二十个模拟电路(一)
模电实验模拟运算放大电路(一)

实验目的和要求:① 了解运放调零和相位补偿的基本概念。
② 熟练掌握反相比例、同相比例、加法、减法等电路的设计方法。
③ 熟练掌握运算放大电路的故障检查和排除方法,以及增益、传输特性曲线的测量方法。
实验原理:预习思考:1、 设计一个反相比例放大器,要求:|A V|=10,Ri>10KΩ,将设计过程记录在预习报告上; 电路图如P20页5-1所示,电源电压为±15V ,R 1=10kΩ,R F =100 kΩ,R L =100 kΩ2、 设计一个同相比例放大器,要求:|A V|=11,Ri>100KΩ,将设计过程记录在预习报告上;R F R LVo电源电压为±15V ,R 1=10kΩ,R F =100 kΩ,R L =100 kΩ 3、 设计一个电路满足运算关系 VO= -2Vi1 + 3Vi2减法运算电路:1123213111113232)()()(i f i f i f i i O V R R V R R R R R R V R R R V R R R V V -++=++-+=3)()(32131=++R R R R R R f ,0,22211==⇒=R R R R R f f取Ω=Ω=Ω=Ω=K R K R K R K R f 100,0,20,10321实验电路如实验内容:1、反相输入比例运算电路(I ) 按图连接电路,其中电源电压为±15V ,R 1=10 kΩ, R F =100 kΩ, R L =100 kΩ, R P =10 kΩ//100 kΩAR1R F Rp=R F //R1R LVoVi+Vcc-Vcc输入端接地,用万用表测量并记录输出端电压值,此时测出失调电压0.016 V 分析:失调电压是直流电压,将会直接影响直流放大器的放大精度。
直流信号测量:Vi/V V O /V Avf测量值 理论值 -2 14.25 -7.125 -10 -0.5 4.98 -9.96 -10 0.5 -5.02 -10.04 -10 2-12.87-6.435-10实验结果分析:运算放大器的输出电压摆幅受器件特性的限制,当输入直流信号较大时,经过运放放大后的输出电压如果超过V OM ,则只能输出V OM 的值。
国家开放大学《模拟电子电路》形考任务-参考答案(一)

国家开放大学《模拟电子电路》形考任务-参考答案(一)国家开放大学学习班的《模拟电子电路》形考任务日前终于出炉,同学们可以参考下面的答案进行备考,轻松应对形考!一、单选题1.在二极管的I-V特性曲线上,正向截止与反向截止都具有如下特征:A.电流为0B.电压为0C.电流近似为常数D.电流随着电压增高而增强正确答案:A2.一个全桥逆变电路,当输入同步方波信号的占空比为50%时,输出的基本波形的占空比为:A.0%B.25%C.50%D.75%正确答案:C3.从简化的微小信号模型来分析场效应管的三个极间关系,其中下列表述正确的是:A.漏极电阻小,场效应管才是理想放大器B.栅极电压直接决定漏极电流C.源极直接耦合于信号源D.当栅极电极短路时,感性耦合也能产生放大效应正确答案:B4.样品保持电路是一种常见的电子测量技术,该电路可以实现的功能是:A.将直流信号转化为交流信号B.实现正弦波信号的调制C.实现信号放大的功能D.在短时间内记录并保持信号的幅度和电压值正确答案:D5.对于滤波器的响应特性,不精确但直观的表示方法为A.直流增益-相移曲线B.频率响应曲线C.群时延-相波曲线D.鉴别特性曲线正确答案:B二、计算题1.针对图1中的电路,请计算R=30kΩ时,电路的放大系数。
其中U1为一个齐纳二极管,其第三象限满足等效电路图相应参数为:Vbi=1.5V,I0=1mA。
另外,忽略传输非理想性。
解答:首先进行小信号模型分析,将电容滤波器变为补偿网络,计算出VB和IC的值。
VB=0.573V,IC=6.29μA。
将等效电路图代入计算,得到放大系数:Av=3.73。
2.对于图2的电路,请计算输出电压Vo的值。
其中U1是有源电阻,其电压增益为5。
设D1为2v截止二极管,D2和D3为1.6v截止二极管,C1=1μF。
