超疏水材料

合集下载

超疏水性材料

超疏水性材料

超疏水性材料超疏水性材料是一种具有极强疏水性能的材料,其表面能够使水珠快速滚动并迅速脱离表面,同时也能有效地抵御水珠的附着和渗透。

这种材料在各个领域都有着广泛的应用,包括纺织、建筑、医疗和环境保护等方面。

在本文中,我们将探讨超疏水性材料的特性、制备方法以及应用前景。

超疏水性材料的特性主要体现在其表面的微观结构和化学成分上。

通常来说,超疏水性材料的表面会具有微纳米级的结构,这些微观结构能够使水珠无法在其表面停留,从而实现疏水效果。

此外,材料的化学成分也会影响其疏水性能,一些特殊的化学成分能够使材料表面形成疏水膜,从而实现超疏水性。

制备超疏水性材料的方法多种多样,常见的方法包括化学表面修饰、纳米结构构筑和表面涂层等。

化学表面修饰是通过改变材料表面的化学成分来实现疏水性能的提升,这种方法通常会采用化学溶液浸渍或气相沉积等技术。

纳米结构构筑则是通过在材料表面构筑微纳米级的结构来实现超疏水性,常见的方法包括溶液浸渍、模板法和电化学沉积等。

表面涂层是在材料表面涂覆一层特殊的疏水性材料,使其表面具有超疏水性能。

超疏水性材料在各个领域都有着广泛的应用前景。

在纺织领域,超疏水性材料可以用于制备防水、防污的功能性纺织品,如雨衣、户外服装等。

在建筑领域,超疏水性材料可以应用于建筑涂料、玻璃表面处理等方面,起到防水、防污的作用。

在医疗领域,超疏水性材料可以用于制备医疗器械表面,减少细菌附着,起到抗菌的作用。

在环境保护领域,超疏水性材料可以用于油水分离、污水处理等方面,起到净化环境的作用。

总的来说,超疏水性材料具有广阔的应用前景,其制备方法也在不断地得到改进和完善。

随着科技的不断发展,相信超疏水性材料在未来会有更加广泛的应用,为各个领域带来更多的创新和发展。

超疏水材料的制备与应用前景

超疏水材料的制备与应用前景

超疏水材料的制备与应用前景哎呀,要说这超疏水材料,那可真是个神奇的玩意儿!我记得有一次,我去公园散步,正好赶上下雨。

我躲在亭子里避雨,看到旁边的荷叶上,水珠一颗颗滚落,荷叶却一点也没被打湿。

当时我就想,这大自然可真是奇妙,居然有这种神奇的现象。

后来我才知道,这其实就是超疏水现象的一种体现。

那什么是超疏水材料呢?简单来说,就是一种表面与水的接触角大于 150 度,滚动角小于 10 度的材料。

要制备这种神奇的材料,方法还真不少。

比如说,我们可以用化学气相沉积法。

这就好比是给材料穿上一层特殊的“防护服”,让水根本沾不上边。

还有溶胶凝胶法,就像是给材料做了一次“美容护理”,让它的表面变得超级光滑,水一碰到就溜走了。

咱们先来说说化学气相沉积法。

这个方法就像是在一个神奇的魔法室里操作一样。

把需要处理的材料放进一个充满特殊气体的容器里,然后通过加热或者其他方式,让这些气体在材料表面发生反应,形成一层薄薄的、具有超疏水性能的涂层。

这层涂层就像是给材料披上了一层隐形的雨衣,水滴滴上去,就像在荷叶上一样,咕噜噜地滚走了。

溶胶凝胶法呢,稍微有点复杂。

先得准备好一些特殊的化学溶液,然后把材料浸泡在里面。

这些溶液会慢慢地发生化学反应,在材料表面形成一层凝胶。

经过一系列的处理,比如干燥、加热等等,这层凝胶就会变成具有超疏水性能的涂层。

这个过程就像是给材料做了一个深度的 SPA,让它焕然一新,拥有了超级疏水的能力。

还有一种方法叫模板法。

这就像是用一个模具来塑造材料的形状和表面结构。

先准备一个具有特殊微观结构的模板,然后把材料填充进去或者在模板表面进行处理。

最后去掉模板,留下的就是具有超疏水表面结构的材料啦。

这种方法就像是做蛋糕的时候用模具做出各种形状一样,只不过我们做出来的不是蛋糕,而是超疏水材料。

除了这些方法,还有刻蚀法、自组装法等等,每一种方法都有它的独特之处。

那超疏水材料都能用来干啥呢?这用处可多了去了!比如说在建筑领域,我们可以把超疏水材料涂在建筑物的外表面,这样雨水就不会在墙壁上留下痕迹,建筑物也不容易受到雨水的侵蚀。

