大学物理下册波动光学习题解答杨体强

合集下载

四川师范大学大学物理波动光学(13、14、15章)题解

四川师范大学大学物理波动光学(13、14、15章)题解

第十三章 光的干涉13–1 在双缝干涉实验中,两缝分别被折射率为n 1和n 2的透明薄膜遮盖,二者的厚度均为e ,波长为λ的平行单色光垂直照射到双缝上,在屏中央处,两束相干光的位相差 。

解:加入透明薄膜后,两束相干光的光程差为n 1e –n 2e ,则位相差为e n n e n e n )(2)(22121-=-=∆λλλλφ13–2 如图13-1所示,波长为λ的平行单色光垂直照射到两个劈尖上,两劈尖角分别为21θθ和,折射率分别为n 1和n 2,若二者分别形成的干涉条纹的明条纹间距相等,则21,θθ,n 1和n 2之间的关系是 。

解:劈尖薄膜干涉明条纹间距为θλθλn n L 2sin 2≈=( 很小) 两劈尖干涉明条纹间距相等221122θλθλn n =,所以 2211θθn n =或1221n n =θθ13–3 用一定波长的单色光进行双缝干涉实验时,欲使屏上的干涉条纹间距变大,可采用的方法是: ; 。

解:因为干涉条纹的间距与两缝间距成反比,与屏与双缝之间的距离成正比。

故填“使两缝间距变小;使屏与双缝之间的距离变大。

”13–4 用波长为λ的单色光垂直照射如图13-2示的劈尖膜(n 1>n 2>n 3),观察反射光干涉,从劈尖顶开始算起,第2条明条纹中心所对应的膜厚度e = 。

解:劈尖干涉(n 1>n 2>n 3)从n 1射向n 2时无半波损失,产生明条纹的条件为2n 2e = k ,k = 0,1,2,3…在e = 0时,两相干光相差为0,形成明纹。

第2条明条纹中心所对应的膜厚度为k = 1,即2n 2e = ,则22n e λ=。

13–5 若在迈克耳孙干涉仪的可动反射镜移动0.620mm 的过程中,观察到干涉条纹移动了2300条,则所用光波的波长为 。

解:设迈克耳孙干涉仪空气膜厚度变化为e ,对应于可动反射镜的移动,干涉条纹每移动一条,厚度变化2λ,现移动2300条,厚度变化mm 620.022300=⨯=λ∆e ,则 = 。

波动光学答案

波动光学答案

波动光学填空题56、杨氏双缝的间距为0.3mm ,双缝距离屏幕1500mm ,若第四到第七明纹距离为7.5mm ,则入射光波长 =___500nm____ ;若入射光的波长 =639nm ,则相邻两明纹的间距x k+1-x k =____3.195___mm 。

57、用单色光做单缝衍射实验,若缝宽变为原来的6倍,则中央明纹区宽度是原来的____1/6____倍。

58、波长为750nm 的单色平行光,垂直照射到宽度为d 的单缝上,若衍射角为3π/12时,对应的衍射图样为第一极小,则缝宽为_____1.06µm______。

59、单色平行光垂直入射于单缝上,观察夫琅和费衍射,若屏上P 点处为第3级暗纹,则单缝处波面相应地可划分为 __6___个半波带,若将单缝宽度缩小一半,P 点将是第__1__级__明__纹。

60、单色平行光垂直入射于单缝上,观察夫琅和费衍射,若屏上P 点处为第3级明纹,则单缝处波面相应地可划分为 _____个半波带,若将单缝宽度加倍,P 点将是第____级____纹。

61、一束强度为I 0的自然光垂直穿过两个叠合在一起、偏振化方向成45゜角的理想偏振片,则透射光强为____1/4____I 062、光的干涉和衍射现象反映了光的___波动_____性质.光的偏振现象说明光波是______横___波.63、单色平行光垂直入射于单缝上,观察夫琅和费衍射,若屏上P 点处为第2级明纹,则单缝处波面相应地可划分为 _____个半波带,若将单缝宽度缩小一半,P 点将是第____级____纹。