解答:首先确定电容C1起到短路的作用,于是输出电压Vo等于U1+0.6(近似)。
由于U1的输入1V经过其增益为5的有源放大器,所以U1输出5V。
(完整版)模拟电路试卷及答案(十套)

模拟综合试卷一. 填充题1集成运算放大器反相输入端可视为虚地的条件是 a , b 。
2•通用运算放大器的输入级一般均采用察动放大器,其目的是a ,b。
3. 在晶体三极管参数相同,工作点电流相同条件下,共基极放大电路的输入电阻比共射放大电路的输入电阻。
4. 一个NPN晶体三极管单级放大器,在测试时出现顶部失真,这是失真。
5. 工作于甲类的放大器是指导通角等于,乙类放大电路的导通角等于,工作于甲乙类时,导通角为。
6. 甲类功率输出级电路的缺点是,乙类功率输出级的缺点是故一般功率输出级应工作于状态。
7. 若双端输入,双端输出理想差动放大电路,两个输入电压U ii =U2,则输出电压为—匚; 若山=1500皿U i2=500N,则差模输入电压u id为N,共模输入信号u ic为V8 .由集成运放构成的反相比例放大电路的输入电阻较同相比例放大电路的输入电阻较。
9. 晶体三极管放大器的电压放大倍数在频率升高时下降,主要是因为的影响。
10. 在共射、共集、共基三种组态的放大电路中,组态电流增益最;组态电压增益最小;组态功率增益最高;组态输出端长上承受最高反向电压。
频带最宽的是组态。
二. 选择题1 .晶体管参数受温度影响较大,当温度升高时,晶体管的B,I CBO U BE的变化情况为()。
)A.B 增加,I CBO 和u BE 减小B. B 和I CBC 增加,U BE 减小C.B 和U BE 减小,I CBO 增加D. B 、I CBC 和U BE 都增加 2. 反映场效应管放大能力的一个重要参数是()A.输入电阻B. 输出电阻C.击穿电压D. 跨导 3.双端输出的差分放大电路主要( )来抑制零点飘移。
A.通过增加一级放大B.利用两个C.利用参数对称的对管子D. 利用电路的对称性4•典型的差分放大电路由双端输出变为单端输出,共模电压放大倍数(A.变大B. 变小C.不变D. 无法判断5 •差分放大电路的共模抑制比K CM越大,表明电路()A.放大倍数越稳定B.交流放大倍数越大C.直流放大倍数越大D.抑制零漂的能力越强6•负反馈放大电路以降低电路的()来提高嗲路的其他性能指标。
模拟电子电路multisim仿真实例大全

模拟电子电路multisim仿真1.1 晶体管基本放大电路1.1.1 共射极基本放大电路按下图搭建共射极基本放大电路,选择电路菜单电路图选项(Circuit/Schematic Option )中的显示/隐藏(Show/Hide)按钮,设置并显示元件的标号与数值等。
1. 静态工作点分析选择分析菜单中的直流工作点分析选项(Analysis/DC Operating Point)(当然,也可以使用仪器库中的数字多用表直接测量)分析结果表明晶体管Q1工作在放大状态。
2. 动态分析用仪器库的函数发生器为电路提供正弦输入信号Vi(幅值为5mV,频率为10kH),用示波器观察到输入,输出波形。
由波形图可观察到电路的输入,输出电压信号反相位关系。
再一种直接测量电压放大倍数的简便方法是用仪器库中的数字多用表直接测得。
3. 参数扫描分析在上图所示的共射极基本放大电路中,偏置电阻R1的阻值大小直接决定了静态电流IC 的大小,保持输入信号不变,改变R1的阻值,可以观察到输出电压波形的失真情况。
选择分析菜单中的参数扫描选项(Analysis/Parameter Sweep Analysis),在参数扫描设置对话框中将扫描元件设为R1,参数为电阻,扫描起始值为100k,终值为900k,扫描方式为线性,步长增量为400k,输出节点5,扫描用于暂态分析。
4.频率响应分析选择分析菜单中的交流频率分析项(Analysis/AC Frequency Analysis)在交流频率分析参数设置对话框中设定:扫描起始频率为1Hz,终止频率为1GHz,扫描形式为十进制,纵向刻度为线性,节点5做输出节点。
