连续型随机变量

合集下载

2.3连续型随机变量

2.3连续型随机变量

f (x)
1
e ,
(
x) 2 2
2
2
其中 , ( >0)为常数
x
称X服从参数为 ,的正态分布或
高斯分布,记为 X~N( , 2)
1 f(x)
(1)关于直线x 对称;
2
(2)最大值为 1 ;
2
(3)在x 处有拐点.
o
x
可求得X的分布函数为:
F(x) 1 x
e
(
t )2 2 2
1 P( A1 A2 A3 )
1 P( A1 A2 A3 )
1 P( A1 )P( A2 )P( A3 )
=1[1P(A1)][1P(A2)][1P(A3)] =1e1
3. 正态分布
正态分布是实践中应用最为广泛,在 理论上研究最多的分布之一,故它在概率 统计中占有特别重要的地位
X的概率密度为:
f(x)的性质:
(1) f(x)≥0, <x<+
(2) f ( x)dx 1
(3) P(x1<X≤x2)=F(x2) F(x1)
x2 f ( x)dx
x1
( x1 x2 )
f(x)
P(x1<X≤x2)
x1
o x2 x
这条性质是密度函数的几何意义
注: 对连续型随机变量X和任意实数a, 总有P(X=a)=0 即, 取单点值的
若X~U[a, b], [c, c+l][a, b], 有:
P(c≤X≤c +l )
cl
c f ( x)dx
cl c
b
1
adx
b
l
a
这说明:
X落在[a,b]的子区间内的概率与子 区间的长度成正比,而与子区间的位置 无关

