结构与非结构网格之间的转换及应用
Fluent学习总结

FLUENT学习总结1 概述:FLUENT是目前处于世界领先地位的商业CFD软件包之一,最初由FLUENT Inc.公司发行。
2006年2月ANSYS Inc.公司收购FLUENT Inc.公司后成为全球最大的CAE软件公司。
FLUENT是一个用于模拟和分析复杂几何区域内的流体流动与传热现象的专用软件。
FLUENT提供了灵活的网格特性,可以支持多种网格。
用户可以自由选择使用结构化或者非结构化网格来划分复杂的几何区域,例如针对二维问题支持三角形网格或四边形网格;针对三维问题支持四面体、六面体、棱锥、楔形、多面体网格;同时也支持混合网格。
用户可以利用FLUENT提供的网格自适应特性在求解过程中根据所获得的计算结果来优化网格。
FLUENT是使用C语言开发的,支持并行计算,支持UNIX和Windows等多种平台,采用用户/服务器的结构,能够在安装不同操作系统的工作站和服务器之间协同完成同一个任务。
FLUENT通过菜单界面与用户进行交互,用户可以通过多窗口的方式随时观察计算的进程和计算结果。
计算结果可以采用云图、等值线图、矢量图、剖面图、XY散点图、动画等多种方式显示、存贮和打印,也可以将计算结果保存为其他CFD软件、FEM软件或后处理软件所支持的格式。
FLUENT还提供了用户编程接口,用户可以在FLUENT的基础上定制、控制相关的输入输出,并进行二次开发。
1.1 FLUENT软件包的组成针对不同的计算对象,CFD软件都包含有3个主要功能部分:前处理、求解器、后处理。
其中前处理是指完成计算对象的建模、网格生成的程序;求解器是指求解控制方程的程序;后处理是指对计算结果进行显示、输出的程序。
FLUENT软件是基于CFD软件的思想设计的。
FLUENT软件包主要由GAMBIT、Tgrid、Filters、FLUENT几部分组成。
(1)前处理器。
包括GAMBIT、Tgrid和Fliters。
其中GAMBIT是由FLUENT Inc.公司自主开发的专用CFD前置处理器,用于模拟对象的几何建模以及网格生成。
kagome 非厄米 长程相互作用

kagome 非厄米长程相互作用1.引言1.1 概述概述kagome 非厄米长程相互作用是当前研究领域中备受关注的一个重要课题。
随着科学技术的不断进步,人们对于材料性质的理解也越来越深入。
在这一背景下,相互作用的研究成为了科学界的热门话题之一。
kagome 是一种特殊的结构,指的是由等边三角形组成的二维晶格。
这种结构具有许多独特的性质,如高度的对称性和非简并的能带结构等。
因此,kagome 结构被广泛应用于各种领域,如拓扑物理学、自旋电子学和量子计算等。
非厄米相互作用是指系统中存在能量非守恒的情况。
与厄米相互作用不同,非厄米相互作用给系统带来了一些新的现象和性质。
研究发现,非厄米相互作用可以导致能带的拓扑重构、电子输运的异常行为以及新奇的量子态等。
本文旨在探讨kagome 结构下的非厄米相互作用,并对其可能的应用进行展望。
通过对kagome 结构的理解和非厄米相互作用的研究,我们可以深入认识这一系统的特性,并且为相关领域提供新的思路和可能性。
总的来说,本文将介绍kagome 结构和非厄米相互作用的基本概念和理论,进一步探究它们在实际应用中的潜力。
通过深入研究这一课题,我们希望能够为材料科学和物理学领域的进展作出一定的贡献,并为未来的研究方向提供一些新颖的思路和方案。
综上所述,本文的研究内容主要围绕kagome 非厄米相互作用展开,目的是深入研究其基本理论和可能的应用。
相信通过这一研究,我们可以为相关领域的发展带来新的突破和进步。
1.2文章结构文章结构部分的内容可以如下编写:1.2 文章结构本文主要分为以下几个部分进行论述:(1)引言:在引言部分,我们将简要介绍文章的研究背景和意义。
首先,我们会阐述kagome结构的重要性和应用领域。
然后,我们将提出非厄米相互作用在物理学中的重要性,并说明其与kagome结构的关联。
(2)kagome结构:在第二部分,我们将详细介绍kagome结构的概念和特点。
我们会对kagome结构的几何形状、原子排列以及其在材料科学和量子物理学中的应用进行深入讨论。
非结构网格模型界面说明

MIKE21FM 非结构网格模型界面说明1 基本参数1.1模型范围(Domain)MIKE21 Flow Model FM是一个基于不规则网格的模型。
地形网格影响是模型精度的第一要素。
设定网格的工作包含选择适当的区域,适当的解析度,以及适当的波浪,风,流边界等资料。
再者,地理空间上的解析度选择也必须满足于模型稳定性的要求。
1.1.1 网格及地形(Mesh and Bathymetry)此处要输入的网格地形要在在MIKE ZERO的 Mesh Generator 中生成(*.mesh)文件。
MIKE ZERO的 Mesh Generator是一个非结构网格生成器,可以用来生成,编辑网格及定义边界条件。
Mesh Generator生成的Mesh文件是一个ASCII文件,其中包含每个网格点的地理坐标位置和高程,以及单元之间的拓扑关系。
1.1.2模型范围设定地图投影(Map Projection)如果mesh文件是由Mesh Generator生成的,那么其中已包含地图投影信息,并会在用户界面中显示。
如果mesh文件上没有设定地图投影信息,那用户就必须为mesh文件选定适当的地图投影。
最小截断深度(Minimum depth cutoff)最小截断深度是指所有高于此值的高程点,将会在计算过程中被忽略。
请注意,在mesh文件中,水深的设定是负值。
如同时应用了Datum shift功能,那么截断深度是相关于应用Datum shift校正后的深度。
举例来说在一个范围介于+2 m到 -20m的mesh文件。
设定一个基准面调整值,如增加+1m(即水深增加1m)。
于是调整后的地形数据介在+1m到-21m间。
如果设定的minimum depth cutoff为-2m,地形数据范围便成-2 m到 -21m。
基准面调整(Datum Shift)在模型中可以对基准面作调整。
如海图基准(CD),最低天文潮(LAT)或平均海平面(MSL)来取代使用实际的基准。
非结构网格的并行多重网格解算器

J o u r n a l o fS o f t w a r e软件学报 V o 1 . 2 4 ,No . 2 , F e b r u a r y 2 0 1 3