由图分析可得:当共射极基本放大电路输入信号电压VI为幅值5mV的变频电压时,电路输出中频电压幅值约为0.5V,中频电压放大倍数约为100倍,下限频率(X1)为14.22Hz,上限频率(X2)为25.12MHz,放大器的通频带约为25.12MHz。
模拟电路基础知识大全

模拟电路基础知识大全5、三极管放大作用的外部电压条件是发射结(正偏),集电结(反偏)。
6、当温度升高时,晶体三极管集电极电流Ic会(增大),发射结压降(减小)。
7、三极管放大电路共有三种组态,分别是(共集电极)、(共发射极)、(共基极)放大电路。
8、为了稳定三极管放大电路的静态工作点,采用(直流)负反馈,为了稳定交流输出电流采用(交流)负反馈。
9、负反馈放大电路的放大倍数AF为(A/1+AF),对于深度负反馈放大电路的放大倍数AF=(1/F)。
10、带有负反馈放大电路的频带宽度BWF=(1+AF)BW,其中BW=(fh-fl),(1+AF)称为反馈深度。
11、差分放大电路输入端加上大小相等、极性相同的两个信号,称为(共模)信号,而加上大小相等、极性相反的两个信号,称为(差模)信号。
12、为了消除乙类互补功率放大器输出波形的(交越)失真,而采用(甲乙)类互补功率放大器。
13、OCL电路是(双)电源互补功率放大电路;OTL电路是(单)电源互补功率放大电路。
14、共集电极放大电路具有电压放大倍数(近似于1),输入电阻(大),输出电阻(小)等特点,所以常用在输入级、输出级或缓冲级。
15、差分放大电路能够抑制(零点)漂移,也称(温度)漂移,所以它广泛应用于(集成)电路中。
16、用待传输的低频信号去改变高频信号的幅度称为(调波),未被调制的高频信号是运载信息的工具,称为(载波信号)。
17、模拟乘法器输出与输入的关系式是U0=(KUxUy)。
1.当温度升高时,三极管的等电极电流I会增大,发射结压降UBE会减小。
2.晶体三极管具有放大作用时,发射结为正偏,集电结为反偏。
3.三极管放大电路共有三种组态:共射极、共基极、共集电极放大电路。
4.为了稳定三极管放大电路和静态工作点,采用直流负反馈;为了减小输出电阻,采用电压负反馈。
5.负反馈放大电路的放大倍数Af为A/(1+AF),对于深度负反馈,Af为1/F。
6.共模信号是大小相等、极性相同的两个信号。
模拟电路1习题及解答

8. 稳压二极管电路如图所示,稳压二极管的参数为:UZ=8V,IZmin=5mA,
PZM=240mW,限流电阻R=390,负载电阻RL=510,输入电压UI=17V。
(1)求输出电压Uo及稳压管电流IDZ;
(2)若UI增加20%,RL开路,分析稳压二极管是否安全。
(1)Uo=8V,IDZ=7.4mA
5
1. 二极管电路如图所示,设二极管的导通电压UD(on)=0.7V,试求出各电路 的输出电压Uo。
3kΩ R
3kΩ R
6V
3kΩ R Uo
6V
3kΩ R Uo
6V
Uo
6V
Uo
12V
12V
(a)
(b)
(c)
(d)
(a)二极管导通,输出电压Uo=6-0.7=5.3V (b)二极管截止,输出电压Uo=0 (c)二极管截止,输出电压Uo=12V (d)二极管导通,输出电压Uo=6+0.7=6.7V
(e)β=121,α=0.992, iB=6μA
16
12. 某双极型晶体管,共射放大倍数β的范围为110≤β≤180。试求对应的共基 放大倍数α的范围。如果基极电流为iB=50µA,试求集电极电流iC的范围。
iE iC iB
iC iB
iE 1 iB
iC iE
iC 1 iE
1
D
I1
VDD1 4V
I2 R
VDD2
12V
Io RL 1kΩ Uo
R=1kΩ,二极管截止。I1=0,I2=-6mA,Io=6mA,Uo=6V R=5kΩ,二极管导通。I1=1.56mA,I2=-1.74mA,Io=3.3mA,Uo=3.3V
9
5. 二极管电路如图所示,D1、D2为硅二极管,即二极管的导通电压UD(on)= 0.7V,已知ui=10sinωt (V),画出输出电压波形。
什么是模拟电路?