连续型随机变量

连续型随机变量

连续型随机变量连续型随机变量是统计学中的一个重要概念,它指的是取值可以是一段连续的数值区间的随机变量。

与离散型随机变量不同,连续型随机变量可以取无限个可能的取值,这对于处理实际问题中的测量数据非常有用。

一个典型的连续型随机变量可以是某个人的身高,身高可以是从0厘米到无穷大的任意一个数值。

这个身高的分布可以用一个概率密度函数来描述,例如正态分布。

这意味着大多数人的身高会集中在某一个区间,而在极端的身高上有较少的人。

连续型随机变量的概率密度函数有一些特殊的性质。

首先,概率密度函数必须非负且总体积为1,因为随机变量必然会取一个值。

其次,概率密度函数在某一个取值上的积分可以表示该随机变量小于或等于该值的概率。

以在一个公共汽车站等待下一辆公共汽车的时间为例。

假设公共汽车的到达时间是一个连续型随机变量。

这个随机变量可以取任意的非负数值,而且可能的取值范围是无限的。

如果我们对这个随机变量进行建模,可以使用指数分布来描述公共汽车的到达时间。

指数分布的概率密度函数非常有用,因为它可以很好地反映出公共汽车到达的随机性。

概率密度函数在某个时间点上的值表示了在这个时间点下等待公共汽车的概率。

通过计算概率密度函数在一个区间上的积分,我们可以得到在这个区间内等待公共汽车的概率。

连续型随机变量在统计学中有很多应用。

它们可以用于模拟实际问题中的随机变量,如股票价格、交通流量和天气变化等。

通过对连续型随机变量进行建模和分析,我们可以更好地理解随机现象,并做出相应的预测和决策。

总之,连续型随机变量是一种重要的概念,它可以描述取值在一段连续区间上的随机变量。

概率密度函数是描述连续型随机变量的常用工具,它可以帮助我们分析随机现象并做出相应的推断和决策。

通过数学建模和统计分析,我们可以更好地理解和应用连续型随机变量。

连续型随机变量是统计学中的一个重要概念,它指的是取值可以是一段连续的数值区间的随机变量。

与离散型随机变量不同,连续型随机变量可以取无限个可能的取值,这对于处理实际问题中的测量数据非常有用。

3.3 连续型随机变量

3.3  连续型随机变量
cos x C
tan x C
cot x C
不定积分的基本公式
arcsin x C
arctan x C
sec x C
csc x C
练习:设随机变量X的概率密度函数为
2 1 x 2 , 1 x 1, f ( x ) 其它, 0,
2
即K 1 或 K 2 ,故事件“方程有实根”的概率 为
P({K 1} {K 2}) P( K 1) P( K 2)
1 3 0dx dx 5 5 2
1 5
2、指数分布(Index distribution )
定义2:设连续型随机变量X的概率密度函数为
三、几种重要的连续型随机变量
1、均匀分布(Uniform distribution)
定义1:设连续型随机变量X的概率密度函数为
1 , a x b, f ( x) b a 其他. 0,
则称X服从区间(a,b)上的均匀分布,记为 X ~ U (a, b).
x a, 0, xa 其分布函数为 F ( x) , a x b, b a x b. 1,
x0 0 2 Exe.1:设R.V.X的分布函数 F ( x) x 0 x 1 1 x 1 求概率密度函数。
0, x 0 x Exe.2:设R.V.X的分布函数 F (x) , 0 ≤ x T T 求概率密度函数。 1, T ≤ x
3. 概率密度函数与分布函数关系:※※
求常数 k。
练习1:设X为连续型R.V.,其密度函数为 1 2 x , 0 ≤ x 1, 2 f (x) 求常数a。 ax, 1 ≤ x 3, 0, 其他

第三章 连续型随机变量

第三章   连续型随机变量

上一页
下一页
返回
退出
分布函数的性质(2) 使用分布函数计算以下概率: P{ξ(ω)≥x}=1 - P{ξ(ω)<x} =1-F(x) P{ξ(ω)≤x}=F(x+0) P{ξ(ω)>x}= 1 - P{ξ(ω) ≤ x} = 1-F(x+0) P{ξ(ω)=x}= P{ξ(ω) ≤ x} - P{ξ(ω) <x} = F(x+0)-F(x) 对于离散型随机变量 P(ξ=ai)=pi 来说, ξ(ω)的分布函数为
p ( y ) F ( y )


p ( x ) p ( y x ) d x (3.55)
由对称性可知
p ( y ) F ( y )


p ( y x ) p ( x ) d x (3.56)
由(3.35)和(3.36)给出的运算称为卷积,通常 记为:
n
服从 N ( i , i2 ) 分布的随机变量,则
n n

i 1
i
仍然是
一个服从 N ( , 2 ) 的随机变量,并且其参数为


i 1
i
,
2


i 1
2 i
总目录
上一页
下一页
返回
退出
多维随机变量函数的分布(7-4)
(二)商的分布
设(ξ, η)是一个二维随机变量,密度函数为
F ( x ) P ( ( ) x )
ai x

P ( ( ) a i )
总目录 第一节 上一页 下一页 返回 退出
例3.1 等可能的在[a,b]上投点,以ξ表示落点的位置, 则ξ的分布函数为: 当x<a时, F ( x ) P ( ( ) x ) 0 当a<x<b时,

连续型随机变量

连续型随机变量
0.4 0.3 0.2 0.1
-3
-2
-x -1
1
x
2
3
P(| X |< a ) = 2Φ (a ) − 1
例2
设ξ~N(0,1),求使P{︱ξ︱>x}=0.1 的x。
解: P { ξ > x } = 2[1 − Φ( x )]
1 Φ( x ) = 1 − P{ ξ > x } = 1 − 0.5 × 0.10 = 0.95 2
如ξ ~ N (0,1),则P{ ξ > x } = 2[1 − Φ( x )]
证明:
P{ ξ > x } = 1 − P{ ξ ≤ x } = 1 − P{ ξ < x } = 2[1 − Φ( x )]
例1:设ξ~N(0,1),借助于标准正态分布的分 布函数 Φ(x)的表计算: (1) P{ξ < −1.24};
解:(1)由分布函数性质得
1 x⎞ ⎛ 0 = lim F ( x ) = lim ⎜ A + e ⎟ = A x → −∞ x → −∞ 3 ⎠ ⎝ 1 −2 x ⎞ ⎛ 1 = lim F ( x ) = lim ⎜ B − e ⎟ = B x → +∞ x → +∞ 3 ⎠ ⎝
1 1 2 (2)因为 lim− F ( x ) = ≠ F (0) = 1 − = x→0 3 3 3
x=µ
µ
x
(5)
Fµ ,σ ( x ) = Φ(
x−µ
σ
x=µ
)
φ(x)
µ
f 0 , 0. 1 ( x )
f 0 ,1 ( x )
f 0 , 2 .5 ( x )
µ固定时, σ的值越小,f(x)的图形就愈尖、越狭。 σ的值越大,f(x)的图形就愈平、越宽。