64、单色光在折射率为n=1.4的介质中传播的几何路程长度为30m ,则相当于该光在真空中传播的路程长度为____42m_____。

65、波长为λ=532nm 的单色光垂直照射到宽度为d 的单缝上,若对应第二级暗纹的衍射角θ=30°。

则缝宽d __2128______nm 。

66、光的_ 干涉____和_ 衍射____现象表明光具有波动性质,光的__偏振_____现象说明光波是横波。

医用物理学练习册---10波动光学含答案

医用物理学练习册---10波动光学含答案

10波动光学一、选择题1、以下叙述除哪个以外都是电磁波:(A)可见光;(B)声波;(C)X射线;(D) 射线;(E)无线电波。

[ ]2、波由一种介质进入另一介质时一定不变的物理量是:(A)频率;(B)波长;(C)波速;(D)传播方向。

[ ]3、以下哪个不是两束相干光的必备条件:(A)振动方向一致;(B)频率相同;(C)传播距离相同;(D)位相差恒定;[ ]4、光程的数值取决于:(A)光的传播距离;(B)光传播的几何距离和媒质的折射率;(C)媒质的折射率;(D)媒质对光的吸收。

[ ]5、在吹肥皂泡的过程中,以恒定的方向看到肥皂泡表面花样颜色改变,这是由下述哪个量的变化引起的:(A)折射率;(B)泡内压强;(C)泡膜的厚度;(D)表面张力系数。

[ ]6、在夫琅禾费单缝衍射实验中,仅增大缝宽而其余条件均不变时,中央明纹宽度的变化是:(A)减小;(B)增大;(C)不变; (D)先减小,后增大。

[ ]7、把双缝干涉实验装置放在折射率为n 的水中,两缝间距离为d ,双缝到屏的距离为()L d ,所用单色光在真空中波长为λ,则屏上干涉条纹中相邻的两明条纹之间的距离是:(A)/L nd λ; (B)/n L d λ;(C)/L d λ; (D)/2L nd λ。

[ ]8、波长为λ的单色光垂直投射在一单缝上,若P 点为衍射图样的二级明纹,则对P 点而言,单缝可分割成的半波带数目为:(A)2; (B)3;(C)4; (D)5。

[ ]9、用波长为600nm 和400nm 的单色光分别作单缝衍射实验,且实验装置相同,若测得600nm 光束的中央亮纹宽度为3mm ,则400nm 光束的中央亮纹宽度为:(A)3/2mm ; (B)2mm ;(C)3mm ; (D)4mm 。

[ ]10、光线通过厚度为浓度为的某种溶液,透射光是入射光的1/3,如使溶液的浓度和厚度各增加一倍,这个比值将为:(A)1/3 ; (B)1/9 ;(C)1/81 ; (D) 1/1 。

大学物理下波动光学部分总结

大学物理下波动光学部分总结
f x ( 2k 1) 2a
k = 1,2,...
rk
kR n
l0 2 f a
单缝衍 射
f x k a
k = 1,2,...
l0 2l
其他公式: 1、迈克尔逊干涉仪:
N 2 d d 2 N
' 2(n 1)t N
2 、光学仪器最小分辨角和分辨本领:
爱里斑的半角宽度:
1.22

D
光栅衍射:光栅衍射条纹是单缝衍射和多光束 干涉的综合效果。 光栅方程
(a b) sin k (k 0,1,2...)
缺级现象 最高级次满足:
ab k k' a
kmax
ab


类别 杨氏双 缝 劈尖干 涉 牛顿环 明纹
x


暗纹
4n 2 4n 2
例4.一束波长为 550 nm的平行光以 30º 角入射到相距为 d =1.00×10 – 3 mm 的双缝上,双缝与屏幕 E 的间距为 D=0.10m。在缝 S2上放一折射率为1.5的玻璃片,这时双缝 的中垂线上O 点处出现第8 级明条纹。求:1)此玻璃片的 厚度。2)此时零级明条纹的位置。 E S1 解:1)入射光到达双缝时已有光程差:
x

条纹宽度
x D nd
D k nd
D ( 2k 1) nd 2
k = 0,1,2,...
k = 0,1,2,...
2k 1 e 4n
k = 1,2,...
e
k 2n
e

k = 0,1,2,...
l
2 n
2n
(2k 1) R rk 2n

大学物理-波动光学习题(包括振动、波动、波的干涉、光的干涉、光的衍射、光的偏振)

大学物理-波动光学习题(包括振动、波动、波的干涉、光的干涉、光的衍射、光的偏振)

第四篇 光学第一章 振动一、选择题1. 一质点作简谐振动, 其运动速度与时间的关系曲线如下图。

假设质点的振动规律用余弦函数描述,那么其初相应为:[ ] (A)6π (B) 65π (C) 65π- (D) 6π- (E) 32π-2. 如下图,一质量为m 的滑块,两边分别与劲度系数为k 1和k 2的轻弹簧联接,两弹簧的另外两端分别固定在墙上。

