《数学模型》电子M02PPT课件

合集下载

如何建立数学模型28页PPT

如何建立数学模型28页PPT
如,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉尔 。 25、梯子的梯阶从来不是用来搁脚的 ,它只 是让人 们的脚 放上一 段时间 ,以便 让别一 只脚能 够再往 上登。
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭

第2章数学模型2-1,2培训课件

第2章数学模型2-1,2培训课件
一、为什么要线性化
1、实际的物理系统和化学系统,严格地讲,都是非线性 系统。
2020/8/6
当非线性因素对系统影响较小时,一般可直接将系统当 作线性系统处理。另外,如果系统的变量只发生微小的偏 移,则可通过切线法进行线性化,以求得其增量方程式。
2、线性系统的理论已经相当成熟,但非线性系统的理论 还远不完善。
(4)将输出变量及各阶导数放在等号左边,将输入变 量及各阶导数放在等号右边,并按降幂排列,最后将系 统归化为具有一定物理意义的形式,成为标准化微分方 程。
2020/8/6
§ 2.1 线性系统的微分方程
例1 如图所示,为RC无源网络。试建立该网络的微 分方程
解:电路理论知:
ui(t)R(ti)u0(t)
dx12
(x x10 1 x10)2
2020/8/6
当 (x1 x10) 为微小增量时,可以略去二阶以上各项
df
df
x 2 f(x 1)0 d 1x x 1( 0 x 1 x 1)0 x 2 0d 1x x 1( 0 x 1 x 1)0
即 x2x20 K (x1x1)0 x2Kx1
其中, K df dx1
ua(t)Raia(t)Ladd a(it)teb
eb ce
d(t)
dt
ce为电动机的反电势系数
力矩平衡方程为
电机转 动力矩
负载力矩
M DJdd 22 (tt)fdd(t)tM L MDcMia(t)
电磁转距
阻尼力矩
式中 J GD 2 为电动机电枢的转动惯量
4g
c M 为电动机的力矩系数
2020/8/6
Qi—冷水进入槽带入的热量: Qi VHTi
Ql— 隔热壁逸散的热量:

数学模型简单实例ppt课件

数学模型简单实例ppt课件

从包汤圆(饺子)说起
通常,1公斤面, 1公斤馅,包100个汤圆(饺子) 今天,1公斤面不变,馅比 1公斤多了,问应多包几个 (小一些),还是少包几个(大一些)?
问题
圆面积为S的一个皮,包成体积为V的汤圆。若 分成n个皮,每个圆面积为s,包成体积为v。
S
s s … s (共n个)
vv
v
V
V和 nv 哪个大?
问题杀羊方案 现有26只羊,要求7天杀完且每天必须杀奇数只,
问各天分别杀几只?
分析: 1). 这是一个有限问题,解决此类问题的一 类方法是枚举,你可以试试。
建模:
2). 依题意,设第 i天杀 2ki 1(ki为自然)只数,
则所提问题变为在自然数集上求解方程
7
(2ki 1) 26
i1
于是,我们有了该问题的数学语言表达——数学模型
从包汤圆(饺子)说起 杀羊方案
相遇问题
黄灯应当亮多久 砖块延伸 寻找黑匣子
测量电阻
舰艇的会合
比赛场次 气象预报问题
价格竞争 遗传模型
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
我们所处的信息时代的一个重要特点是数学的应用向 一切领域渗透,高科技与数学的关系日益密切,产生了许 多与数学相结合的新学科,如数学化学、数学生物学、数 学地质学、数学社会科学等等。
当今社会日益数学化,一些有远见的科学家就曾深刻 指出:“信息时代高科技的竞争本质上是数学的竞 争。”“当今如此受到称颂的‘高技术’本质上是一种数 学技术”。
模型 R ~大皮 的半径;r ~小皮的半径 Sns

