3.3 二维连续型随机变量及其分布
二维随机变量的分布函数、边缘分布、条件分布

一般,对离散型 r.v ( X,Y ),
X和Y 的联合概率函数为
P(X xi ,Y y j)pij, i, j 1,2,
则(X,Y)关于X的边缘概率函数为
P(X xi ) pi• pij, i 1,2,
j
(X,Y)关于Y 的边缘概率函数为
P (Y y j ) p• j pij , j 1, 2,L
P(X xi ,Y yj) pij,
i, j =1,2, …
pij 0, i, j 1,2,
pij 1
ij
一维随机变量X 离散型
X的概率函数
P(Xxk) pk,
k=1,2, …
pk 0, k=1,2, …
pk1
k
为了直观,一般用表格表示联合分布律
Y X
y1
y2
L
x1 p11 p12 L
例2 设 r.v.( X ,Y ) 的联合 d.f. 为
kx2 y, x2 y 1
f (x, y)
0,
其它
其中k 为常数. 求
(1)常数 k ; (2) P ( X > Y )
解 (1)
f (x, y)dxdy 1
f (x, y)dxdy 1
1
K
1
D
x2 ydxdy
1 x2
联合密度的性质
1 f (x, y) 0
2 f (x, y)dydx 1
3 对每个变量连续, 在 f (x的, y连) 续点处
2F f (x, y) xy
4 若G 是平面上的区域,则
P( X ,Y ) G f (x, y)dxdy
G
对于二维连续型随机变量有
P( X = a ,Y = b ) = 0 P( X = a ,- < Y < + ) = 0 P(- < X < + , Y= a ) = 0
《概率论》二维随机变量及其分布函数的定义、基本性质

定义3-1 n个随机变量X1,X2,…,X n构成的整体X=(X1,X2,…,X n)称为一个n维随机变量或n维随机向量,X i称为X的第i(i=1,2,…,n)个分量.
定义3-2 设(x,Y)为一个二维随机变量,记
F(x,y)=P{X≤x,Y≤y},-∞<z<+∞,-∞<y<+∞,< p="" style="padding: 0px; list-style: none;">
称二元函数F(x,y)为X与y的联合分布函数或称为(X,Y)的分布函数.
(X,Y)的两个分量X与y各自的分布函数分别称为二维随机变量(X,Y)关于X与关于y的边缘分布函数,记为F X(x)与F Y(y).
边缘分布函数可由联合分布函数来确定,事实上,一元函数
几何上,若把(X,Y)看成平面上随机点的坐标,则分布函数F(x,y)在(x,y)处的函数值就是随机点(X,Y)落在以(x,y)为顶点、位于该点左下方的无穷矩形D内的概率.
分布函数F(x,y)具有下列性质:
(1)F(x,y)是变量x(或y)的不减函数.
(2)0≤F(x,y)≤l,
对任意固定的y,F(-∞,y)=0
对任意固定的x,F(x,-∞)=0;
F(-∞, -∞)=0,F(+∞,+∞)=1. (3)F(x,y)关于x和关于y均右连续,即F(x,y)=F(x+0,y);F(x,y)=F(x,y+0). (4)对任意固定的x1<x2,y1<y2
F(x2 ,y2)-F(x2,yl)-F(xl,y1)+F(x1+yl)≥0.。
第三章 二维随机变量及其分布