滑块m 可在光滑的水平面上滑动,O 点为系统平衡位置。

现将滑块m 向左移动x0,自静止释放,并从释放时开始计时。

取坐标如下图,那么其振动方程为:[ ] ⎥⎦⎤⎢⎣⎡+=t m k k x x 210cos(A)⎥⎦⎤⎢⎣⎡++=πt k k m k k x x )(cos (B)21210⎥⎦⎤⎢⎣⎡++=πt m k k x x 210cos (C)⎥⎦⎤⎢⎣⎡++=πt m k k x x 210cos (D) ⎥⎦⎤⎢⎣⎡+=t m k k x x 210cos (E)3. 一质点在x 轴上作简谐振动,振幅A = 4cm ,周期T = 2s, 其平衡位置取作坐标原点。

假设t = 0时刻质点第一次通过x = -2cm 处,且向x 轴负方向运动,那么质点第二次通过x = -2cm 处的时刻为:[ ](A) 1s ; (B)s 32; (C) s 34; (D) 2s 。

4. 一质点沿y 轴作简谐振动,其振动方程为)4/3cos(πω+=t A y 。

与其对应的振动曲线是: [ ]5. 一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的:[ ](A)167; (B) 169; (C) 1611; (D) 1613; (E) 1615。

(A)-(B)(C)(D)-06. 图中所画的是两个简谐振动的振动曲线,假设 这两个简谐振动可叠加,那么合成的余弦振动 的初相为: [ ] π21(A) π(B) π23(C) 0(D)二、填空题1. 一简谐振动的表达式为)3cos(ϕ+=t A x ,0=t 时的初位移为0.04m, s -1,那么振幅A = ,初相位 =2. 两个弹簧振子的的周期都是0.4s, 设开始时第一个振子从平衡位置向负方向运动,经过0.5s 后,第二个振子才从正方向的端点开始运动,那么这两振动的相位差为 。

波动光学习题解

波动光学习题解

十五章 波动光学习题与解答15-1.在双缝干涉实验中,两缝的间距为0.6mm ,照亮狭缝s 的光源是汞弧灯加上绿色滤光片.在2.5m 远处的屏幕上出现干涉条纹,测得相邻两明条纹中心的距离为2.27mm .试计算入射光的波长,如果所用仪器只能测量mm x 5≥∆的距离,则对此双缝的间距d 有何要求?解:在屏幕上取坐标轴Ox ,向上为正,坐标原点位于关于双缝的对称中心。