什么是模拟电路?模拟电路是电子工程中一个重要的概念,它是指用电子器件组成的能够对模拟信号进行处理和分析的电路。
与之相对的是数字电路,数字电路主要处理的是数字信号。
模拟电路的发展与应用广泛,不仅在通信、控制系统中发挥着至关重要的作用,而且在现代无线电、电视、电子计算机等方面都起到了重要的推动作用。
那么,我们来了解一下模拟电路的基本概念、分类以及应用领域吧。
一、模拟电路的基本概念模拟电路是用电子器件搭建的一个封装了及其完备的电子网络,其中包含了信号的产生、调节、放大、运算和转换等多个环节。
模拟电路能够对连续变化的模拟信号进行处理,以实现更精确的分析和控制。
模拟电路的设计基于模拟电子知识,涉及到电子线路、电源、放大器、滤波器和调制解调器等部件。
通过对不同电子器件的组合,模拟电路能够实现各种功能。
二、模拟电路的分类1. 放大电路:放大电路是模拟电路应用中非常重要的一部分,它能够将微弱的信号放大到合适的幅度,以便进一步处理。
放大电路分为直流放大电路和交流放大电路两种。
直流放大电路主要用于电压和电流信号的放大,如运算放大器、共射放大电路等。
交流放大电路则是处理频率较高的信号,常见的有放大器、反馈放大电路等。
2. 滤波电路:滤波电路是模拟电路中的另一个重要部分,它能够对信号进行频率的选择性处理,使得只有特定频率范围内的信号通过,而其他频率的信号被抑制或削弱。
滤波电路主要分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
其中,低通滤波器能够阻止高频信号通过,只允许低频信号通过;高通滤波器则相反,能够阻止低频信号通过,只允许高频信号通过;带通滤波器能够选择某个频率范围内的信号通过;带阻滤波器则能够阻止某个频率范围内的信号通过。
3. 信号运算电路:信号运算电路是模拟电路中实现信号加、减、乘、除等运算的一类电路。
它能够对信号进行加工处理,以得到所需的输出信号。
信号运算电路的设计涉及到加法器、乘法器、积分器、微分器等电子器件的使用。
模拟电路PPT (华成英)
基区体电阻
发射结电阻
发射区体电阻 数值小可忽略
利用PN结的电流方程可求得
rbe
U be Ib
rbb'
rb'e
rbb'
(1 ) UT
I EQ
查阅手册 在输入特性曲线上,Q点越高,rbe越小!
由IEQ算出
安博mranbo@
Weinan Normal University
消除方法:增大VBB,即向上平移输入回路负载线。
减小Rb能消除截止失真吗?
安博mranbo@
Weinan Normal University
• 饱和失真 :饱和失真是输出回路产生失真。
Q ''' Q ''
Rc↓或VCC↑
Rb↑或 β↓或 VBB ↓
这可不是 好办法!
