N'+M'H'=+2=,∴CP=OC+OP=,∴t=CP÷1=,综上所述,t的值为或.。
2022-2023学年人教版七年级数学上册第二次月考测试题(附答案)
人教版2022-2023学年七年级数学上册第二次月考测试题(附答案)一、选择题(每小题3分,30分)1.实数1,﹣1,0,﹣四个数中,最大的数是()A.0B.1C.﹣1D.2.某市某日的气温是﹣2℃~6℃,则该日的温差是()A.8℃B.6℃C.4℃D.﹣2℃3.下列各式中,是一元一次方程的是()A.2x+5y=6B.3x﹣2C.x2=1D.3x+5=84.下列各式中运算错误的是()A.5x﹣2x=3x B.5ab﹣5ba=0C.4x2y﹣5xy2=﹣x2y D.3x2+2x2=5x25.下列说法正确的是()A.单项式的系数是﹣5B.单项式a的系数为1,次数是0C.次数是6D.xy+x﹣1是二次三项式6.方程2x+a﹣4=0的解是x=﹣2,则a等于()A.﹣8B.0C.2D.87.下面说法中错误的是()A.368万精确到万位B.0.0450精确到千分位C.2.58精确到百分位D.10000保留到百位为1.00×1048.如果a=b,则下列式子不成立的是()A.a+c=b+c B.a2=b2C.ac=bc D.a﹣c=c﹣b 9.在某次活动中,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位.则下列方程正确的是()A.30x﹣8=31x+26B.30x+8=31x+26C.30x﹣8=31x﹣26D.30x+8=31x﹣2610.观察图和所给表格回答.当图形的周长为80时,梯形的个数为()梯形个数12345….图形周长58111417….A.25B.26C.27D.28二、填空题(每小题3分,30分)11.﹣23=.12.已知多项式2mx m+2+4x﹣7是关于x的三次多项式,则m=.13.产量由m千克增长15%后,达到千克.14.若有理数a、b满足|a+6|+(b﹣4)2=0,则a﹣b的值为.15.与原点的距离为2个单位的点所表示的有理数是.16.白玉兰商店把某种服装成本价提高50%后标价,又以7折卖出,结果每一件仍然获利20元,这种服装每件的成本是元.17.如果a﹣b=3,ab=﹣1,则代数式3ab﹣a+b﹣2的值是.18.列等式表示:“x的2倍与8的和等于10”上述等式可列为:.19.若代数式2a+3与8﹣3a的值相等,则a2021=.20.一份试卷,一共20道选择题,每一题答对得5分,答错或不答扣3分,小红共得68分,那么小红答对了道题.三、解答题(60分)21.(1)计算﹣12021+18÷(﹣3)×|﹣|(2)化简3a2﹣[8a﹣(4a﹣7)﹣2a2](3)化简求值﹣(﹣a2+2ab+b2)+(﹣a2﹣ab+b2),其中a=﹣,b=1022.解方程:(1)5(x+2)=2(5x﹣1);(2);(3)23.若方程3x+2a=12和方程3x﹣4=2的解相同,求a的值.24.甲乙两车从相距240km的两站同时开出,相对而行,甲车每小时行50km,乙车每小时行30km,问出发几小时后两车相距80km?25.抗洪抢修施工队甲处有31人,乙处有21人,由于任务的需要,现另调23人去支援,使在甲处施工的人数是在乙处施工人数的2倍,问应调往甲、乙两处各多少人?26.汛期到来之前某水利部门利用挖掘机挖掘土方,甲机单独做12天挖完,乙机单独做15天可以挖完,现在两机合作若干天后,再由乙机单独挖6天完成任务,问甲机挖了几天?27.某公园为了吸引更多游客,推出了“个人年票”的售票方式(从购买日起,可供持票者使用一年),年票分A、B二类:A类年票每张49元,持票者每次进入公园时,再购买3元的门票;B类年票每张64元,持票者每次进入公园时,再购买2元的门票.(1)一游客计划在一年中用100元游该公园(只含年票和每次进入公园的门票),请你通过计算比较购买A、B两种年票方式中,进入该公园次数较多的购票方式;(2)求一年内游客进入该公园多少次,购买A类、B类年票花钱一样多?参考答案一、选择题(每小题3分,30分)1.解:﹣1<﹣<0<1,故选:B.2.解:该日的温差=6﹣(﹣2)=6+2=8(℃).故选:A.3.解:A、含有2个未知数,故选项错误;B、不是等式,故选项错误;C、是2次方程,故选项错误;D、正确.故选:D.4.