屏幕上第1+k 级与第k 级明纹中心的距离由:λdD kx ±= 可知 dD dD k dD k x x x k k λλλ=-+=-=∆+)1(1代入已知数据,得 mm d Dx545=∆=λ mm xD d 27.0=∆≤λ15-2.在杨氏双缝实验中,设两缝之间的距离为0.2mm .在距双缝1m 远的屏上观察干涉条纹,若入射光是波长为400nm 至760nm 的白光,问屏上离零级明纹20mm 处,哪些波长的光最大限度地加强?(1nm =10-9m )解:已知:d =0.2mm ,D =1m ,x =20mm 依公式: λδk x D d==∴ Ddxk =λ=4×10-3 mm =4000nm故 k =10 λ1=400nm k =9 λ2=444.4nm k =8 λ3=500nm k =7 λ4=571.4nm k =6 λ5=666.7nm这五种波长的光在所给观察点最大限度地加强.15-3.如图15-3所示,在杨氏双缝干涉实验中,若3/1212λ=-=-r r P S P S ,求P 点的强度I 与干涉加强时最大强度I max 的比值.解:设S 1、S 2分别在P 点引起振动的振幅为A ,干涉加强时,合振幅为2A ,所以 2max 4A I ∝因为 λ3112=-r r所以S 2到P 点的光束比S 1到P 点的光束相位落后()3π23π2π212=⋅=-=∆λλλϕr r P 点合振动振幅的平方为:22223π2cos 2A A A A =++∵ I ∝A 2 ∴ I /I max =A 2/4A 2=1/4S S P15-4.用图所示的瑞得干涉仪可以测定气体在各种温度和压力下的折射率,干涉仪的光路原理与杨氏双缝类似.单色平行光入射于双缝后,经两个长为l 的相同的玻璃管,再由透镜会聚于观察屏上.测量时,可先将两管抽成真空,然后将待测气体徐徐导入一管中,在观察屏上关于两管的对称位置处观察干涉条纹的变化.即可求出待测气体的折射率.某次测量,在将气体徐徐入下管的过程中,观察到有98条干涉条纹移动,所用的黄光波长为589.3nm (真空中),cm l 20=,求该气体的折射率.解:气体导入一管过程中,光程差从零变为:λδk l nl =-=所以,00029.19811=+=+=ll k n λλ15-5.在图所示的洛埃德镜实验装置中,距平面镜垂距为1mm 的狭缝光源0s 发出波长为680nm 的红光.求平面反射镜在右边缘M 的观察屏上第一条明条纹中心的距离.已知cm MN 30=,光源至平面镜一端N 的距离为20cm .解:cm D mm d 50,2==由明纹条件:λλθδk D x d r d =+=+=22sin 代入1=k ,mm dD x 21105.82-⨯==λ15-6.在双缝干涉实验中,单色光源S 0到两缝S 1和S 2的距离分别为1l 和2l ,并且λ321=-l l ,λ为入射光的波长,双缝之间的距离为d ,双缝到屏幕的距离为D (D >>d ),如图19-6.求: (1) 零级明纹到屏幕中央O 点的距离.(2) 相邻明条纹间的距离.解:(1) 如图,设P 0为零级明纹中心 则 D O P d r r /012≈-0)()(1122=+-+r l r l∴ λ32112=-=-l l r r∴()d D d r r D O P /3/120λ=-=(2) 在屏上距O 点为x 处, 光程差λδ3)/(-≈D dx 明纹条件 λδk ±= (k =1,2,....)()d D k x k /3λλ+±=在此处令k =0,即为(1)的结果.相邻明条纹间距d D /λ15-7.在Si 的平表面上氧化了一层厚度均匀的SiO 2薄膜.为了测量薄膜厚度,将它的一部分磨成劈形(示意图中的AB 段,平面图).现用波长为600nm 的平行光垂直照射,观察反射光形成的等厚干涉条纹.在图中AB 段共有8条暗纹,且B 处恰好是一条暗纹,求薄膜的厚度.(Si 折射率为3.42,SiO 2折射率为1.50)解:上下表面反射都有相位突变π,计算光程差时不必考虑附加屏Omm 1题图15-5题图15-4的半波长.设膜厚为e ,B 处为暗纹,2ne =21(2k +1),(k =0,1,2,…) A 处为明纹,B 处第8个暗纹对应上式k =7,()nk e 412λ+==1.5×10-3mm15-8.在折射率n =1.50的玻璃上,镀上n '=1.35的透明介质薄膜.入射光波垂直于介质膜表面照射,观察反射光的干涉,发现对λ1=600nm 的光波干涉相消,对λ2=700nm 的光波干涉相长.且在600nm 到700nm 之间没有别的波长的光是最大限度相消或相长的情形.求所镀介质膜的厚度.(1nm=10-9m ). 解:设介质薄膜的厚度为e ,上、下表面反射均为由光疏介质到光密介质,故不计附加光程差。

大学物理(第四版)课后习题及答案 波动之欧阳体创编

第十四章波动时间:2021.02.03 创作:欧阳体14-1 一横波再沿绳子传播时得波动方程为[]x m t s m y )()5.2(cos )20.0(11---=ππ。

(1)求波得振幅、波速、频率及波长;(2)求绳上质点振动时得最大速度;(3)分别画出t=1s 和t=2s 时得波形,并指出波峰和波谷。

画出x=1.0m 处质点得振动曲线并讨论其与波形图得不同。

14-1 ()[]x m t s m y )(5.2cos )20.0(11---=ππ 分析(1)已知波动方程(又称波函数)求波动的特征量(波速u 、频率ν、振幅A 及彼长 等),通常采用比较法。

将已知的波动方程按波动方程的一般形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y 书写,然后通过比较确定各特征量(式中前“-”、“+”的选取分别对应波沿x 轴正向和负向传播)。

比较法思路清晰、求解简便,是一种常用的解题方法。

(2)讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别。

例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即dt dy v =;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质的性质决定。

介质不变,彼速保持恒定。

(3)将不同时刻的t 值代人已知波动方程,便可以得到不同时刻的波形方程)(x y y =,从而作出波形图。

而将确定的x 值代入波动方程,便可以得到该位置处质点的运动方程)(t y y =,从而作出振动图。

解(1)将已知波动方程表示为 与一般表达式()[]0cos ϕω+-=u x t A y 比较,可得 则 m v u Hz v 0.2,25.12====λπω(2)绳上质点的振动速度则1max 57.1-⋅=s m v(3) t=1s 和 t =2s 时的波形方程分别为波形图如图14-1(a )所示。