初中数学建模(第一课) PPT课件 图文

初中数学建模(第一课) PPT课件 图文

二、解答数学模型问题的一般步骤
(1)明确实际问题,并熟悉问题的背景; (2)构建数学模型(例如:方程模型、不等式模型、函数模
型、几何模型、概率模型、统计模型等); (3)求解数学问题,获得数学模型的解答; (4)回到实际问题,检验模型,解释结果。
三、初中数学建模的几种题型
1、建立“方程(组)”模型 2、建立“不等式(组)”模型 3、建立“函数”模型 4、建立“几何”模型 5、建立“概率”与“统计”模型
数学建模(第一课)

一、数学模型思想在初中数学中的意义
所谓数学模型,是指通过抽象和模拟,利用数学语言和方 法对所要解决的实际问题进行的一种刻画 。一般地,通过建立 数学模型来解决实际问题的过程称为数学建模。
数学教学要让学生亲身经历将实际问题抽象成数学模型并 进行解释与应用的过程,进而使学生获得对数学理解的同时, 在思维能力、情感态度与价值观等多方面得到进步和发展。
现实生活中同样也广泛存在着数量之间的 不等关系。如市场营销、生产决策、统筹 安排、核定价格范围等问题,可以通过给出 的一些数据进行分析,将实际问题转化成 相应的不等式问题,利用不等式的有关性 质加以解决。
例9、小明准备用50元钱买甲、乙两种饮料 共10瓶。已知甲饮料每瓶7元,乙饮料每瓶 4元,则小明最多能买多少瓶甲饮料?
所以,放入一个小球水面升高2cm,放入一个大球水面升 高3cm;
(2)设应放入大球m个,小球n个.由题意,
得:
解得: m 4