解:A、5x﹣2x=(5﹣2)x=3x,正确;B、5ab﹣5ba=(5﹣5)ab=0,正确;C、4x2y与5xy2不是同类项,不能合并,故本选项错误;D、3x2+2x2=(3+2)x2=5x2,正确.故选:C.5.解:A、单项式的系数是﹣,错误;B、单项式a的系数为1,次数是1,错误;C、次数是4,错误;D、正确.故选:D.6.解:把x=﹣2代入方程2x+a﹣4=0,得到:﹣4+a﹣4=0解得a=8.故选:D.7.解:A、368万精确到万位,此选项不符合题意;B、0.0450精确到万分位,此选项符合题意;C、2.58精确到百分位,此选项不符合题意;D、10000保留到百位为1.00×104,此选项不符合题意.故选:B.8.解:A.根据等式性质1,在等式的两边同时加上c,结果成立,故正确;B.根据等式性质2,在等式的两边同时乘以一个相同的数或式子,结果成立,故正确;C.根据等式性质2,在等式的两边同时乘以c,结果成立,故正确;D.不符合等式的性质,故不成立.故选:D.9.解:由题意得:30x+8=31x﹣26,故选:D.10.解:周长分别是5,8,11,14…可以看出:首项a1=5,等差d=3,由公式a n=a1+(n﹣1)d,即a n=5+(n﹣1)×3=3n+2.∴3n+2=80,解得n=26.故选:B.二、填空题(每小题3分,30分)11.解:﹣23=﹣8.故答案为:﹣8.12.解:∵多项式2mx m+2+4x﹣7是关于x的三次多项式,∴m+2=3,解得:m=1,故答案为:1.13.解:根据题意得:m(1+15%)=1.15m(千克);故答案为:1.15m.14.解:∵|a+6|+(b﹣4)2=0,∴a+6=0,b﹣4=0,∴a=﹣6,b=4,∴a﹣b=﹣6﹣4=﹣10.故答案为:﹣10.15.解:设数轴上,到原点的距离等于2个单位长度的点所表示的有理数是x,则|x|=2,解得:x=±2.故答案为:±2.16.解:设这种服装每件的成本为x元,依题意,得:0.7×(1+50%)x﹣x=20,解得:x=400.故答案为:400.17.解:∵a﹣b=3,ab=﹣1,∴3ab﹣a+b﹣2,=3×(﹣1)﹣3﹣2,=﹣3﹣3﹣2,=﹣8.故答案为:﹣8.18.解:依题意得:2x+8=10.故答案是:2x+8=10.19.解:根据题意得:2a+3=8﹣3a,移项合并得:5a=5,解得:a=1,则原式=1,故答案为:120.解:设小红答对了x道题,则答错或不答(20﹣x)道题,依题意,得:5x﹣3(20﹣x)=68,解得:x=16.故答案为:16.三、解答题(60分)21.解:(1)原式=﹣1﹣6×=﹣1﹣3=﹣4;(2)原式=3a2﹣8a+4a﹣7+2a2=5a2﹣4a﹣7;(3)原式=a2﹣2ab﹣b2﹣a2﹣ab+b2=﹣3ab,当a=﹣,b=10时,原式=2.22.解:(1)去括号得:5x+10=10x﹣2,移项合并得:﹣5x=﹣12,解得:x=2.4;(2)去分母得:6(x﹣2)=2x﹣1,去括号得:6x﹣12=2x﹣1,移项合并得:4x=11,解得:x=;(3)方程整理得:x﹣=2﹣,去分母得:10x﹣5x+5=20﹣2x﹣4,移项合并得:7x=11,解得:x=.23.解:3x﹣4=2x=2,∵方程3x+2a=12和方程3x﹣4=2的解相同,把x=2代入3x+2a=12得6+2a=12,a=3.24.解:设出发x小时后两车相距80km,(50+30)x=240﹣80或(50+30)x=240+80解得,x=2或x=4答:出发2小时或4小时后两车相距80km.25.解:设应调往甲处x人,调往乙处(23﹣x)人.依题意,有31+x=2(21+23﹣x),解方程,得x=19,23﹣x=23﹣19=4.答:应调往甲处19人,调往乙处4人.26.解:设甲挖掘机挖了x天,则乙挖掘机挖了(x+6)天,依题意,得:+=1,解得:x=4.答:甲挖掘机挖了4天.27.解:(1)设用100元购买A类年票可进入该公园的次数为x次,购买B类年票可进入该公园的次数为y次,据题意,得49+3x=100.解得,x=17.64+2y=100.解得,y=18.因为y>x,所以,进入该公园次数较多的是B类年票.答:进入该公园次数较多的是B类年票;(2)设进入该公园z次,购买A类、B类年票花钱一样多.则根据题意得49+3z=64+2z.解得z=15.答:进入该公园15次,购买A类、B类年票花钱一样多.。
七年级数学上学期第二次月考试题含解析试题