x =1.0m 处质点的运动方程为振动图线如图14-1(b )所示。

波动光学练习题及答案

波动光学练习题及答案一、选择题1、对于普通光源,下列说法正确的是:[ C ](A)普通光源同一点发出的光是相干光(B)两个独立的普通光源发出的光是相干光(C)利用普通光源可以获得相干光(D)普通光源发出的光频率相等2、杨氏双缝干涉实验是:[ A ](A) 分波阵面法双光束干涉(B) 分振幅法双光束干涉(C) 分波阵面法多光束干涉(D) 分振幅法多光束干涉3、在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中[ C ](A) 传播的路程相等,走过的光程相等(B) 传播的路程相等,走过的光程不相等(C) 传播的路程不相等,走过的光程相等(D) 传播的路程不相等,走过的光程不相等4、光在真空中和介质中传播时,正确的描述是: [ C ](A)波长不变,介质中的波速减小(B) 介质中的波长变短,波速不变(C) 频率不变,介质中的波速减小(D) 介质中的频率减小,波速不变5、用单色光做双缝干涉实验,下述说法中正确的是[ A C ](A)相邻干涉条纹之间的距离相等(B)中央明条纹最宽,两边明条纹宽度变窄(C)屏与缝之间的距离减小,则屏上条纹宽度变窄(D)在实验装置不变的情况下,红光的条纹间距小于蓝光的条纹间距6、用单色光垂直照射杨氏双缝时,下列说法正确的是:[ C ](A) 减小缝屏距离,干涉条纹间距不变(B) 减小双缝间距,干涉条纹间距变小(C) 减小入射光强度, 则条纹间距不变(D) 减小入射波长, 则条纹间距不变7、如图所示, 薄膜的折射率为n 2,入射介质的折射率为n 1,透射介质为n 3,且n 1<n 2<n 3,入射光线在两介质交界面的反射光线分别为(1)和(2),则产生半波损失的情况是:(A) (1)光产生半波损失, (2)光不产生半波损失 [ B ] (B) (1)光 (2)光都产生半波损失 (C) (1)光 (2)光都不产生半波损失(D) (1)光不产生半波损失,(2)光产生半波损失8、在照相机镜头的玻璃片上均匀镀有一层折射率n 小于玻璃的介质薄膜,以增强某一波长λ 的透射光能量。

第11章波动光学(知识题与答案解析)

第11章波动光学一.基本要求1. 解获得相干光的方法。

掌握光程的概念以及光程差与相位差的关系。

2. 能分析、确定杨氏双缝干涉条纹及等厚、等倾干涉条纹的特点(干涉加强、干涉减弱的条件及明、暗条纹的分布规律;了解迈克耳逊干涉仪的原理。

3. 了解惠更斯——菲涅耳原理;掌握分析单缝夫琅禾费衍射暗纹分布规律的方法。

4. 理解光栅衍射公式,会确定光栅衍射谱线的位置,会分析光栅常数及波长对光栅衍射谱线分布的影响。

5. 理解自然光和偏振光及偏振光的获得方法和检验方法。

6. 理解马吕斯定律和布儒斯特定律。

二. 内容提要1. 相干光及其获得方法能产生干涉的光称为相干光。

产生光干涉的必要条件是:频率相同;振动方向相同;有恒定的相位差。

获得相干光的基本方法有两种:一种是分波阵面法(如杨氏双缝干涉、洛埃镜干涉、菲涅耳双面镜和菲涅耳双棱镜等);另一种是分振幅法(如平行波膜干涉、劈尖干涉、牛顿环和迈克耳逊干涉仪等)。

2. 光程、光程差与相位差的关系光波在某一介质中所经历的几何路程l与介质对该光波的折射率n的乘积n l称为光波的光学路程,简称光程。

若光波先后通过几种介质,其总光程为各分段光程之和。

若在界面反射时有半波损失,则反射光的光程应加上或减去2λ。

来自同一点光源的两束相干光,经历不同的光程在某一点相遇,其相位差Δφ与光程差δ的关系为δλπϕ2=∆其中λ为光在真空中的波长。

3. 杨氏双缝干涉 经杨氏双缝的两束相干光在某点产生干涉时有两种极端情况:一种是相位差为零或2π的整数倍,合成振幅最大—干涉加强;另一种是相位差为π的奇数倍,合成振动最弱或振幅为零——称干涉减弱或相消。

其对应的光程差为⎪⎩⎪⎨⎧=-±=±= 21k 212 210 干涉减弱),,()(干涉加强),,( λλδk k k 杨氏双缝干涉的光程差还可写成Dx d=δ ,式中d 为两缝间距离,x 为观察屏上纵轴坐标,D 为缝屏间距。