[数学]-3、连续型随机变量

[数学]-3、连续型随机变量


2)如图:把平面分成五个区域, 如图:把平面分成五个区域, Ⅰ,Ⅱ,Ⅲ,Ⅳ,Ⅴ
i) 当(x,y)∈III
1 1 F(x, y) = ∫ dv∫ du = ( xy + y arcsiny + 1− y2 −1) 0 arcsinv 2 2
y x
ii) 当(x,y)∈Ⅱ
F ( x, y) = ∫ du ∫
三、连续型随机变量
一、一维连续型随机变量
F ( x) = P( X ≤ x) = ∫
x
−∞
f (t ) dt
分布函数性质 i) 0≤ F(x)≤ 1 且 F(x)是连续函数 ; 是连续函数; ii) 当 x1≤ x2 时 , F(x1)≤ F(x2); (单调性 ) 单调性) ⅲ) F( - ∞ )=0,F(+ ∞ )=1 F(- )=0,F(+∞ 密度函数性质 1) f(x)≥ 0 3) f (x) = [F(x)]′ 2) ∫
其中 G 是由概率括号中的不等式构成的区域。 二维连续型随机变量的概率的计算问题等 价于以概率括号中的不等式构成的区域 G 为 底,联合密度函数为高的曲顶柱体体积的计 算。
例 4 设(X,Y)的联合分布函数为
F ( x, y ) = ( a − be
−e x
)( c − de
−e y
), ( x, y ) ∈ R
二维正态分布的性质: 二维正态分布的性质: 2 2 设(X,Y)~N(μ1,μ2,σ1 ,σ2 , r),则 1) X~N(μ1,σ12), Y~N(μ2,σ22) 2) X 与 Y 独立的充要条件是 r=0 3) 在 Y=y 的条件下,X 的条件分布仍为 的条件下, 正态分布
1/ 2 1

常见的连续型随机变量

常见的连续型随机变量

02 均匀分布
定义和性质
定义
均匀分布是一种连续型概率分布,在 概率论和统计学中,均匀分布也叫矩 形分布,它是对称概率分布,在相同 长度间隔的分布概率是等可能的。
性质
均匀分布具有等可能性、对称性、均 匀性等特点。其分布函数是一条斜线 ,概率密度函数是一个常数。
概率密度函数和分布函数
概率密度函数
均匀分布的概率密度函数是一个常 数,表示为f(x) = 1/(b-a),其中a 和b是区间的端点,x属于[a, b]。
伽玛分布的概率密度函数具有指数函数和幂函数的乘积形式,形状 参数和尺度参数分别控制分布的形状和尺度。
性质
伽玛分布具有可加性,即多个独立同分布的伽玛随机变量的和仍然 服从伽玛分布。
贝塔分布
定义
贝塔分布是一种在[0,1]区间上的连续型概率分布,常用于描述比例、概率等随机变量的分布情况。
概率密度函数
贝塔分布的概率密度函数具有幂函数和Beta函数的乘积形式,形状参数控制分布的形状。
跨学科交叉融合
连续型随机变量的研究涉及数学、统 计学、计算机科学等多个学科领域。 未来,跨学科交叉融合将成为推动连 续型随机变量研究发展的重要趋势。 通过整合不同学科的优势和资源,我 们可以更深入地理解连续型随机变量 的本质和规律,为解决实际问题提供 更有效的手段和方法。
THANKS FOR WATCHING
均匀分布
在某一区间内,每个取值的可能性都 相等。
03
指数分布
描述某些随机事件发生的时间间隔的概率分 布,如放射性元素的衰变时间、电话交换台
的呼叫间隔时间等。
05
04
正态分布
一种钟形曲线分布,具有广泛的应用 背景,如自然和社会科学中的各种测 量误差、产品质量控制等。