超疏水材料介绍

超疏水材料介绍

表观接触角和本征接触角的关系
(3)光滑表面的局限性
① 对一个表面如果仅仅采用化学方法处理,通常仅能使接触角增加到120°
②对于超疏水的自清洁表面,水珠滚落的去污能力比滑落强,而倾斜的光滑表面水 珠多处于滑动状态,见下图。
(4)自然界中动植物超疏水表面结构图
莲花表面
Nature 2004,432, 36)发表
2.5 电纺技术
典型应用:Rutledge等用电纺技术制得PS和PS-b-
PDMS的共混物纤维,如右图。由于PDMS表面能低且
与PS的相容性很差,共混物在纺丝过程中发生相分离
且PDMS向表面富集。电纺得到的混合聚合物无纺布
表面自身所具有的粗糙度及PDMS的富集共同作用,
是接触角达到163°。
电纺法制备的超疏水无纺布的典型形貌
特殊浸润性界面材料 —— 超疏水材料介绍
超疏水材料的影响因素 材料表面结构和疏水性的关系 超疏水表面的制备方法及应用 研究展望
一.超疏水材料的影响因素
1 浸润性是材料表面的重要特征之一。根据水对材料表面润湿性的不同将 材料表面分为亲水性表面和疏水性表面。 1.1 浸润性的表征
接触角:通常以接触角θ表征液体对固体的浸润程度。接触角由表面张
若θ﹤90°,则θ’﹤θ,则亲水性随粗糙度的增加而增加; 若θ﹥90°,则θ’﹥θ,则疏水性随粗糙度的增加而增加。
两个基本前提: ①基底的表面粗糙度与液滴的大小相比可以忽略不计; ②基底表面的几何形状不影响其表面积的大小。 ③适用于中等亲水或者疏水表面。
(2)Cassie模型----气垫模型
核心:Cassie和Baxter指出,液滴在粗糙表面的接触是一种复合接触。 复合接触:微细结构的表面因为结构尺度小 于表面液滴的尺度,当表面疏水性较强时, Cassie认为在疏水表面上的液滴并不能填满 粗糙表面上的凹槽,在液珠下有截留的空气 存在,于是表观上的液固接触面其实由固体 和气体共同组成,见右图:

超疏水材料

超疏水材料

面特征相似的仿荷叶微结构编辑。课件
17
模板法
编辑课件
18
2.等离子体法
✓ 等离子体:是由部分电子被剥夺后的原子及原子被电离 后产生的正负电子组成的离子化气体状物质,它广泛存 在于宇宙中,常被视为是除去固、液、气外,物质存在 的第四态。
✓ 等离子体法原理:利用等离子体对表面进行处理,获得 粗糙结构,从而得到超疏水性的材料表面。
面的疏(亲)水性能
编辑课件
14
超疏水表面的制备
一种是在粗 糙表面修饰 低表面能物

制备原理
✓ 一种是将疏 水材料构筑 粗糙表面
编辑课件
15
超疏水表面(材料)制备方法
编辑课件
16
1、模板法
✓ 模板法也称复制模塑法,自20世纪90年代提出以来已经 得到了广泛应用。进入21世纪,复制模塑技术也深入到 超疏水表面的制备研究中,尤其是在仿生超疏水表面的
✓ 优点:快速、选择性高、表面均匀
✓ 缺点:设备昂贵,且不利于大面积制备。
编辑课件
19
编辑课件
20
编辑课件
21
3.化学气相沉积法
✓ 原理:两种或两种以上的气态原材料导入到一个反应室 内,然后它们相互之间发生化学反应,形成一种新的材 料,沉积到晶片表面上。化学气相沉积法是传统的制备 薄膜的技术。