散精度密切 相关, 而 网格 的数据集 存储格 式又影响着计 算效率【 1 1 .
一
直 以来, 高精 度格 式 与高效 率 的数值 方法 构 成 了非结构 网格 研 究的 两个 热点 : 在 高精 度格 式方 面, 离 散
算 量小, 对 网格质 量不太敏 感. 文献 [ 1 1 , 1 2 】 中对 比了 6种单元 中心格式和 两种节 点中心格 式, 从 理论分析和 数值 实验 的角度 阐明: 单元 中心 最近邻接 格式( c e l 1 . c e n t e r e d n e a r e s t . n e i g h b o r , 简称 C C . YN) 适用于 无粘通量 离散, 节点
其 中, △ 表 示控制体 i 的体积 , 为空 间离散格 式形成 的右 端项, Q 为控制 体 i的解 向量平均 值. 需 要说 明的是, 其 他空 间离 散方法也可 以得到类似 于方程( 2 ) 的半离散 化形式. 至此 , 空间离 散后转 化 为时间 常微分 方程 的积分 过程, 即方程( 2 ) 的求解 . 在 时间推 进方 法上, 存在 显示 和隐
Ga l e r k i n [ 、谱体积 f 3 】 、 谱 差分[ 】 等方法 的引入, 使 得非结 构网格在 计算格式上 具有 了二阶 以上 的计算精度 , 维持
了较强 的数值稳 定性, 在 一定程度 上满足 了数值模 拟高分辨 率的需求 ; 在 高效率算法 方面, 由于 C F D工程应用 的
的硬件 环境和计 算平 台. 因而, 非结构 网格中 多重 网格 的并行化应用研 究, 也就成为近 年来 C F D数值解 算器研究
starccm实例教程

物理设置
定义流体的物理属性, 如密度、粘度和流动速 度等。设置边界条件, 如入口速度、出口压力
和壁面条件等。
求解器设置
选择合适的求解器和时 间步长,以及其他相关 参数,如收敛准则和迭
代次数等。
后处理结果展示和讨论
速度场和压力场
通过starccm+的后处理模块,可以直观地查看计算得到 的速度场和压力场。可以使用等值线、矢量图和云图等方 式展示结果。
高质量的网格生成
Star-CCM+具备先进的网格生成 技术,能够生成高质量的计算网 格,提高仿真的准确性和效率。
01 02 03 04
强大的物理模型库
软件内置了丰富的物理模型,包 括流体动力学、传热、传质、电 磁学、结构力学等,支持多物理 场耦合仿真。
高效的求解器
软件采用了先进的数值算法和并 行计算技术,能够快速准确地求 解复杂的物理问题。
该软件提供了丰富的物理模型库和强大的求解器,支持 从几何建模到后处理的完整工作流程。
Star-CCM+具有高度的灵活性和可扩展性,能够满足不 同用户的个性化需求。
软件特点与优势
一体化的工作环境
Star-CCM+将几何建模、网格生 成、物理设置、求解和后处理等 步骤集成在一个统一的环境中, 提高了工作效率。
流固耦合模拟
流固耦合模拟涉及流体与固体之间的相互作用。例如,在航空航天领域,飞机机翼在飞行过程中的颤振 现象就需要通过流固耦合模拟进行分析和预测。
高级功能探索:自定义函数、脚本编程等
01
自定义函数
02
脚本编程
03
高级后处理
StarCCM+提供了自定义函数的功能 ,用户可以根据自己的需求编写函数 ,实现特定的计算或后处理功能。这 为用户提供了更大的灵活性和便利性 。
弹簧近似法在二维非结构动网格生成技术中的应用

Ke r s u s c rd gis y a i m se ;sr g aao to ( A ;m xm m pthn n l; ywo d : nt t e r ;d n m c ehs pi n l me d S M) ai u i ig age u r u d n y g h c
we e c mpa e t h s b an d t r ug heta iina AM .I ss o r m u rc lsmu ain ha s uai r o r d wih t o eo t ie h o h t r d to lS twa h wn fo n me ia i lto st tme h q l t y de l s wih i c e s i r tto a l i t e n tu t r d d n mi me h s ba e o S c i t n ra e n o ai n nge n h u sr c u e y a c ne s e s d n AM ; t e u i o he h q a t f t me h l y s g n r t d wih t e i r v d SAM sb te ha ha e r t d wi he ta to a AM o he s me r t t n a ge ;me h e e ae t h mp o e i et rt n t tg ne ae t t r di n lS h i f rt a oai n l s o s deo mai n c pa ii ft e i r v d S f r to a b lt o h mp o e AM s lr e ha h to r dto a AM ;t x r tt n a l ft e mo e y i a g rt n t a ft ta iin S he l he ma oa i nge o h d l o
【常见问题】【3、4月-结构】PKPM结构软件常见问题与解答

【常见问题】【3、4⽉-结构】PKPM结构软件常见问题与解答⼀、安装问题1.重装PKPM后能⽤⼏次,但是过会就不能⽤了,提⽰错误,怎么解决?【PKPM全版本】答:是PKPM注册组件失败,新版本运⾏CFG下的RegPKPMCtrl.exe.⼆、PMCAD1.请教⼀下,主梁和层间梁输⼊的问题。
在主梁⾥⾯按照降梁顶标⾼输⼊,和在层间梁⾥⾯输⼊,有什么区别?程序是怎么区分这两个地⽅输⼊的梁的?【PKPM3.1.5】答:在主梁⾥⾯按照降梁顶标⾼输⼊:这种⽅式需要定义每跨的两端梁的标⾼,也只能每跨布置,不能隔跨进⾏布置;在层间梁⾥⾯输⼊:可以进⾏隔跨层间梁布置,只需要定义隔跨层间梁起点和终点标⾼,中间的有柱⼦会⾃动打断,并不需要确定中间节点的标⾼。
在计算上两者没有区别。