• 消除方法:增大Rb,减小Rc,减小β,减小VBB,增大VCC。 • 最大不失真输出电压Uom :比较UCEQ与( VCC- UCEQ ),取
diB
iC uCE
IB duCE
电阻
无量纲
Ube h11Ib h12Uce
Ic h21Ib h22Uce
无量纲
电导
交流等效模型(按式子画模型)
安博mranbo@
Weinan Normal University
h参数的物理意义
h11
uBE iB
• 对实用放大电路的要求:共地、直流电源种类 尽可能少、负载上无直流分量。
安博mranbo@
Weinan Normal University
两种实用放大电路:(1)直接耦合放大电路
《模拟电子电路》模拟题一(答案)
模拟题一(答案)一、填空题(共30分.每空1分)1.电子技术分为模拟电子技术和数字电子技术两大部分.其中研究在平滑、连续变化的电压或电流信号下工作的电子电路及其技术.称为【1】电子技术。
2.PN结反向偏置时.PN结的内电场【2】。
PN具有【3】特性。
3.硅二极管导通后.其管压降是恒定的.且不随电流而改变.典型值为【4】伏;其门坎电压V th约为【5】伏。
4.为了保证三极管工作在放大区.要求:①发射结【6】偏置.集电结【7】偏置。
②对于NPN型三极管.应使V BC【8】。
5.放大器级间耦合方式主要有阻容(RC)耦合、直接耦合和【9】耦合三大类。
6.在三极管组成的三种不同组态的放大电路中.共射和共基组态有电压放大作用.【10】组态有电流放大作用.【11】组态有倒相作用;【12】组态带负载能力强.【13】组态向信号源索取的电流小.【14】组态的频率响应好。
7.场效应管是【15】器件.只依靠【16】导电。
8.石英晶体振荡器是【17】的特殊形式.因而振荡频率具有很高的稳定性。
9.将交流电变换成脉动直流电的电路称为整流电路;半波整流电路输出的直流电压平均值等于输入的交流电压(即变压器副边电压)有效值的【18】倍;全波整流电路输出的直流电压平均值等于输入的交流电压(即变压器副边电压)有效值的【19】倍。
10.差动放大电路中的长尾电阻Re或恒流管的作用是引人一个【20】反馈。
11.为了分别达到下列要求.应引人何种类型的反馈:①降低电路对信号源索取的电流:【21】。
②当环境温度变化或换用不同值的三极管时.要求放大电路的静态工作点保持稳定:【22】。
③稳定输出电流:【23】。
12.在构成电压比较器时集成运放工作在开环或【24】状态。
13.某负反馈放大电路的开环放大倍数A=100000.反馈系数F=0.01.则闭环放大倍数【25】。
14.差分式放大电路能放大直流和交流信号.它对【26】具有放大能力.它对【27】具有抑制能力。
模拟电路知识点列表
d
dt
L diL dt
uL
eL
L
diL dt
在直流电流中,电流恒定,uL=0,电感元件可视为短路
1 电路模型和电路定律(1.4 无源电路元件)
3.电容器(表征储存电场能量的理想元件)
(1) 电路符号
iC C
q CuC
+ uC –
单位:F (法) duC dt
N
IB B RB EB
P EC
N
E
IE
内部条件
E
E
基区掺杂浓度远远低于发射区浓度 基区要薄,一般在几个微米至几十个微米
外部条件 发射结正偏,集电结反偏
问:若为PNP管,图中电源极性如何?
管芯结构剖面图
6 常用半导体器件(6.4 晶体三极管)
iB=IB+ib
iC=IC+ic
RB UBB
C IC
IB B
集电结反偏, 有少子形成的 反向电流ICBO。
C IC
N
IB B RB EB
P N
E
IE
IC ICE ICBO IB IBE ICBO
1. 发射结正偏,发射区电子不断向基区扩散,形成
发射极电流IE。
2. 进入P区的电子少部分与基区的空穴复合,形成
电流IB,多数扩散到集电结(基区电子属于非平
EC
(b) 电流源上的电压由外电路决定
i
2) u-i 特性
u
+
IS
u
_
IS
0
i
1 电路模型和电路定律(1.5 有源电路元件)
2. 实际电源模型及其等效变换
I
I
+ RS
+
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、 整流电路1、二极管的单向导电性:二极管的PN结加正向电压,处于导通状态;加反向电压,处于截止状态。