✓ 超疏水的表征量 ✓ 静态接触角:越大越好 ✓ 滚动角:越小越好
编辑课件
4
接触角和滚动角
✓ 滚动角(SA):滚动角是指液滴在 ✓ 倾斜表面上刚好发生滚动时,倾斜表
Hale Waihona Puke ✓ 面与水平面所形成的临界温度。等于 ✓ 前进角和后腿脚之差。 ✓ 前进角:液固界面取代气固界面后形 ✓ 成的接触角叫做前进角; ✓ 后腿角:气固界面取代液固界面后形 ✓ 成的接触角叫做后退角。

溶胶凝胶法制备超疏水材料的原理

溶胶凝胶法制备超疏水材料的原理

溶胶凝胶法制备超疏水材料的原理嘿,伙计们!今天我们要聊聊一个非常有趣的话题——溶胶凝胶法制备超疏水材料的原理。

你们知道吗,这种材料可是有着让人惊叹的神奇特性呢!让我们一起来揭开它的神秘面纱吧!我们得了解一下什么是溶胶凝胶法。

简单来说,这是一种制备高分子材料的方法。

它的基本原理是:将溶胶和凝胶两种不同的高分子体系混合在一起,通过一定的工艺条件(如加热、搅拌等),使它们发生化学反应,形成一种具有特定性能的新材料。

这种方法的优点是可以根据需要调整溶胶和凝胶的比例,从而得到不同性质的材料。

而超疏水材料就是其中的一种典型代表。

那么,超疏水材料有什么特别之处呢?别急,我慢慢给你们解释。

想象一下,你手上拿着一块刚买回来的手机,上面沾满了水珠。

你是不是总觉得很难擦干净?这就是普通的水接触角大的原因。

而超疏水材料就不一样了,它表面的水滴会像魔术一样自动消失,让你轻松告别湿手困扰。

这得益于它特殊的表面结构。

超疏水材料表面有许多微小的凸起,这些凸起就像无数个小小的钩子,把水滴紧紧抓住,让它们无法在表面上滚动。

这样一来,水滴就会自然滑落,形成所谓的“超疏水效应”。

那么,溶胶凝胶法是如何制备出这种超级神奇的材料的呢?这里就要说到它的制作过程了。

我们需要准备两种基本的高分子体系:溶胶和凝胶。

溶胶是由某种单体分子组成的低聚物,比如聚丙烯酸甲酯或聚乙烯醇等;而凝胶则是由溶胶经过交联反应形成的高分子网络结构。

接下来,我们将这两种体系按照一定比例混合在一起,然后放入特定的反应器中进行加热反应。

在这个过程中,溶胶会被逐渐消耗掉,而凝胶则会逐渐固化。

最终,我们就得到了一种具有超疏水效应的新材料。

制备超疏水材料的过程并不是一帆风顺的。

有时候,我们会遇到各种各样的问题,比如反应不完全、凝胶固化速度过快等。

但是,只要我们勤于尝试、不断改进,总会找到解决办法的。

而且,这个过程本身就是非常有趣和富有挑战性的。

所以,对于喜欢探索科学奥秘的小伙伴们来说,这绝对是一个值得尝试的好方法!好了,今天的科普小课堂就到这里啦!希望你们对溶胶凝胶法制备超疏水材料的原理有了更深入的了解。