杨氏双缝干涉明、暗条纹的中心位置 λdD kx ±= 明纹中心 212λd D k x )(+±= 暗纹中心 相邻明纹或暗纹中心距离λd D x =∆。

波动光学复习题答案

波动光学复习题答案1. 光的干涉现象是指两束或多束相干光波在空间相遇时,由于光波的相位差引起的光强分布的规律性变化。

在双缝干涉实验中,当两束光波的相位差为零时,会发生构造性干涉,光强最大;当相位差为π时,会发生破坏性干涉,光强最小。

2. 薄膜干涉是指光波在薄膜的前后表面反射后,由于光程差引起的干涉现象。

薄膜干涉的条纹间距与薄膜厚度、光波波长和入射角有关。

3. 光的衍射现象是指光波在遇到障碍物或通过狭缝时,会发生弯曲和扩散的现象。

衍射现象说明了光具有波动性。

4. 单缝衍射的衍射图样是一个中心亮斑和两侧的暗条纹交替出现的衍射图样。

中心亮斑的宽度与狭缝宽度成正比,与光波波长成反比。

5. 圆孔衍射的衍射图样是一个中心亮斑和第一暗环的直径与圆孔直径相等,随着远离中心,亮斑的亮度逐渐减弱,暗环的直径逐渐增大。

6. 光的偏振现象是指光波振动方向的选择性。

自然光是无偏振光,而偏振光是只有一个振动方向的光。

偏振片可以改变光的偏振状态。

7. 马吕斯定律描述了偏振光通过偏振片后,透射光的强度与入射光的偏振方向和偏振片的偏振轴之间角度的关系。

当偏振片的偏振轴与入射光的偏振方向平行时,透射光强度最大;当偏振轴与入射光的偏振方向垂直时,透射光强度为零。

8. 布儒斯特定律描述了当偏振光以布儒斯特角入射到透明介质表面时,反射光完全偏振。

布儒斯特角与介质的折射率有关。

9. 光的色散现象是指不同波长的光在介质中传播速度不同,导致光的折射率不同,从而引起光的分离。

色散现象可以通过棱镜或光栅实现。

10. 光的全反射现象是指当光从光密介质入射到光疏介质时,当入射角大于临界角时,光将完全反射回光密介质中,不会发生折射。

临界角的大小与两种介质的折射率有关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

波动光学习题解答1-1 在杨氏实验装置中,两孔间的距离等于通过光孔的光波长的100倍,接收屏与双孔屏相距50cm 。

求第1 级和第3级亮纹在屏上的位置以及它们之间的距离。

解: 设两孔间距为d ,小孔至屏幕的距离为D ,光波波长为λ,则有=100d λ. (1)第1级和第3级亮条纹在屏上的位置分别为 (2)两干涉条纹的间距为 1-2 在杨氏双缝干涉实验中,用06328A =λ的氦氖激光束垂直照射两小孔,两小孔的间距为1.14mm ,小孔至屏幕的垂直距离为1.5m 。

求在下列两种情况下屏幕上干涉条纹的间距。

(1)整个装置放在空气中; (2)整个装置放在n=1.33的水中。

解: 设两孔间距为d ,小孔至屏幕的距离为D ,装置所处介质的折射率为n ,则两小孔出射的光到屏幕的光程差为所以相邻干涉条纹的间距为(1)在空气中时,n =1。

于是条纹间距为 (2)在水中时,n =1.33。

条纹间距为 1-3 如图所示,1S 、2S 是两个相干光源,它们到P 点的距离分别为1r 和2r 。

路径1S P 垂直穿过一块厚度为1t 、折射率为1n 的介质板,路径2S P 垂直穿过厚度为2t ,折射率为2n 的另一块介质板,其余部分可看做真空。

这两条路径的光程差是多少?解:光程差为 222111[r (n 1)t ][r (n 1)t ]+--+-1-4 如图所示为一种利用干涉现象测定气体折射率的原理性结构,在1S 孔后面放置一长度为l的透明容器,当待测气体注入容器而将空气排出的过程中幕上的干涉条纹就会移动。

由移过条纹的根数即可推知气体的折射率。

(1)设待测气体的折射率大于空气折射率,干涉条纹如何移动?(2)设 2.0l cm =,条纹移过20根,光波长为589.3nm ,空气折射率为 1.000276,求待测气体(氯气)的折射率。

解:(1)条纹向上移动。

(2)设氯气折射率为n,空气折射率为n 0=1.002760,则有:所以0k n =n + 1.00027600.0005893 1.0008653lλ=+=1-5 用波长为500 nm 的单色光垂直照射到由两块光学平玻璃构成的空气劈尖上。