n

6
答:如果要使水面上升到50cm,应放入大球4个,小球6
个.
方法归纳:本题考查了列一元一次方程和列二元 一次方程组解实际问题的运用,二元一次方程组

数学模型-超全模型汇总-初等模型69页PPT

数学模型-超全模型汇总-初等模型69页PPT
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2 录像机计数器的用途
问 题
经试验,一盘标明180分钟的录像带 从头走到尾,时间用了184分,计数
器读数从0000变到6061。
在一次使用中录像带已经转过大半,计数器读数为 4450,问剩下的一段还能否录下1小时的节目?
思考 计数器读数是均匀增长的吗?
要求 不仅回答问题,而且建立计数器读数与
录像带转过时间的关系。
不妨设分配开始时 p1/n1> p2/n2 ,即对A不公平
应讨论以下几种情况 初始 p1/n1> p2/n2 1)若 p1/(n1+1)> p2/n2 , 则这席应给 A 2)若 p1/(n1+1)< p2/n2 , 应计算rB(n1+1, n2) 3)若 p1/n1> p2/(n2+1), 应计算rA(n1, n2+1) 问: p1/n1<p2/(n2+1) 是否会出现? 否! 若rB(n1+1, n2) < rA(n1, n2+1), 则这席应给 A 若rB(n1+1, n2) >rA(n1, n2+1), 则这席应给 B
第二章 初等模型
2.1 公平的席位分配 2.2 录像机计数器的用途 2.3 双层玻璃窗的功效 2.4 汽车刹车距离 2.5 划艇比赛的成绩 2.6 实物交换 2.7 核军备竞赛 2.8 启帆远航 2.9 量纲分析与无量纲化
2.1 公平的席位分配
问 三个系学生共200名(甲系100,乙系60,丙系40),代表 题 会议共20席,按比例分配,三个系分别为10,6,4席。
当 rB(n1+1, n2) < rA(n1, n2+1), 该席给A
rA, rB的定义
p22
p12
该席给A
n2 (n2 1) n1(n1 1) 否则, 该席给B
定义
Qi
pi2 , ni (ni 1)
i 1,2,
该席给Q值较大的一方
推广到m方 分配席位
计算
Qi
pi2 , ni (ni 1)
例 丙 34 17.0 3.4
4
3.570
3
平 吗
总和 200 100.0 20.0 20 21.000 21
“公平”分配方 衡量公平分配的数量指标
法 人数
A方 p1 B方 p2
席位 n1 n2
当p1/n1= p2/n2 时,分配公平 若 p1/n1> p2/n2 ,对 A 不公平
p1/n1– p2/n2 ~ 对A的绝对不公平度
观察 计数器读数增长越来越慢!
问题分析 录像机计数器的工作原理
左轮盘
右轮盘 主动轮
0000 计数器
录像带 磁头
压轮
录像带运动
录像带运动方向 右轮盘半径增大 计数器读数增长变慢
录像带运动速度是常数
右轮转速不是常数
模型假设 • 录像带的运动速度是常数 v ; • 计数器读数 n与右轮转数 m成正比,记 m=kn; • 录像带厚度(加两圈间空隙)为常数 w; • 空右轮盘半径记作 r ; • 时间 t=0 时读数 n=0 .
p1=150, n1=10, p1/n1=15 p2=100, n2=10, p2/n2=10
p1/n1– p2/n2=5
p1=1050, n1=10, p1/n1=105 p2=1000, n2=10, p2/n2=100
p1/n1– p2/n2=5
虽二者的绝对 不公平度相同
但后者对A的不公平 程度已大大降低!
设理想情况下m方分配的席位分别为n1,n2,… , nm (自然应有n1+n2+…+nm=N),
ni 应是 N和 p1, … , pm 的函数,即ni = ni (N, p1, … , pm )
记qi=Npi /P, i=1,2, … , m, 若qi 均为整数,显然应 ni=qi
qi=Npi /P不全为整数时,ni 应满足的准则: 记 [qi]– =floor(qi) ~ 向 qi方向取整; [qi]+ =ceil(qi) ~ 向 qi方向取整.
i 1,2,, m
该席给Q值最大的一方 Q 值方法
三系用Q值方法重新分配 21个席位
按人数比例的整数部分已将19席分配完毕
甲系:p1=103, n1=10 乙系:p2= 63, n2= 6 丙系:p3= 34, n3= 3
用Q值方法分配 第20席和第21席
第20席
Q1
1032 10 11
96.4,
建模目的 建立时间t与读数n之间的关系 (设v,k,w ,r为已知参数)
模型建立
建立t与n的函数关系有多种方法 1. 右轮盘转第 i 圈的半径为r+wi, m圈的总长度
等于录像带在时间t内移动的长度vt, 所以
m
“公平”分配方 将绝对度量改为相对度量 法若 p1/n1> p2/n2 ,定义
p1 / n1 p2 p2 / n2
/ n2
rA (n1, n2 )
~ 对A的相对不公平度 公平分配方案应
类似地定义 rB(n1,n2)
使 rA , rB 尽量小
将一次性的席位分配转化为动态的席位分配, 即
设A, B已分别有n1, n2 席,若增加1席,问应分给A, 还是B
现因学生转系,三系人数为103, 63, 34, 问20席如何分配。
若增加为21席,又如何分配。
系别 学生 比例 20席的分配 21席的分配
比 例
人数 (%) 比例 结果
比例
结果
对 丙
加 甲 103 51.5 10.3 10 10.815 11 系
惯 乙 63 31.5 6.3 6 6.615 7 公
Q2
632 67
94.5,
Q3
342 3 4
96.3
Q1最大,第20席给甲系
第21席
Q1
1032 1112
80.4,
Q2 ,
Q3 同上
Q3最大,第 21席给丙系
Q值方法 分配结果
甲系11席讨论
Q值方法比“比例加惯例”方法更公平吗? 席位分配的理想化准则
已知: m方人数分别为 p1, p2,… , pm, 记总人数为 P= p1+p2+…+pm, 待分配的总席位为N。
1) [qi]– ni [qi]+ (i=1,2, … , m), 即ni 必取[qi]– , [qi]+ 之一
2) ni (N, p1, … , pm ) ni (N+1, p1, … , pm) (i=1,2, … , m) 即当总席位增加时, ni不应减少
“比例加惯例”方法满足 1),但不满足 2) Q值方法满足 2), 但不满足 1)。令人遗憾!
相关文档
最新文档