浅谈超疏水材料的应用前景

浅谈超疏水材料的应用前景

浅谈超疏水材料的应用前景超疏水材料是一类具有极强防水性能的材料,能够在其表面形成高度疏水的特性。

超疏水材料的应用前景非常广泛,以下将从工业、医疗、环境和生活等方面进行探讨。

首先,在工业领域,超疏水材料可以应用于液体分离和油水分离。

传统的分离方法需要耗费大量的能源和资源,而超疏水材料可以通过其疏水特性实现液体分离,从而节省资源并减少环境污染。

例如,将超疏水材料应用于油水分离装置,可以实现高效分离,并减少水资源的浪费。

此外,超疏水材料还可以应用于自清洁涂料、防腐材料等领域,提高工业材料的耐用性和性能。

其次,在医疗领域,超疏水材料有着广泛的应用前景。

例如,超疏水材料可以应用于医疗器械表面涂层,具有阻止细菌和病毒附着的作用,减少交叉感染的风险。

此外,超疏水材料还可以应用于人工皮肤和人工器官的制造,提高其稳定性和生物相容性。

超疏水材料的应用可以大大提高医疗领域的卫生标准和手术效果。

再次,在环境领域,超疏水材料可以应用于净化水源和治理水污染。

水是人类生活的基本需求,而水资源的污染和紧缺已经成为全球面临的问题。

超疏水材料可以通过其高度疏水的特性,使污染物无法进入水体,从而实现水的净化和保护。

例如,超疏水材料可以应用于河流、湖泊的保护和水域生态的恢复工作。

最后,在生活领域,超疏水材料也有着广泛的应用前景。

例如,超疏水材料可以应用于建筑材料,如窗户、墙面等,具有自清洁和防尘的功能。

此外,超疏水材料还可以应用于家居用品,如锅具、餐具等,防止水和油污渗透,提高其使用寿命和卫生程度。

超疏水材料的应用可以为人们的生活提供便利和舒适。

综上所述,超疏水材料具有广泛的应用前景,包括工业、医疗、环境和生活等方面。

随着科学技术的发展和研究的深入,超疏水材料的性能和应用领域将不断拓宽,为人类社会带来更多的福祉。

《生物质超疏水材料》课件

生物质超疏水材料在长期使用过程中,其疏水性能能够保持稳定,不易退化。
PART FOUR
生物质来源:选 择天然、可再生 的生物质材料, 如木材、秸秆、 玉米芯等
预处理方法:对 生物质材料进行 粉碎、研磨、筛 分等预处理,以 提高材料的表面 粗糙度和孔隙率
材料选择标准: 选择具有良好疏 水性能的生物质 材料,如具有高 亲水性和低疏水 性的纤维素、半 纤维素等
超疏水性:表面具有超疏水性,水滴不易附着 自清洁性:表面具有自清洁性,易于清洗 耐腐蚀性:表面具有耐腐蚀性,不易被腐蚀 耐高温性:表面具有耐高温性,不易在高温下变形
生物质超疏水材料具有优异的耐久性,能够长时间保持其疏水性能。 生物质超疏水材料在户外环境中能够抵抗紫外线、酸雨等恶劣环境的侵蚀。 生物质超疏水材料在室内环境中能够抵抗高温、高湿等恶劣环境的侵蚀。
研究进展:近年来, 超疏水材料的研究取 得了显著进展,如纳 米材料、生物质材料 等
防水防污:应用于建筑、汽车、 船舶等领域
自清洁:应用于太阳能电池板、 玻璃幕墙等领域
抗腐蚀:应用于化工、石油、 天然气等领域
生物医学:应用于医疗器械、 生物传感器等领域
物理沉积法:通过物理沉积 方法制备超疏水材料
化学合成法:通过化学反应 制备超疏水材料
添加标题
添加标题
添加标题
添加标题
在污水处理领域,生物质超疏水材 料可以用于油水分离,提高污水处 理效率。
在食品加工领域,生物质超疏水材 料可以用于油水分离,提高食品加 工的安全性和卫生性。
建筑领域:作为外墙涂料,提高建筑物的防水性能 农业领域:作为土壤改良剂,提高土壤保水性能 环保领域:作为污水处理剂,提高污水处理效率 医疗领域:作为生物医用材料,提高生物相容性