卜人入州八九几市潮王学校永登县苦水二零二零—二零二壹七年级数学上学期第二次月考试题一、精心选一选:〔本大题10个小题,每一小题4分,一共40分〕1.﹣2的倒数是()A.﹣B.C.﹣2 D.22.以下各式符合代数式书写标准的是()A.B.a×3C.2m﹣1个D.1m3.以下各式中运算正确的选项是()A.6a﹣5a=1 B.a2+a2=a4C.3a2+2a3=5a5D.3a2b﹣4ba2=﹣a2b4.如图是由几个小立方块所搭几何体的俯视图,小正方形的数字表示在该位置的小立方块的个数,这个几何体的主视图是()A. B.C. D.5.对于代数式﹣,以下结论正确的选项是()A.它的系数是,次数是5 B.它的系数是﹣,次数是6C.它的系数是,次数是6 D.它的系数是﹣,次数是56.|a|=4,b是的倒数,且a<b,那么a+b等于()A.﹣7 B.7或者﹣1 C.﹣7或者1 D.17.代数式3x2﹣6x+6的值是9,那么代数式x2﹣2x+6的值是()A.18 B.12 C.9 D.78.某服装店新开张,第一天销售服装a件,第二天比第一天多销售12件,第三天的销售量是第二天的2倍少10件,那么第三天销售了()A.〔2a+2〕件B.〔2a+24〕件 C.〔2a+10〕件 D.〔2a+14〕件9.在一次美化校园活动中,先安排31人去拔草,18人去植树,后又增派20人去支援他们,增援后拔草人数是植树人数的2倍,求支援拔草和植树的人分别有多少人?假设设支援拔草的有x人,那么以下方程中正确的选项是()A.31+x=2×18 B.31+x=2〔38﹣x〕C.51﹣x=2〔18+x〕D.51﹣x=2×1810.一个两位数的个位数字与十位数字都是x,假设将个位数字与十位数字分别加2和1,所得的新数比原数大12,那么可列的方程是()A.2x+3=12 B.10x+2+3=12C.〔10x+x〕﹣10〔x+1〕﹣〔x+2〕=12 D.10〔x+1〕+〔x+2〕=10x+x+12二、细心填一填:〔本大题一一共10个小题,每一小题4分,一共40分〕11.被称为“地球之肺〞的森林正以每年15000000公顷的速度从地球上消失,每年森林的消失量用科学记数法表示为__________公顷.12.关于x的方程2x+3a=﹣1的解是x=1,那么a=__________.13.假设单项式﹣x2m﹣1y2的次数是5,那么m的值是__________.14.假设x m+1y5和是同类项,那么2m﹣3mn=__________.15.在某月内,李教师要参加三天的学习培训,如今知道这三天日期的数字之和是39.假设培训时间是是连续三周的周六,那么培训的第一天的日期是__________.16.如图,OD⊥OA,∠AOB:∠BOC=1:3,OD平分∠BOC,那么∠AOC=__________度.17.某商场新进一批同型号的电脑,按进价进步40%标价〔就是价格牌上标出的价格〕,此商场为了促销,又对该电脑打8折销售〔8折就是实际售价为标价的80%〕,每台电脑仍可盈利420元,那么该型号电脑每台进价为__________元.18.时间是为10:40时,时钟的时针与分针的夹角是__________度.19.假设有足够多的黑白围棋子,按照一定的规律排成一行:请问第2021个棋子是黑的还是白的?答:__________.20.数a,b,c的大小关系如下列图:那么以下各式:①b+a+〔﹣c〕>0;②〔﹣a〕﹣b+c>0;③;④bc﹣a>0;⑤|a﹣b|﹣|c+b|+|a﹣c|=﹣2b.其中正确的有__________〔请填写上编号〕.三、用心做一做:〔本大题一一共70分〕以下各题解答时必须给出必要的演算过程或者推理步骤21.计算:〔1〕〔﹣4〕2﹣9〔2〕﹣120﹣〔1﹣0.5〕2×.22.化简以下各式:〔1〕2〔a2﹣ab〕﹣2a2+3ab;〔2〕〔﹣x2+2xy﹣y2〕﹣2〔xy﹣3x2〕+3〔2y2﹣xy〕.23.解以下方程:〔1〕3x﹣2〔x+3〕=6﹣2x;〔2〕.24.某种商品进货后,零售价定为每件900元,为了适应场竞争,商店按零售价的九折降价,并让利40元销售,仍可获利10%〔相对于进价〕,问这种商品的进价为多少元?25.先化简,再求值:,其中a、b满足|a+3b+1|+〔2a ﹣4〕2=0.26.〔1〕如图,点C在线段AB上,且AC=6cm,BC=4cm,点M、N分别是AC、BC的中点,求线段MN的长度;〔2〕假设点C是线段AB上任意一点,且AC=a,BC=b,点M、N分别是AC、BC的中点,请直接写出线段MN 的长度;〔用a、b的代数式表示〕二零二零—二零二壹永登县苦水七年级〔上〕第二次月考数学试卷一、精心选一选:〔本大题10个小题,每一小题4分,一共40分〕1.