2.⽼版本设定好的word.ail快捷命令⽂件,覆盖到V2.2和V3.16程序相应的⽂件下⽆⽤,这是什么原因导致的?【PKPM3.1.5、PKPM V2.2】答:采⽤V2.2和V3.16程序pm⾥⾯快捷命令导⼊word.ail⽂件即可。
要注意快捷命令不能重复,否则会出现命令混乱错误。
3.建模过程中,突然梁柱墙构件出现丢失现象,只剩下轴线,这是什么原因导致的?【PKPMV3.1.1、PKPM V3.1、PKPM V1.3、PKPM V2.2、PKPM V2.1、PKPM V1.3n】答:这是不当的操作习惯导致的,需要在每个命令退出后或按ESC键退出此命令再进⾏楼层切换,否则会导致程序内部数据紊乱出现构件丢失的现象。
V3.1有恢复模型功能,V2.2可提取后缀是*ws⽂件放在新⽂件夹,后缀修改为jws即可使⽤;4.PMCAD退出勾选转楼梯模型出现异常错误,这是什么原因导致的?【PKPM V2.1】答:周边的结点过多,周边的构件删除⼀些,让房间结点数少⼀些,保留楼梯或者布置新的楼梯,然后在LT⽬录中的模型中重新布置周边构件;5.修改柱底标⾼,模型⾥默认的风压⾼度变化系数会有修改吗?【PKPM全版本】答:风压⾼度是不变的,它只与层⾼有关系;6.混凝⼟标号C37,怎么输⼊强度值呢?【PKPM全版本】答:可以设置C37,程序按照插值来计算。
Workbench AutoDYN系列教程2

尖顶拱形
六面体
砖块结构
结构求解器
手工生成网格
• 一步步的生成网格:
– – – – – 点 线 面 体 拉伸
结构求解器
手工生成网格
• 生成节点: • 节点的 I、J
和K的值;
• 节点坐标。
结构求解器
手工生成网格
• 生成线条: • I/J/K方向;
• 几何比例;
• 直线或圆弧; • 圆弧中心。
结构求解器
– 自动创建和填充多物质 Part
– 输入的体单元能够用于拉格朗日、 ALE 和 Fill 求解器
结构求解器
输入结构网格
• ANSYS, ICEM-CFD
– 超强的六面体网格生成工具 – 直接连接 CAD
• CATIA,Pro/E,SDRC I-DEAS,SolidWorks,UG,……
– 提供输入结构网格到 AUTODYN
Workbench AutoDYN系列教程2
基础培训二
• 1、Lagrange求解器
• 2、模型生成 • 3、Lagrange之间的作用
AUTODYN 求解器类型
Lagrange
SPH
Euler
Shell
ALE
Beam
拉格朗日求解器
• 节点与材料一起运动
T=0.0
• 通常用于固体求解
T>0.0
六面体/五面体求解器
结构六面体 (IJK) 非结构六面体 (Exact)
拉格朗日体单元求解器
六面体/五面体求解器
Structured (IJK) Unstructured Exact
Unstructured Gauss
拉格朗日体单元求解器
头盔碰撞
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Applications Of Transformation Of Structured ToUnstructured MeshesLiu Jing1, 2,Zhang Min1,John C. Chai2,Xu Bin11School of Power Eng.,Nanjing University of Science & Technology,Nanjing (210094)2School of Mechanical and Aero spacing Eng.,Nanyang Tech. University,Singapore (639798)E-mail:mz2455@AbstractThe transformation of structured meshes to unstructured meshes is a branch of mesh generation technology. We can obtain the advantages of both grids that structure grids have the characteristics of convergence quickly and unstructured grids have the characteristics of matching sophisticated calculating domains well from this conversion. Meanwhile, it is expanding the widespread useful application of unstructured mesh codes. This paper gave the models of the transformations of the orthogonal meshes and body-fitted meshes. And, the heat conduction equation was solved using the based cell finite volume method and the secondary order accuracy. Finally, a couple of three dimension examples of heat transfer that included different geometries and boundary conditions were given. Therefore, the procedure was validated exactly and actually.Keywords:structured grids/meshes,unstructured grids/meshes,heat conduction1.IntroductionThe first step of numerical simulation is mesh generation that is cutting the continuous computational space into subdomains and identifying each node. The accuracy and efficiency of engineering numerical simulation mainly defend on the meshes and algorisms. In