超疏水材料的制备与应用

超疏水材料的制备与应用近年来,超疏水材料在科技领域中引起了广泛的关注与研究。

超疏水材料是一种表面具有高度疏水性的材料,其具备极佳的自清洁能力和防污性能。

本文将探讨超疏水材料的制备方法以及其在不同领域中的应用。

首先,超疏水材料的制备方法多种多样,其中最常见的是采用化学方法。

通过在材料表面涂覆一层特殊的化学涂层,可以使其表面呈现出极高的疏水性。

例如,使用聚偏氟乙烯(PTFE)等高分子材料进行涂覆,可以形成一层类似蜡状的涂层,其表面具有微细的凹凸纳米结构,从而实现超疏水效果。

此外,物理方法也可用于超疏水材料的制备。

物理方法指的是通过改变材料表面的形貌结构,实现其表面疏水性的提高。

例如,利用激光刻蚀技术可以在材料表面形成微细的纳米结构,从而提高其疏水性能。

通过物理方法制备的超疏水材料具有较好的稳定性和耐久性,被广泛应用于海洋船舶舰船、建筑材料、玻璃制品等领域。

除了制备方法,超疏水材料的应用也十分广泛。

首先是在纺织材料领域的应用。

超疏水纺织材料可以有效防止污渍的附着,增加材料的自洁能力和使用寿命。

这对于制作户外服装、防水材料具有重要意义,特别是对于户外运动爱好者来说,更是一种福音。

其次,在海洋工程领域,超疏水材料的应用也非常突出。

由于超疏水材料具有出色的防污性能,能够有效减少海洋生物的附着,从而降低摩擦阻力,提高舰船的行进速度。

这对于节省能源、提高海洋工程装备的效率具有重要意义。

此外,超疏水材料还可以应用于医学器械和生物医学领域。

由于其表面的超疏水性,减少了材料表面细菌和病原微生物的附着,从而减少了细菌感染和交叉感染的风险。

这对于医学器械的使用和病房、手术室的卫生管理具有重要意义。

总而言之,超疏水材料的制备与应用是一个多样化的领域,涉及到多个行业和领域。

通过不同的制备方法,可以得到具有超强疏水性能的材料,从而在纺织材料、海洋工程、医学器械等方面实现广泛应用。

未来,随着科技的不断发展与进步,超疏水材料的制备和应用将会进一步拓展,为我们的生活带来更多的便利和改变。

疏水纳米涂层材料

疏水纳米涂层材料
疏水纳米涂层材料是一种具有超疏水性能的材料,其表面具有微观纳米结构,能够有效排斥水分,具有自清洁、防污、耐腐蚀、耐磨等特点。

常见的疏水纳米涂层材料主要包括以下几种:
1. 氟化物超疏水涂层材料:主要包括氟化聚合物和氟化硅烷等,具有优异的疏水性能和稳定性,广泛应用于建筑、汽车、航空航天等领域。