﹣2的倒数是()A.﹣B.C.﹣2 D.2【考点】倒数.【专题】常规题型.【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.应选:A.【点评】主要考察倒数的概念及性质.倒数的定义:假设两个数的乘积是1,我们就称这两个数互为倒数.2.以下各式符合代数式书写标准的是()A.B.a×3C.2m﹣1个D.1m【考点】代数式.【分析】根据代数式的书写要求判断各项.【解答】解:A、符合代数式的书写,故A选项正确;B、a×3中乘号应略,数字放前面,故B选项错误;C、2m﹣1个中后面有单位的应加括号,故C选项错误;D、1m中的带分数应写成假分数,故D选项错误.应选:A.【点评】此题考察代数式的书写要求:〔1〕在代数式中出现的乘号,通常简写成“•〞或者者略不写;〔2〕数字与字母相乘时,数字要写在字母的前面;〔3〕在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.3.以下各式中运算正确的选项是()A.6a﹣5a=1 B.a2+a2=a4C.3a2+2a3=5a5D.3a2b﹣4ba2=﹣a2b【考点】合并同类项.【专题】计算题.【分析】根据同类项的定义及合并同类项法那么解答.【解答】解:A、6a﹣5a=a,故A错误;B、a2+a2=2a2,故B错误;C、3a2+2a3=3a2+2a3,故C错误;D、3a2b﹣4ba2=﹣a2b,故D正确.应选:D.【点评】合并同类项的方法是:字母和字母的指数不变,只把系数相加减.注意不是同类项的一定不能合并.4.如图是由几个小立方块所搭几何体的俯视图,小正方形的数字表示在该位置的小立方块的个数,这个几何体的主视图是()A. B.C. D.【考点】由三视图判断几何体;简单组合体的三视图.【专题】作图题.【分析】找到从正面看所得到的图形即可.【解答】解:从正面可看到,左边2个正方形,中间1个正方形,右边1个正方形.应选D.【点评】此题考察了三视图的知识,主视图是从物体的正面看得到的视图.5.对于代数式﹣,以下结论正确的选项是()A.它的系数是,次数是5 B.它的系数是﹣,次数是6C.它的系数是,次数是6 D.它的系数是﹣,次数是5【考点】单项式.【分析】根据单项式的系数、次数的定义进展判断.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式﹣的系数为﹣,次数为3+2=5,应选D.【点评】此题考察了单项式的系数及次数,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.6.|a|=4,b是的倒数,且a<b,那么a+b等于()A.﹣7 B.7或者﹣1 C.﹣7或者1 D.1【考点】倒数;绝对值;有理数的加法.【分析】根据绝对值,倒数的概念及条件a<b,首先确定a与b的值,再代入所求代数式a+b,运用有理数的加法法那么得出结果.【解答】解:∵|a|=4,∴a=±4.∵b是的倒数,∴b=﹣3,又∵a<b,∴a=﹣4,∴a+b=﹣4﹣3=﹣7.应选A.【点评】主要考察绝对值,倒数的概念及理数的加法法那么.倒数的定义:假设两个数的乘积是1,我们就称这两个数互为倒数.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.有理数加法法那么:同号相加,取一样符号,并把绝对值相加;绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;一个数同0相加,仍得这个数.7.代数式3x2﹣6x+6的值是9,那么代数式x2﹣2x+6的值是()A.18 B.12 C.9 D.7【考点】代数式求值.【分析】由代数式3x2﹣6x+6的值是9,易求得x2﹣2x的值,然后整体代入代数式x2﹣2x+6,即可求得答案.【解答】解:∵3x2﹣6x+6=9,∴3x2﹣6x=3,∴x2﹣2x=1,∴x2﹣2x+6=1+6=7.应选D.【点评】此题考察了代数式的求值问题.此题难度适中,注意掌握整体思想的应用.8.某服装店新开张,第一天销售服装a件,第二天比第一天多销售12件,第三天的销售量是第二天的2倍少10件,那么第三天销售了()A.