generally, all kind of mesh has its advantages and disadvantages; also the every numerical method has its constraints. Therefore, successful numerical simulation can only be done on the conditions that meshes and algorisms match perfectly [1].Two commonly kinds of mesh are structured and unstructured mesh/grid. The former characteristic is that the relationship between nodes is fixed and implied in the mesh. Thus, no special action is needed to ensure the relationship. But there don’t exists the property in unstructured mesh, so we must store the information about nodes such as volume nodes number, interfaces nodes number, and neighbor volume number[2-4] .It is stubborn to compare structured grid and unstructured grid exactly, besides considering the numerical algorism. In the brief, structured mesh has the good feature, simplex in generating, converging fast, and steady etc, while unstructured mesh can be more applicable for irregular domain, decomposing and encrypting in whole or part domain and used widely in later computation[4] . The paper takes advantage of two kinds of mesh to get fine results by the transformation between them.2.Transformation Between Both MeshesRegular structured mesh in orthogonal coordination is the oldest, most basic and simplex generation technique, including rectangle mesh of Cartesian coordinates and curve mesh in cylindrical coordinates or spherical coordinates. No detail about this kind of mesh, but the paper based on orthogonal mesh and body-fitted grid.First, we have to get the grid nodes of coordination in three dimensions, and then transform them to unstructured grid nodes number. Finally, numerical simulation will be done based on the unstructured mesh. For the transformation, at first, select cells shape and nodes NCTYPE(I) and NCNODE(J,I), here they are vertex number and coordination value (X(I),Y(J),Z(K)) of cell, respectively. Secondly, get the surface information NFTYPE (I) and NFNODE (J, I) of the cells. Where, the node order conform right hand rule, which is, ensuring the direction of surface normal is outside the cells.At the end, storing all neighbor cells information and their boundary property by KBCC (I).Ultimately, we can obtain the six data files. It is exactly these files comprise surfaces and nodes number for every cell and surface. The key of transformation is rearranging the I/J/K order of structured grid nodes to cell series data structure. Although the program is easy to do, the technique proved to be a handicap. Next part program is given in two dimensions.C**************************************************COME HERE FOR THE NODES OF CELL (cell_node.dat)LM=L2*M2 I0=0 J0=0DO 30 I=1,NCV NCTYPE(I)=8 NCNODE(1,I)=I+I0+J0NCNODE(2,I)=I+1 +I0+J0 NCNODE(3,I)=I+L1+I0+J0 NCNODE(4,I)=I+L2+I0+J0 NCNODE(5,I)=I+I0+J0+LMNCNODE(6,I)=I+1 +I0+J0+LM NCNODE(7,I)=I+L1+I0+J0+LM NCNODE(8,I)=I+L2+I0+J0+LM IF(MOD(I,L3).EQ.0) I0=I0+1IF(MOD(I,L3*M3).EQ.0) J0=J0+L230 CONTINUEC**************************************************The particular examples and their results analysis are provided in following paragraphs.3. Heat Conduction ExamplsProblem 1: We have heat transfer conduction without heat source in cubic region. Geometry and computational grids are showed in figure1, and governing equation is heat conduct equation with constant property in three Cartesian coordinates. The left surface has higher temperature T 2, and the left five ones have lower temperature T 1. Arithmetic formula of governing function and boundary conditions are:0=⎟⎠⎞⎜⎝⎛∂∂∂∂+⎟⎟⎠⎞⎜⎜⎝⎛∂∂∂∂+⎟⎠⎞⎜⎝⎛∂∂∂∂z T k z y T k y x T k x(1.1) 0.1,0.1,0.0,0.121======k T T c b a(1.2)(a) Cubic V olume (b) Orthogonal meshes (c) Body-fitted meshesFigure 1 Geometry and structured/unstructured meshesWe can obtain the exact solution of (1.1) and (1.2) (Kakac and Yener, 1993)[5],[][]∑∑∞=∞=−−−−−=−−=11121sinh )(sinh )sin()sin(])1(1[])1(1[4),(),(m n mn mn m n m mn nb y b z x ac T T T y x T y x ααβλβλθ(1.3)Where,n λa n π=(n = 1, 2,…,i ) =m βcm π (m = 1, 2, …,i )22mn mn βλα+=(1.4)In Figure 2, the results of temperature distributions were from the transformation of orthogonalmeshes to unstructured grids. The same one was from the transformation of body-fitted meshes to unstructured grids in Figure 3. The solid lines stand for the exact solution. The dashed lines represent numerical solution. The numbers of grid are 10*10*10. There are agreements of temperature fields in both meshes.(a) X =0.5 (b) Y =0.2 (c) Z =0.5Figure 2. The temperature field of orthogonal meshes(————Exact Solution - - - - - -Numerical Solution)(a) X =0.5 (b) Y =0.2 (c) Z =0.5Figure 3. The temperature field of body-fitted meshesProblem 2: We have heat transfer conduction within heat source in cubic region. Geometry and computational grids are showed in figure1, and governing equation is heat conduct equation with constant property in three Cartesian coordinates as following. The all surfaces maintain the constant temperature (T 1 =0) same as the first kind of boundary condition. Mathematical formula of governing function and boundary conditions are:=∂∂+∂∂+∂∂222222zT y T x T )sin()sin()(1c z a x b y y k ππ−− (2.1)The exact solution of this problem is [6],)sin()sin()sin(]1()()1[(1π8),,,5,3,1222352c z b y n a x cb n a n kb z y x T n πππ⋅++−=∑∞=L ( (2.2)The results of temperature distributions were from the transformation of body-fitted meshes tounstructured grids in Figure 4. The solid lines stand for the exact solution. The dashed lines represent numerical solution. The numbers of grid are 10*10*10. There are agreements of temperature fields in both meshes. There are the symmetrical temperature distribution basic of the boundary conditions and geometry.