2. 二氧化硅纳米涂层材料:通过纳米技术处理,将二氧化硅纳米颗粒分散在涂层中,形成具有超疏水性能的表面。

这种涂层材料具有良好的透明性和耐磨性,适用于玻璃、金属等基材的涂覆。

3. 碳纳米管超疏水涂层材料:利用碳纳米管的优异导电性和化学稳定性,制备出具有超疏水性能的涂层材料。

这种涂层材料具有良好的耐腐蚀性和耐磨性,适用于金属、塑料等基材的涂覆。

此外,还有一些其他的疏水纳米涂层材料,如氧化铝、聚四氟乙烯等。

这些材料具有不同的特点和适用范围,可以根据具体需求进行选择和应用。

总的来说,疏水纳米涂层材料在各个领域都有广泛的应用前景,特别是在需要防水、防污、自清洁等功能的场合。

随着纳米技术的不断发展和完善,疏水纳米涂层材料的性能和应用也将得到不断提升和拓展。

超疏水材料的制备与界面性能研究

超疏水材料的制备与界面性能研究引言近年来,随着科技的进步和社会的发展,超疏水材料逐渐成为一种备受关注的新材料。

其独特的界面性能为许多领域带来了诸多新的应用机会。

本文将讨论超疏水材料的制备方法以及其在界面性能方面的研究进展。

一、超疏水材料的制备方法1. 仿生法超疏水材料的仿生法制备是目前较为常用的方法之一。

通过模仿自然界中的疏水表面,如莲叶和罗汉松等,可以使用一系列的化学合成方法制备出具有类似性能的超疏水材料。

这种方法的优势在于具有较高的可控性和易操作性。

2. 组装法组装法是通过自组装或者模板法将微/纳米颗粒有序排列在基底上,形成颗粒阵列或者多孔结构,从而达到超疏水性能。

该方法可以通过调控粒子尺寸、形状和表面修饰等工艺参数,实现对超疏水材料的性能调优,具有很高的灵活性和可扩展性。

3. 化学改性法化学改性法是通过对材料表面进行物理或化学处理,引入各种功能单元以改变其表面性质,从而获得超疏水性能。

常见的方法包括表面修饰、溶液浸涂、溶剂热处理等。

这些方法通常可以在普通材料上实现超疏水效果,提高材料的界面稳定性和抗污染能力。

二、超疏水材料的界面性能研究1. 液滴接触角超疏水材料的液滴接触角是评价其疏水性能的重要指标之一。

接触角的大小直接反映了液滴在材料表面上的展开情况。

通过对超疏水材料接触角的研究,可以揭示材料表面微观结构与界面相互作用之间的关系,为超疏水材料的设计与制备提供参考。

2. 低表面能超疏水材料通常具有很低的表面能。

这一特性使得其表面能远低于液体的表面张力,使液滴在其表面上呈现出球形。

低表面能能够实现超疏水材料的自洁性和抗沾污性,对于减少材料的摩擦系数和提高材料的稳定性有重要作用。

3. 自清洁性超疏水材料的自清洁性是指其表面具有自洁能力,能够将粒子、灰尘等外来物质随液滴的滚动或者风吹而自动清洁干净。

这一特性极大地提高了材料的耐污染性,减少了清洁的频率和强度,对环境保护和材料的长期使用具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、木纹纸质是一种表皮装饰纸,木皮是半天然装饰材料。

2、木纹纸上的花纹为印刷出来的;木皮上的花纹为优质木材本身带有的花纹。

3、木纹纸厚度一般在0.5~1.0mm;木皮的厚度一般为1.0mm~2.0mm。

4、木纹纸按照材质的不同可以用于装饰、家具等的面层或修边;木皮主要用于高级装饰中的面层。

5、木纹纸一般价格低廉;木皮大多都价格较贵。

6、木纹纸本国产品很多;木皮重大多数珍贵树种产品只能靠进口。

用途还包括:塑料包装、香烟酒类包装、
1.碳酸钙主要以石灰石和大理石存在,大理石和石灰石主要成分是CaCO3 。

大理石和石灰石做建筑材料,工业上用石灰石制生石灰(CaO)和二氧化碳、制水泥。

2.碳酸钙的物理性质:白色固体,难溶于水。

纳米碳酸钙又称超微细碳酸钙。

标准的名称即超细碳酸钙。

纳米碳酸钙应用最成熟的行业是塑料工业主要应用于高档塑料制品。

可改善塑料母料的流变性,提高其成型性。

用作塑料填料具有增韧补强的作用,提高塑料的弯曲强度和弯曲弹性模量,热变形温度和尺寸稳定性,同时还赋予塑料滞热性。

纳米碳酸钙用于油墨产品中体现出了优异的分散性和透明性和极好的光泽、及优异的油墨吸收性和高干燥性。

纳米碳酸钙在树脂型油墨中作油墨填料,具有稳定性好,光泽度高,不影响印刷油墨的干燥性能.适应性强等优点。

纳米碳酸钙的应用范围
纳米碳酸钙应用最成熟的行业是塑料工业主要应用于高档塑料制品。

造纸业是纳米碳酸钙最具开发潜力的市场。

目前,纳米碳酸钙还主要用于特殊纸制品,如女性用卫生巾、婴儿用尿不湿等。

纳米活性碳酸钙作为造纸填料具有以下优点:高蔽光性、高亮度、可提高纸制品的白度和蔽光性;高膨胀性,能使造纸厂使用更多的填料而大幅度降低原料成本;粒度细、均匀,制品更加均匀、平整;吸油值高、能提高彩色纸的预料牢固性纳米碳酸钙在涂料工业作为颜料填充剂,具有细腻、均匀、白度高、光学性能好等优点。