〔2a+2〕件B.〔2a+24〕件 C.〔2a+10〕件 D.〔2a+14〕件【考点】列代数式.【分析】此题要根据题意直接列出代数式,第三天的销售量=〔第一天的销售量+12〕×2﹣10.【解答】解:第二天销售服装〔a+12〕件,第三天的销售量2〔a+12〕﹣10=2a+14〔件〕,应选D.【点评】此题要注意的问题是用多项式表示一个量的后面有单位时,这个多项式要带上小括号.9.在一次美化校园活动中,先安排31人去拔草,18人去植树,后又增派20人去支援他们,增援后拔草人数是植树人数的2倍,求支援拔草和植树的人分别有多少人?假设设支援拔草的有x人,那么以下方程中正确的选项是()A.31+x=2×18 B.31+x=2〔38﹣x〕C.51﹣x=2〔18+x〕D.51﹣x=2×18【考点】由实际问题抽象出一元一次方程.【分析】首先知道支援拔草的有x人,一共有20人去支援,那么支援植树的有人,再根据关键语句“增援后拔草人数是植树人数的2倍〞可得方程.【解答】解:设支援拔草的有x人,那么支援植树的有人,由题意得:31+x=2[18+],即:31+x=2〔38﹣x〕,应选:B.【点评】此题主要考察了由实际问题抽象出一元一次方程,关键是把支援的20人清楚的分开,表示出支援后的拔草人数是植树人数.10.一个两位数的个位数字与十位数字都是x,假设将个位数字与十位数字分别加2和1,所得的新数比原数大12,那么可列的方程是()A.2x+3=12 B.10x+2+3=12C.〔10x+x〕﹣10〔x+1〕﹣〔x+2〕=12 D.10〔x+1〕+〔x+2〕=10x+x+12【考点】由实际问题抽象出一元一次方程.【专题】数字问题.【分析】根据将个位数字与十位数字分别加2和1后的数﹣原来这个两位数=12进展列式.【解答】解:原来两位数可表示为11x,将个位数字与十位数字分别加2和1后新数可表示为10〔x+1〕+〔x+2〕,由所得的新数比原数大12可列式10〔x+1〕+〔x+2〕=10x+x+12,应选D.【点评】此题主要考察由实际问题抽象出一元一次方程的知识点,读懂题意,找出等量关系是解答此题的关键.二、细心填一填:〔本大题一一共10个小题,每一小题4分,一共40分〕11.被称为“地球之肺〞的森林正以每年15000000公顷的速度从地球上消失,每年森林的消失量用科学记数法表示为×107公顷.【考点】科学记数法—表示较大的数.【专题】应用题.【分析】科学记数法就是将一个数字表示成a×10n的形式,其中1≤|a|<10,n表示整数,n为整数.【解答】解:15000000=×107.【点评】此题考察学生对科学记数法的掌握.科学记数法要求前面的局部|a|是>或者等于1,而<10,n 为整数.12.关于x的方程2x+3a=﹣1的解是x=1,那么a=﹣1.【考点】一元一次方程的解.【专题】计算题.【分析】由于x=1是原方程的解,将x=1代入原方程,即:2+3a=﹣1,直接解新方程可以求出a的值.【解答】解:由于x=1是方程2x+3a=﹣1的解,即满足:2×1+3a=﹣1,是一个关于a的一元一次方程解之得:3a=﹣3,a=﹣1故答案为:a=﹣1.【点评】此题考察的是原方程的解求解原方程中未知数的过程,只需将原方程的解代入原方程求出未知数的值即可.13.假设单项式﹣x2m﹣1y2的次数是5,那么m的值是2.【考点】单项式.【分析】根据单项式次数的定义来求解.单项式中所有字母的指数和叫做这个单项式的次数.【解答】解:∵单项式﹣x2m﹣1y2的次数是5,∴2m﹣1+2=5,解得,m=2.∴m的值是2.【点评】确定单项式的次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式次数的关键.14.假设x m+1y5和是同类项,那么2m﹣3mn=﹣12.【考点】同类项.【分析】根据同类项的定义可先求得m和n的值,从而求出2m﹣3mn的值.【解答】解:由同类项的定义可知m+1=4,2n+1=5,解得:m=3,n=2,那么2m﹣3mn=﹣12.故答案为:﹣12.【点评】此题考察同类项问题,代数式的求值也是中考中常见的试题,要求代数式的值,关键是求出代数式中的字母的值,此题根据同类项即可求解字母的值.15.在某月内,李教师要参加三天的学习培训,如今知道这三天日期的数字之和是39.假设培训时间是是连续三周的周六,那么培训的第一天的日期是6日.【考点】一元一次方程的应用.【专题】应用题;数字问题.