(a) X =0.5 (b) Y =0.5 (c) Z =0.5Figure 4. The temperature field of body-fitted meshesProblem 3: We have heat transfer conduction without heat source in cylindrical region. Geometry and computational grids are showed in figure 5a, and governing equation is heat conduct equation with constant property in three cylindrical coordinates as following. The outside surface has higher temperature T 2, and the inside surface has lower temperature T 1. Mathematical formula of governing function and boundary conditions are:0112=⎟⎠⎞⎜⎝⎛∂∂∂∂+⎟⎟⎠⎞⎜⎜⎝⎛∂∂∂∂+⎟⎠⎞⎜⎝⎛∂∂∂∂z T k z T k r r T kr r r ϕϕ(3.1) 0.1,0.8,0.4,0.2,0.12121=====k T T r r r r(3.2)The exact solution of this problem is [7-8],)/ln()/ln()/ln()(122211r r r r T r r T r T r r −=(3.3)In Figure 5, the results of temperature distributions were from the transformation of body-fittedmeshes to unstructured grids. The solid lines stand for the exact solution. The dashed lines represent numerical solution. The numbers of grid are 10*10*10. There are agreements of temperature fields in both meshes. There are the symmetrical temperature distribution basic of the boundary conditions and geometry.(a) Meshes (b)Temperature fields in Z=0.5 (c) The flood picture of temperatureFigure 5. The temperature field of cylindrical coordinates4.Closure RemarkThe produces, which the heat conduction equations were solved, was presente d using the unstructured meshes that were transformed from structured grids. There are two kinds of meshes including orthogonal and body-fitted meshes. We show three examples for evaluating and proving this processor accruable and reasonable. The problem one and two are in the Cantinas coordinate and the problem three is in cylindrical coordinate. All results of numerical simulation were compared with the exact solutions. As a result, there is a perfect agreement between them.References[1] 陶文铨. 计算传热学的近代发展[M] 北京: 科学出版社, 2001.[2] PA TANKAR S V. Computation of Conduction and Duct Flow Heat Transfer [M].USA: Innovative Research Inc, 1991.[3] PA TANKAR S V. Numerical Heat Transfer and Fluid Flow [M]. New York: Hemisphere Publishing, 1981.[4] ZHANG M. Modeling of Radiative Heat Transfer and Diffusion Processes Using Unstructured Grid [D]. USA: Tennessee Technological University; 2000.[5] KAKAC S, YENER Y. Heat Conduction (Third edition) [M]. Taylor & Francis, Publisher, 1993.[6] 马信山. 电磁场基础[M]. 北京: 清华大学出版社, 1995.[7] M. N. 奥齐西克. 热传导[M]. 俞昌铭, 译. 北京: 高等教育出版社, 1984.[8] 南京工学院数学教研组. 数学物理方程和特殊函数[M]. 北京: 人民教育出版社, 1982.。