伏安特性曲线 理想开关模型和恒压降模型:理想模型指的是在二极管正向偏置时,其管压降为0,而当其反向偏置时,认为它的电阻为无穷大,电流为零.就是截止。恒压降模型是说当二极管导通以后,其管压降为恒定值,硅管为0.7V,锗管0.5 V。2、各种整流电路及工作原理介绍①半波整流电路 图5-1、是一种最简单的整流电路。它由电源变压器B 、整流二极管D 和负载电阻Rfz ,组成。变压器把市电电压(多为220伏)变换为所需要的交变电压e2,D 再把交流电变换为脉动直流电。
下面从图5-2的波形图上看着二极管是怎样整流的。变压器砍级电压e2,是一个方向和大小都随时间变化的正弦波电压,它的波形如图5-2(a)所示。在0~K时间内,e2为正半周即变压器上端为正下端为
负。此时二极管承受正向电压面导通,e2通过它加在负载电阻Rfz上,在π~2π 时间内,e2为负半周,变压器次级下端为正,上端为负。这时D承受反向电压,不导通,Rfz,上无电压。在π~2π时间内,重复0~π 时间的过程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过Rfz,在Rfz上获得了一个单一右向(上正下负)的电压,如图5-2(b)所示,达到了整流的目的,但是,负载电压Usc。以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。 这种除去半周、图下半周的整流方法,叫半波整流。不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压Usc =0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。 ②全波整流电路如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。图5-3 是全波整流电路的电原理图。 全波整流电路,可以看作是由两个半波整流电路组合成的。变压器次级线圈中间需要引出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但极性相反的两个电压e2a 、e2b ,构成e2a 、D1、Rfz与e2b 、D2、Rfz ,两个通电回路。全波整流电路的工作原理,可用图5-4 所示的波形图说明。在0~π间内,e2a 对Dl为正向电压,D1 导通,在Rfz 上得到上正下负的电压;e2b 对D2为反向电压,D2 不导通(见图5-4(b)。在π-2π时间内,e2b 对D2为正向电压,D2导通,在Rfz 上得到的仍然是上正下负的电压;e2a 对D1为反向电压,D1 不导通(见图5-4(C)。
如此反复,由于两个整流元件D1、D2轮流导电,结果负载电阻Rfz上在正、负两个半周作用期间,都有同一方向的电流通过,如图5-4(b)所示的那样,因此称为全波整流,全波整流不仅利用了正半周,而且还巧妙地利用了负半周,从而大大地提高了整流效率(Usc=0.9e2,比半波整流时大一倍)。图5-3所示的全波整滤电路,需要变压器有一个使两端对称的次级中心抽头,这给制作上带来很多的麻烦。另外,这种电路中,每只整流二极管承受的最大反向电压,是变压器次级电压最大值的两倍,因此需用能承受较高电压的二极管。
③桥式整流电路 桥式整流电路是使用最多的一种整流电路。这种电路,只要增加两只二极管口连接成"桥"式结构,便具有全波整流电路的优点,而同时在一定程度上克服了它的缺点。图5-5(a )为桥式整流电路图,(b)图为其简化画法。
桥式整流电路的工作原理如下:e2为正半周时,对D1、D3和方向电压,Dl,D3导通;对D2、D4加反向电压,D2、D4截止。电路中构成e2、Dl、Rfz 、D3通电回路,在Rfz ,上形成上正下负的半波整洗电压,e2为负半周时,对D2、D4加正向电压,D2、D4导通;对D1、D3加反向电压,D1、D3截止。电路中构成e2、D2 Rfz、D4通电回路,同样在Rfz 上形成上正下负
的另外半波的整流电压。 上述工作状态分别如图5-6(A) (B)所示。如此重复下去,结果在Rfz ,上便得到全波整流电压。其波形图和全波整流波形图是一样的。从图5-6中还不难看出,桥式电路中每只二极管承受的反向电压等于变压器次级电压的最大值,比全波整洗电路小一半!计算二极管反向电压:Uo=0.9U2, Io=0.9U2/RL,URM=√2 U2
3、整流元件的选择和运用 需要特别指出的是,二极管作为整流元件,要根据不同的整流方式和负载大小加以选择。。如选择不当,则或者不能安全工作,甚至烧了管子;或者大材小用,造成浪费。表5-1 所列参数可供选择二极管时参考。 "另外,在高电压或大电流的情况下,如果手头没有承受高电压或整定大电滤的整流元件,