【分析】根据题意可知这三天一次相差7天,设培训的第一天的日期是x日,分别用x表示出另外2天,利用三天日期和是39列方程求解即可.【解答】解:设培训的第一天的日期是x日,那么另外两天是〔x+7〕日,〔x+14〕日,根据题意,得x+x+7+x+14=39解得x=6所以培训的第一天的日期是6日.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出适宜的等量关系,列出方程,再求解.16.如图,OD⊥OA,∠AOB:∠BOC=1:3,OD平分∠BOC,那么∠AOC=144度.【考点】角的计算;角平分线的定义;对顶角、邻补角.【专题】计算题.【分析】根据比例设出两角,再利用OD⊥OA,∠AOD是90°求解.【解答】解:根据题意,设∠AOB为x,∠BOC为3x,∵OD平分∠BOC,∴∠BOD=x,∵OD⊥OA,∴x+x=90°,解得x=36°,∴∠AOC=x+3x=4x=4×36°=144°.【点评】利用垂直得到直角是解此题的关键.17.某商场新进一批同型号的电脑,按进价进步40%标价〔就是价格牌上标出的价格〕,此商场为了促销,又对该电脑打8折销售〔8折就是实际售价为标价的80%〕,每台电脑仍可盈利420元,那么该型号电脑每台进价为3500元.【考点】一元一次方程的应用.【专题】销售问题.【分析】设该型号电脑每台进价为x元,那么按进价进步40%的标价是x+40%x,那么打8折销售的价格﹣进价=盈利,根据这个等量关系列方程,求得解.【解答】解:设该型号电脑每台进价为x元,根据题意列方程得:〔x+40%x〕×0.8﹣x=420,解得:x=3500∴该型号电脑每台进价为3500元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出适宜的等量关系,列出方程,再求解.18.时间是为10:40时,时钟的时针与分针的夹角是80度.【考点】钟面角.【专题】计算题.【分析】此类钟表问题,先理清分针、时针,每分钟、每小时的转动角度,然后再进展求解.【解答】解:时针每小时转动360÷12=30°,每分钟转动30÷60=0.5°;分针每分钟转动360÷60=6°;当时间是为10:40时,时针转动的角度为:30°×10+40×0.5°=320°;分针转动的角度为:40×6°=240°;∴此时,时针与分针的夹角为320°﹣240°=80°.【点评】此题考察的是钟表类问题,掌握时针、分针的转动情况是解答此类题的关键所在.19.假设有足够多的黑白围棋子,按照一定的规律排成一行:请问第2021个棋子是黑的还是白的?答:白.【考点】规律型:图形的变化类.【分析】对于找规律的题目首先应找出哪些局部发生了变化,是按照什么规律变化的.此题的关键是找出黑白棋子的变化规律,然后根据规律来判断第n个棋子的颜色.【解答】解:根据题意得:每6个围棋子的顺序都是一致的,∵2021÷6=335…5,∴假设把6个围棋子看作一个循环,第2021个棋子经过了335个循环,是第336个循环中的第5个棋子,∴根据第5个棋子是白色的,∴第2021个也应该是白色的.故答案为:白.【点评】此题考察了规律型:图形的变化美、图形的变化规律;此题是一道找规律的题目,根据题意得出6个围棋子为一个循环是解决问题的关键,这类题型在中考中经常出现.20.数a,b,c的大小关系如下列图:那么以下各式:①b+a+〔﹣c〕>0;②〔﹣a〕﹣b+c>0;③;④bc﹣a>0;⑤|a﹣b|﹣|c+b|+|a﹣c|=﹣2b.其中正确的有②③⑤〔请填写上编号〕.【考点】绝对值.【专题】数形结合.【分析】有数轴判断abc的符号和它们绝对值的大小,再判断所给出的式子的符号,写出正确之答案.【解答】解:由数轴知b<0<a<c,|a|<|b|<|c|,①b+a+〔﹣c〕<0,故原式错误;②〔﹣a〕﹣b+c>0,故正确;③,故正确;④bc﹣a<0,故原式错误;⑤|a﹣b|﹣|c+b|+|a﹣c|=﹣2b,故正确;其中正确的有②③⑤.【点评】此题综合考察了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,表达了数形结合的优点.三、用心做一做:〔本大题一一共70分〕以下各题解答时必须给出必要的演算过程或者推理步骤21.计算:〔1〕〔﹣4〕2﹣9〔2〕﹣120﹣〔1﹣0.5〕2×.【考点】有理数的混合运算.【专题】计算题;实数.