在观察反射光的干涉现象中,距劈尖棱边1=1.56 cm 的A 处是从棱边算起的第四条暗条纹中心。

(1)求此空气劈尖的劈尖角θ;(2)改用600 nm 的单色光垂直照射到此劈尖上,仍观察反射光的干涉条纹,A 处是明条纹还是暗条纹?(3)在第(2)问的情形从棱边到A 处的范围内共有几条明纹,几条暗纹? 解:(1)棱边处是第一条暗纹中心,在膜厚度为21e 2λ=处是第二条暗纹中心,依此可知第四条暗纹中心处,即A 处膜厚度43e 2λ=, (2)由(1)知A 处膜厚为43500e 7502nm nm ⨯==,对于'600nm λ=的光,连同附加光程差,在A 处两反射光的光程差为'412e +2λ,它与波长'λ之比为4'2e 13.02λ+=,所以A 处为明纹。

(3)棱边处仍是暗纹,A 处是第三条明纹,所以共有三条明纹,三条暗纹。

1-6 在双缝干涉装置中,用一很薄的云母片(n=1.58)覆盖其中的一条狭缝,这时屏幕上的第七级明条纹恰好移动到屏幕中央零级明条纹的位置。

如果入射光的波长为05500A ,则这云母片的厚度应为多少?解:设云母片的厚度为e ,则由云母片引起的光程差为按题意得 =7δλ1-7 波长为500nm 的单色平行光射在间距为0.2mm 的双狭缝上。

通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样。

求干涉条纹间距和条纹的可见度。

解:(1) 条纹间距8050100.1250.02r y cm d λ-∆==⨯= (2) 设其中一狭缝的能量为I 1, 另一狭缝能量为I 2,且满足:21=2I I而 2I=A 则有12A =2A ,因此可见度为:1-8 一平面单色光垂直照射在厚度均匀的薄油膜上,油膜覆盖在玻璃板上,油的折射率为1.20,玻璃的折射率为1.50。

若单色光的波长可由光源连续可调,可光侧到500nm 到700nm 这两个波长的单色光在反射中消失,试求油膜层的厚度。

答: 油膜上、下两表面反射光的光程差为2ne ,由反射相消条件有 12(21)()22ne k k k λλ=+=+ (0,1,2,)k =⋅⋅⋅ ①当15000λ=oA 时,有111112()25002ne k k λλ=+=+ ②当27000λ=oA 时,有222212()35002ne k k λλ=+=+ ③因21λλ>,所以21k k <;又因为1λ与2λ之间不存在3λ满足3312()2ne k λ=+式即不存在 231k k k <<的情形,所以2k 、1k 应为连续整数, 即 211k k =- ④ 由②、③、④式可得: 得 13k = 2112k k =-= 可由②式求得油膜的厚度为11250067312k e nλ+==1-9 透镜表面通常镀一层MgF 2(n=1.38)一类的透明物质薄膜,目的利用干涉来降低玻璃表面的反射。

为了使透镜在可见光谱的中心波长(550nm )处产生极小的反射,则镀层必须有多厚?解:由于空气的折射率n=1,且有12n n n <<,因为干涉的互补性,波长为550nm 的光在透射中得到加强,则在反射中一定减弱。

对透射光而言,两相干光的光程差为: 由干涉加强条件: =k δλ 可得:2d=(k-1)2n λ取k=1,则膜的最小厚度为:min d 99.64nm ≈1-10 用单色光观察牛顿环,测得某一亮环的直径为3nm ,在它外边第5个亮环的直径为4.6mm ,所用平凸镜的凸面曲率半径为1.03m ,求此单色光的波长。

解:第k 级明环半径为:1-11 在迈克尔逊干涉仪的一侧光路中插入一折射率为n=1.40的透明介质膜,观察到干涉条纹移动了7条,设入射光波长为589.0nm ,求介质膜的厚度。

解: 插入厚度为d 的介质膜后,两相干光的光程差的改变量为2(n-1)d,从而引起N 条条纹的移动,根据劈尖干涉加强的条件1-12 在单缝夫琅禾费衍射中,波长为λ的单色光垂直入射在单缝上,见图。

若对应于汇聚在P 点的衍射光线在缝宽a 处的波阵面恰好分成3个半波带,图中AB=BC=CD ,则光线1和光线2在P 点的相位差为多少?P 点是明纹还是暗纹?解:(1)相位差为2=πϕδλ∆,而3=2λδ,所以相位差为π。