可以把二极管串联或并联起来使用。图5-7 示出了二极管并联的情况:两只二极管并联、每只分担电路总电流的一半口三只二极管并联,每只分担电路总电流的三分之一。总之,有几只二极管并联,"流经每只二极管的电流就等于总电流的几分之一。但是,在实际并联运用时",由于各二极管特性不完全一致,不能均分所通过的电流,会使有的管子困负担过重而烧毁。因此需在每只二极管上串联一只阻值相同的小电阻器,使各并联二极管流过的电流接近一致。这种均流电阻R一般选用零点几欧至几十欧的电阻器。电流越大,R应选得越小。 图5-8示出了二极管串联的情况。显然在理想条件下,有几只管子串联,每只管子承受的反向电压就应等于总电压的几分之一。但因为每只二极管的反向电阻不尽相同,会造成电压分配不均:内阻大的二极管,有可能由于电压过高而被击穿,并由此引起连锁反应,逐个把二极管击穿。在二极管上并联的电阻R,可以使电压分配均匀。均压电阻要取阻值比二极管反向电阻值小的电阻器,各个电阻器的阻值要相等
二.电源滤波器1、电源滤波电路整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中 含有较大的脉动成分,称为纹波。为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的 脉动成分以获得直流电压。常用的滤波电路有无源滤波和有源滤波两大类。无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤 波等)。有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。 脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量 半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流的输出电压的脉动系数S≈O.67。对于全波和桥式整流电路采用C型滤波电路 后,其脉动系数S=1/(4(RLC/T-1)。(T为整流输出的直流脉动电压的周期。)①电阻滤波电路 RC-π型滤波电路,实质上是在电容滤波的基
础上再加一级RC滤波电路组成的。如图1(B)RC滤波电路。若用S表示C1两端电压的脉动系数,则输 出电压两端的脉动系数S=(1/ωC2R)S。由分析可知,电阻R的作用是将残余的纹波电压降落在电阻两端,最后由C2再旁路掉。在ω值一定的情况下,R愈大,C2愈大,则脉动系数愈小,也就是滤 波效果就越好。而R值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大C2的电容量,又会增大电容器的体积和重量,实现起来也不 现实。这种电路一般用于负载电流比较小的场合.②电感滤波电路 根据电抗性元件对交、直流阻抗的不同,由
电容C及电感L所组成的滤波电路的基本形式如图1所示。因为电容器C对直流开路,对交流阻抗小,所以C并联在负载 两端。电感器L对直流阻抗小,对交流阻抗大,因此L应与负载串联。
(A)电容滤波 (B)C-R-C或RC-π型电阻滤波脉动系数S=(1/ωC2R')S'
(C)L-C电感滤波 (D) π型滤波或叫C-L-C滤波
图1 无源滤波电路的基本形式 并联的电容器C在输入电压升高时,给电容器充电,可把部分能量存储在电容器中。而当输入电压降低时,电容两端电压以指数规律放电,就可以把存储的能量释放 出来。经过滤波电路向负载放电,负载上得到的输出电压就比较平滑,起到了平波作用。若采用电感滤波,当输入电压增高时,与负载串联的电感L中的电流增加, 因此电感L将存储部分磁场能量,当电流减小时,又将能量释放出来,使负载电流变得平滑,因此,电感L也有平波作用。利用储能元件电感器L的电流不能突变的特点,在整流电路的负载回路中串联一个电感,使输出电流波形较为平滑。因为电感对直流的阻抗小,交流的阻抗大,因此 能够得到较好的滤波效果而直流损失小。电感滤波缺点是体积大,成本高。桥式整流电感滤波电路如图2所示。电感滤波的波形图如图2所示。根据电感的特点,当输出电流发生变化时,L中将感应出一个反电势,使整流管的导电角增大,其方向将阻止电流发生变化。
图2电感滤波电路在桥式整流电路中,当u2正半周时,D1、D3导电,电感中的电流将滞后u2不到90°。当u2超过90°后开始下降,电感上的反电势有助于D1、D3继 续导电。当u2处于负半周时,D2、D4导电,变压器副边电压全部加到D1、D3两端,致使D1、D3反偏而截止,此时,电感中的电流将经由D2、D4提 供。由于桥式电路的对称性和电感中电流的连续性,四个二极管D1、D3;D2、D4的导电角θ都是180°,这一点与电容滤波电路不同。