【分析】〔1〕原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;〔2〕原式先计算乘方及绝对值运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:〔1〕原式=16﹣12﹣4=0;〔2〕原式=﹣120﹣××2=﹣120.【点评】此题考察了有理数的混合运算,纯熟掌握运算法那么是解此题的关键.22.化简以下各式:〔1〕2〔a2﹣ab〕﹣2a2+3ab;〔2〕〔﹣x2+2xy﹣y2〕﹣2〔xy﹣3x2〕+3〔2y2﹣xy〕.【考点】整式的加减.【分析】此题考察了整式的加减、去括号法那么两个考点.先按照去括号法那么去掉整式中的括号,再合并整式中的同类项即可.【解答】解:〔1〕原式=2a2﹣2ab﹣2a2+3ab=ab;〔2〕原式=﹣x2+2xy﹣y2﹣2xy+6x2+6y2﹣3xy=5x2﹣3xy+5y2.【点评】解决此类题目的关键是熟记去括号法那么,及纯熟运用合并同类项的法那么,其是各地中考的常考点.注意去括号法那么为:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.23.解以下方程:〔1〕3x﹣2〔x+3〕=6﹣2x;〔2〕.【考点】解一元一次方程.【专题】计算题.【分析】〔1〕先去括号,再移项、合并同类项、化系数为1即可;〔2〕先去分母、去括号,再移项、合并同类项、化系数为1.【解答】解:〔1〕去括号,得:3x﹣2x﹣6=6﹣2x,移项,得:3x﹣2x+2x=6+6,合并同类项,得:3x=12,系数化1,得:x=4.∴x=4是方程的解.〔2〕去分母,得:2〔1﹣2x〕=6﹣〔x+2〕,去括号,得:2﹣4x=6﹣x﹣2,移项,得:﹣4x+x=6﹣2﹣2,合并同类项,得:﹣3x=2,系数化1,得:.∴是方程的解.【点评】此题考察理解一元一次方程的步骤:去分母、去括号、移项、合并同类项和系数化为1,在去分母时一定要注意:不要漏乘方程的每一项.24.某种商品进货后,零售价定为每件900元,为了适应场竞争,商店按零售价的九折降价,并让利40元销售,仍可获利10%〔相对于进价〕,问这种商品的进价为多少元?【考点】一元一次方程的应用.【分析】通过理解题意可知商店按零售价的九折且让利40元销售即销售价=900×90%﹣40,得出等量关系为x×〔1+10%〕=900×90%﹣40,求出即可.【解答】解:设进价为x元,可列方程:x×〔1+10%〕=900×90%﹣40,解得:x=700,答:这种商品的进价为700元.【点评】此题主要考察了一元一次方程的应用,解决此题的关键是得到商品售价的等量关系.25.先化简,再求值:,其中a、b满足|a+3b+1|+〔2a ﹣4〕2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方;解一元一次方程.【分析】先由非负数的性质化简a、b满足的关系式,求出a、b的值,化简所给的代数式代入求值即可.【解答】解:∵|a+3b+1|≥0,〔2a﹣4〕2≥0,且|a+3b+1|+〔2a﹣4〕2=0,∴2a﹣4=0且a+3b+1=0,∴a=2,b=﹣1,∵原式=3a2b﹣〔2ab2﹣2ab+3a2b〕+2ab=3a2b﹣2ab2+2ab﹣3a2b+2ab=﹣2ab2+4ab∴当a=2,b=﹣1时原式=﹣2×2×〔﹣1〕2+4×2×〔﹣1〕=﹣4+〔﹣8〕=﹣12.【点评】考察的是整式的化简求值问题.注意应用非负数的性质求解未知数的值,这是中考的重点.26.〔1〕如图,点C在线段AB上,且AC=6cm,BC=4cm,点M、N分别是AC、BC的中点,求线段MN的长度;〔2〕假设点C是线段AB上任意一点,且AC=a,BC=b,点M、N分别是AC、BC的中点,请直接写出线段MN 的长度;〔用a、b的代数式表示〕【考点】两点间的间隔.【分析】〔1〕由条件可知,MN=MC+NC,又因为点M、N分别是AC、BC的中点,那么MC=AC,NC=BC,故MN=MC+NC=〔AC+BC〕,由此即可得出结论;〔2〕直接根据〔1〕的计算得出答案即可.【解答】解:〔1〕∵AC=6cm,BC=4cm,点M、N分别是AC、BC的中点,∴MC=3cm,NC=2cm,∴MN=MC+NC=3+2=5cm.〔2〕∵点C是线段AB上任意一点,且AC=a,BC=b,点M、N分别是AC、BC的中点,∴MN=〔a+b〕.【点评】此题考察了两点间的间隔,利用线段中点性质转化线段之间的关系是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一年级第二次月考数学试卷