(2)由夫琅和费单缝衍射条纹的明暗条件 可以判断出P 点为明纹。

1-13 波长为600nm λ=的单色光垂直入射到一光栅上,测得第二级主极大的衍射角为030,且第三级是缺级。

(1)光栅常数d 等于多少?(2)光栅上狭缝可能的最小宽度a 等于多少?(3)按照上述选定的d 和a 的值,求在屏幕上可能呈现的全部主极大的级次。

解:由衍射方程:sin d k θλ=, (2)光栅缺级级数满足:若第三级谱线缺级,透光缝可能的最小宽度为: (3)屏幕上光栅衍射谱线的最大级数:0dsin 90k λ=,k =4dλ∴=屏幕上光栅衍射谱线的缺级级数:屏幕上可能出现的全部主极大的级数为:210±±,,共5个条纹。

1-14 波长为600.0nm 的单色光垂直入射在一光栅上,第二、第三级明条纹分别出现在衍射角θ满足sin 0.20θ=与sin 0.30θ=处,第四级缺级,试问:(1)光栅上相邻两缝的间距是多大? (2)光栅狭缝的最小可能宽度a 是多大?(3)按上述选定的a 、d 值,试列出屏幕上可能呈现的全部级数 解:(1)由光栅方程波长为600nm 的第二级明条纹满足: 解得光栅相邻两缝的间距为:(2)第四级缺级,说明该方向上的干涉极大被衍射极小调制掉了,因调制掉的干涉极大级数为:当k=4时,取'=1k ,得到狭缝最小宽度为:6a=1.5104dm -=⨯ (3) 取sin 1.0θ=,得所以有可能看到的最大级数为9±.又由于48±±,级缺级,故屏幕上可能呈现的全部级数为0,1235679±±±±±±±,,,,,,。

1-15 用白光(波长从400.0nm 到700.0nm)垂直照射在每毫米中有500条刻痕的光栅上,光栅后放一焦距f=320毫米的凸透镜,试求在透镜焦平面处光屏上第一级光谱的宽度是多少? 解:光栅常数 1d 0.002500mm ==, 由光栅方程 sin d k θλ=, 选取k=1,所以10400=sin 11.537k dλθ-=,0700=20.487θ 因此第一级光谱衍射角宽度:0=8.95=0.1562rad θ∆ 第一级光谱宽度:L=f 50mm θ∆=。

1-16 波长为05000A 的平行光线垂直地入射于一宽度为1mm 的狭缝,若在缝的后面有一焦距为100cm 的薄透镜,使光线焦距于一屏幕上,试问从衍射图形的中心点到下列格点的距离如何?(1)第一极小;(2)第一明文的极大处;(3)第三极小。

解:(1)由暗纹公式:a sin 22kλϕ=± 第一极小即为:k=1,故有:所以2-9-310010x 50010=0.5mm a 110f λ-⨯≈±=±⨯⨯±⨯ (2)由明纹公式:a sin (2+1)2k λϕ=±第一极大即为:k=1,故有:所以3x 0.75mm 2af λ≈±=± (3) 由暗纹公式:a sin 22kλϕ=± 第三极小即为:k=3,故有:所以3x 1.5mm af λ≈±=±1-17 在迎面驰来的汽车上,两盏前灯相距122cm ,试问汽车离人多远的地方,眼睛恰可分辨这两盏灯?设夜间人眼瞳孔直径为 5.0mm ,入射光波长05500A =λ(这里仅考虑人眼瞳孔的衍射效应)。

解:有分辨率公式: 1.22=Dλδφ 人眼可分辨的角度范围是:-9-3-31.2250010==0.134210rad 510δφ⨯⨯⨯⨯ 由关系tan =lsδφ,得到:31.2s=8.94tan 0.134210l l km δφδφ-≈==⨯ 1-18 NaCl 的晶体结构是简单的立方点阵,其分子量M=58.5,密度317.2cm g =ρ,(1)试证相邻离子间的平均距离为式中mol N A /1002.623⨯=为阿伏加德罗常数;(2)用X 射线照射晶面时,第二级光谱的最大值在掠射角炎1°的方向出现。

试计算该X 射线的波长。

解:(1)晶胞的棱边长为d,那么两离子间的平均距离0d 2d=.现计算晶胞的棱边长d,由于每个晶胞波包含四个NaCl 分子,那么密度ρ为 这里,NaCl 分子的质量由下式给出: 所以晶胞的棱边长有下面两式联立得 那么相邻两离子的平均距离0d 为 (2)根据布拉格方程: 在j=2时,有0002d sin =2.819sin10.00492nm αλ== 1-29 四个理想偏振片堆叠起来,每片的通光轴相对前一个都是顺时针旋转030。

相关文档
最新文档