纳米级超细碳酸钙具有空间位阻效应.在制漆中,能使配方中密度较大的立德粉悬浮,起防沉降作用.制漆后,漆膜白度增加,光泽度高,而遮盖力却不降低,主要用于高档轿车漆。

橡胶工业纳米碳酸钙的主要应用市场之一。

添加钠米碳酸钙的橡胶,其硫化胶升长率、撕断性能、压缩变形和耐屈性能,都比添加一般碳酸钙的高。

加入用树脂酸处理的纳米碳酸钙后,有的豫胶制品撕裂强度提高4倍以上
纳米碳酸钙在饲料行业中可作为补钙剂,增加饲料含钙量;在化妆品中使用,由于其纯度高、白度好、粒度细,可以替代钛白粉。

纳米活性碳酸钙的工业制备方法。

该方法在一定浓度的Ca(OH)2的悬浮液中通入二氧化碳气体进行碳化。

通过对Ca(OH)2悬浮液的温度、二氧化碳气体的流量控制碳酸钙晶核的成核速率;在碳化至形成一定的晶核数后,由晶核形成控制转化为晶体生长控制,此时加入晶形调节剂控制各晶面的生长速率,从而达到形貌可控;继续碳化至终点加入分散剂调节粒子表面电荷得均分散的立方形碳酸钙纳米颗粒;然后将均分散的立方形纳米碳酸钙颗粒进行液相表面包覆处理。

所获得的纳米活性碳酸钙粒子在25~100nm之间可控,立方形,比表面大于25m2/g,粒径分布GSD为1.57,吸油值小于28g/100gCaCO3,且无团聚现象。

所获得的产品性能优异,可作为高档橡胶、塑料以及汽车底漆中的功能填料。

际接触面积/ 表观接触面积。

3. 2 燃料领域
在传统燃料输送设备中, 剩余燃料都会造成很大的浪费, 与此相关的应用是使用超疏油表面进行燃
料经济性操作, 即在设备内制得超疏油表面, 虽然所用的表面是超疏油性的, 但其制备原理与超疏水表面
制备方法极其类似, T uteja 等[ 28] 在油料输送管道和储油罐内制备出以低表面能物质修饰的粗糙表面, 同
样可以适用于低表面能油料流体的输送。

这一成果具有很高的工业应用价值, 其规模化应用潜力巨大
[ 28] Tu t eja A, Choi W, Mabri J M , McKinley G H , Cohen R E . Proc Nat l Acad Sci, 2008, 105: 18200~ 18205
3. 6 电池中的应用
在电池系统中引入超疏水材料可以使电池效率和耐久性得到改善。

Lifton 等[ 32] 开发了一种基于纳
米超疏水材料的新型电池。

电池两极均由修饰了超疏水涂层的硅质材料构成, 这样可以有效的将电解液
和活性电极材料分隔开, 防止副反应的发生。

在燃料电池系统中, 以碳纳米管作为阴极催化剂, 上面装载铂纳米颗粒, 碳纳米管的超疏水性可以促
使移除在电极反应中产生的水, 从而提升系统中的传质过程, 进而有效提高燃料电池效率[ 33] 。

3. 3 光学领域
对于一些光学仪器来说, 自清洁功能显得尤为重要, 于是涌现出相当多有关于高透性、无反射性或高反射性超疏水表面的研究。

为了得到表面的透光性, 构成表面粗糙结构的颗粒就必须小于可见光波长。

实际中制备高反射性能的超疏水表面是有比较大的难度的, 从表面粗糙度的观点来看, 随着表面粗糙度的增加, 表面的疏水效果增加, 但同时表面的反射性能会减弱。

为解决此问题, Shen 等[ 29] 通过控制银镜反应制备出了具有超疏水性能的高反射银镜面。

使得在保证高反射性的前提下, 制备具有超疏水性能基面这一难题得以实现。

织物上的应用
拥有超疏水性的织物不仅要求高的憎水性, 也同时要保证无毒、舒适的原则。

曾经有人尝试将超疏
水性面料编制成织物, 例如Ma 等[ 34] 将聚己内酯、苯乙烯和二甲基硅氧烷形成的嵌段聚合物制成纤维。

因为这两种纤维出色的憎水性和较低的滚动角, 使其成为纺织具有超疏水功能和自清洁功能织物的优选备用材料。

相关文档
最新文档