概率论连续型随机变量

概率论连续型随机变量

概率论连续型随机变量概率论是数学的一个分支,研究随机现象的数学模型和计算方法。

其中,连续型随机变量是概率论中重要的概念之一。

本文将介绍连续型随机变量的基本概念、特征以及相关的概率分布。

一、连续型随机变量的概念在概率论中,随机变量是指对随机现象结果的数值化描述。

连续型随机变量是指取值在某个区间内的随机变量。

与之相对的是离散型随机变量,其取值是有限个或可数个的。

连续型随机变量与离散型随机变量的主要区别在于其取值的特点。

连续型随机变量的取值可以是任意的实数,在某个区间内可以取无穷多个不同的值。

二、连续型随机变量的特征连续型随机变量的特征可以通过其概率密度函数(Probability Density Function,简称PDF)来描述。

PDF是描述连续型随机变量概率分布的函数,可以用来计算随机变量落在某个区间内的概率。

连续型随机变量的概率密度函数具有以下两个性质:1. 非负性:对于任意的实数x,概率密度函数f(x)大于等于0。

2. 归一性:连续型随机变量的概率密度函数在整个取值范围上的积分等于1。

三、连续型随机变量的概率分布连续型随机变量的概率分布可以通过其概率密度函数来确定。

常见的连续型随机变量概率分布包括均匀分布、正态分布、指数分布等。

1. 均匀分布:均匀分布是最简单的连续型随机变量概率分布之一。

在均匀分布中,随机变量在某个区间内的取值是等可能的。

均匀分布的概率密度函数是一个常数,表示在某个区间内的概率是相等的。

2. 正态分布:正态分布是最重要的连续型随机变量概率分布之一。

许多自然现象和实际问题都服从正态分布。

正态分布的概率密度函数呈钟形曲线,具有对称性。

其均值和标准差决定了曲线的位置和形状。

3. 指数分布:指数分布是描述随机事件发生时间间隔的连续型随机变量概率分布。

指数分布的概率密度函数是一个指数函数,表示事件发生的概率随时间的推移而逐渐减小。

四、连续型随机变量的期望和方差连续型随机变量的期望和方差是衡量随机变量分布的重要指标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

连续型随机变量
1.连续型随机变量
【知识点的知识】
1、相关概念;
(1)随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字
母ξ、η等表示.
(2)离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是随机变量,η=aξ+b,其中a、b是常数,则η也是随机变量.
(3)连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变

(4)离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变量都是用变量表示随机试
验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出.
2、连续型随机变量的概率密度
1、定义:对于随机变量X,若存在非负可积函数f(x),(﹣∞<x<∞),使得对任意实数a和b,(a<b)都

f(x)dx,
P{a<X≤b}=∫b
a
则称X为连续型变量.f(x)为X的概率密度函数,简称概率密度.
2、概率密度的性质
(1)f(x)>0
f(x)dx=P{﹣∞<X<∞}=1
(2)∫+∞
−∞
说明:判断一个函数是否能成为某个随机变量的密度函数,以这两条性质为标准进行验证.
3、概率密度的几何意义
f(x)dx的几何意义可知:X在[a,b]内取值的概率P{a<X≤b}即为介于直线x=a和直线x=b之间,由定积分∫b
a
并且在x轴的上方,密度曲线的下方所围成的曲边梯形的面积.
又由于P {x <X ≤x+△x }═∫ x+△x x f (x )dx =f (ξ)△x ,(积分中值定理)
如果将连续型X 在(x ,x+△x )内的取值对应于离散型X 在X =ξ处的取值,则有P {X =ξ}=f (ξ)dx ,可见f (ξ)dx 相当于离散型X 的分布律中的p k
【典型例题分析】
典例:已知随机变量ξ的概率密度函数为 f(x)={2x
,0≤x ≤10,x <0或x >1,则P(14<ξ<12)=( ) A .14 B .17 C .19 D .316
解:由随机变量ξ的概率密度函数的意义知:
P(14<ξ<12)=∫ 1214(2x )dx =(x 2)|1412=14−116=316 故选 D
【解题方法点拨】
(1)对于连续型随机变量X 来说,它取某一指定的实数值x 0的概率为零,即P {x =x 0}=0.
据此,对连续型随机变量X ,有P {a <X ≤b }=P {a ≤X ≤b }=P {a <X <b }=P {a ≤X <b }
即在计算X 落在某区间里的概率时,可以不考虑区间是开的、闭的或半开半闭的情况.这里,事件{X =x 0}并非不可能事件,它是会发生的,也就是说零概率事件也是有可能发生的.
(2)不可能事件的概率为零,但概率为零的事件不一定是不可能事件.同理,必然事件的概率为1,但概率为1的事件不一定是必然事件.。

相关文档
最新文档