一、 填空题(每小题3分,共计30分)
1.-3的相反数是
2.比较大小:-0.25 -43
3.化简符号:-(-2)=
4.某地一天的气温是-3~40C,那么这地区的温差(最高气温与
最低气温的差)是
5.初一年级有学生m人,其中男生占56%,则女生人数是
6.当x等于 时,3x-7(x-1)与4+x的值相等。
7.如图,M、N分别是线段A、B
上的三等份点,请写出一个有关线
段关系的式子
8.一个角的度数是67012’,这个角的
余角度数为
9.如图,将一副三角板的直角
顶点重合后重叠在一起,如果∠1=400,
那么∠2=
10.我们的早读时间是7:30-7:55,在这个
时间中,分针旋转的角度为
二、 选择题(每小题3分,共计18分)
11.下列各数:-2,0,|-21|,+9,0.6,-722,1是整数的有( )个
A.4 B.3 C. 2 D.1
12.近似数0.5600的有效数字的个数和精确度分别是( )
A.两个,精确到万分位 B.四个, 精确到十万分位
C.四个,精确到万分位 D. 四个,精确到千分位
13.两数在数轴上表示如图所示,
则下列结论错误的是( )
A.a+b<0 B.ab<0
C.-b>a D.a-b<0
14.某同学在解方程5a-x=13(x为未知数)时,误将-x看作x,得方程的解为
x=-2,则原方程的解为( )
A.x=-3 B.x=0 C.x=2 D.x=1
15.某人利用计算机设计了一个计算机程序,输入和输出的数据如下表:
输入 „ 1 2 3 4 5 „
输出 „ 21 52 103 174 265 „
那么,当输入数据是8时,输出数据是( )
A. 618 B. 638 C. 658 D. 678
A B
M N
0
1
a
-1
b
1
2
16.如图,这是由5个大小相同的小正方体摆成的立体图形,它从上面看的图是
( )
17.如图,已知∠AOC=900,
∠COB=α,OD平分∠AOB,
则∠COD=( )
A.2 B.450-2
C.450-α D.900-α
18.我们都知道“两点之间,线段最短”,
但是,某公园设计师在设计公园桥梁时反而设计一座
曲折迂回的桥,他这样做是( )
A.他不懂得“两点之间,线段最短”
B.为了增加游客游览时间
C.使桥弯弯曲曲更好看
D.为了挣更多设计费用
三、 简答题(每小题6分,共计18分。每题均必须有简单过程)
19.计算:(-2)3+12×(314161)-2.5÷85
20.解方程:2x-1=6110x
21.有一种“二十四点”游戏,规则是:任意四个数,将这四个数(每个数要用
O
A
B
C
D
且只能用一次)进行加、减、乘、除四则运算,使其结果等于24.
例如:对1,2,3,4可作运算:(1+2+3)×4=24.
(注:4×(1+2+3)视作相同方法的运算)
现有四个有理数:3,4,-6,10.请你运用上述规则写出两种不同方法的运算式,
使其结果等于24,你写的运算式为:
(1)
(2)
四.作图题:根据要求画出图形(注意:用
铅笔和圆规、尺子等工具,保留作图痕迹,
不写作法)(本题7分)
22.如图,
(1)以CD为一边作∠DCM,
使∠DCM等于图中已知∠ABC
(2)延长CD到N点,使DN等于
已知线段AB长
五.解答题(第23题8分,第24题9分,第25题10分,共计27分)
23.在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所.
已知青少年宫在学校东300米处,商场在学校西200米处,医院在学校东500
米处.若将马路近似地看作一条直线,以学校为原点,向东方向为正方向,用1
个单位长度表示100米.
(1)画数轴表示四家公共场所的位置
(2)列式计算青少年宫与商场之间的距离
24.如图所示,已知,C为AB的中点,D为CB上一点,E为DB的中
A
B
C
D
点,EB=6cm,求CD的长。
25.在商品市场经常可以听到这样的讨价还价对话声
小贩:“10元一个的玩具赛车打八折,快来买啊!”
学生:“能不能再便宜2元?”
结果小贩真的让利(便宜)2元卖给了这个学生.但小贩还能获利20%.
请问你能根据上述内容求出一个玩具赛车的进价是多少元?