1第三章 二维随机变量及其分布在很多实际问题中,有一些随机试验需要用两个或两个以上的随机变量才能描述, 如, 炮弹着落点的位置必须用两个坐标X 和Y 来描述。
又如气候情况与气温、风力、降水量等多个随机变量有关,为了准确提供气候情况,我们就完全有必要将描述天气情况的多个随机变量作为一个整体来研究。
将n 个随机变量n X X X ,,,21 作为一个整体,记作),,,(21n X X X ,称为n 维随机变量。
在这一节我们主要研究二维随机变量的概率分布、边缘分布及二维随机变量的独立 性等. 这部分内容的讨论也可类推到)2(>n n 维随机变量的情形.§3. 1二维随机变量的联合分布3.1.1、二维随机变量的概率分布定义3.1:设)(Y X ,是二维随机变量,对于任意实数y x 、,称二元函数{}yY x X P y x F ≤≤=,,)(为二维随机变量)(Y X ,的分布函数或随机变量X 和Y 的联合分布函数,它表示随机事件}{x X ≤与}{y Y ≤同时发生的概率.2图3-1 图3-2将二维随机变量)(Y X ,看成是平面上随机点的坐标,那么分布函数)(y x F ,在点)(y x ,处的函数值就是随机点)(Y X ,落在直线x X =的左侧和直线y Y =的下方的无穷矩形区域内的概率(如图3-1)有了分布函数)(y x F ,,借助于图3-2,容易算出随机点)(Y X ,落在矩形区域 ){(y x D ,=}2121y Y y x X x ≤<≤<,内的概率为:)()(}{21222121y x F y x F y Y y x X x P ,,,-=≤<≤<)()(1112y x F y x F ,,+-.根据概率的定义和二维随机变量的定义,可得:二维分布函数)(y x F ,具有以下基本性质: (1)1)(0≤≤y x F ,;(2))(y x F ,关于变量x 和y 均单调非减,且右连续; (3)对于任意固定的y ,0)(lim )(==-∞-∞→y x F y F x ,,对于任意固定的x ,0)(lim )(==∞--∞→y x F x F y ,,1)(0)(=∞++∞=∞--∞,;,F F ; (4)对于任意2121y y x x <<,恒有:=≤<≤<}{2121y Y y x X x P ,0)()()()(11211222≥+--y x F y x F y x F y x F ,,,,3.3.1.2. 二维离散型随机变量及其分布定义3.2: 如果二维随机变量)(Y X ,可能取的值为有限对或可列无穷对实数,则称)(Y X ,为二维离散型随机变量.显然,)(Y X ,为二维离散型随机变量,当且仅当X 和Y 均为离散型随机变量.设二维离散型随机变量)(Y X ,所有可能的取值为)21()( ,,,,=j i y x j i ,且对应的概率为.,21}( ,,,,====j i p y Y x X P ij j i则称上式为二维随机变量)(Y X ,的概率分布或X 与Y 的联合概率分布.由概率的定义可知:(1) 210,,,=≥j i p ij .(2)∑∑+∞=+∞==111i j ij p .联合分布也常用表格表示,并称为X 与Y 联合概率分布表.4根据定义,离散型随机变量)(Y X ,的联合分布函数∑∑≤≤=≤≤=x x yy iji j py Y x X P y x F },{)(,即对一切满足不等式y y x x j i ≤≤,的ij p 求和.例3.1盒子里有2个黑球、2个红球、2个白球,在其中任取2个球,以X 表示取得的黑球的个数,以Y 表示取得的红球的个数,试写出X 和Y 的联合分布表,并求事件}{1≤+Y X 的概率.解:X 、Y 各自可能的取值均为0、1、2,由题设知,)(Y X ,取(1,2)、(2,1)、(2,2)均不可能. 取其他值的概率可由古典概率计算. 从6个球中任取2个一共有26C =15种取法. )(Y X ,取)00(,表示取得的两个球是白球,其取法只有一种,所以其概率为 }{1510,0===Y X P ,类似地)(Y X ,取其他几对数组的概率为如下: }151}20{}02{,154}11{154152201{}10{==========⨯======Y X P Y X P Y X P Y X P Y X P ,,,,,,)(Y X ,的联合概率分布表为5P {所取两个球中至少有一个白球}=P {所取两个球中黑球和红球的和不超过一个}=}1{≤+Y X P ,由于事件}1{≤+Y X 包含三个基本事件,分别对应着点(0,0)、(0,1)和(1,0),所以:.53154154151}01{}10{}00{}1{=++===+==+===≤+Y X P Y X P y X P Y X P ,,, 3.1.3 二维连续型随机变量及其分布定义3.3:设二维随机变量)(Y X ,的分布函数为)(y x F ,,如果存在非负可积的二元函数)(y x f ,,使得对任意实数y x 、,有}{⎰⎰∞-∞-=≤≤=xydudv v u f y Y x X P y x F )(,)(、,,则称)(Y X ,为二维连续型随机变量,称函数)(y x f ,为二维随机变量)(Y X ,的概率密度函数或随机变量X 和Y 的联合密度函数.由分布函数的定义知,联合密度函数)(y x f ,具有以下性质: (1)0)(≥y x f ,;(2)1)(=⎰⎰∞+∞-∞+∞-dxdy y x f ,;(1)(=∞++∞,即F )反过来,如果一个二元函数)(y x f 、同时满足性质(1)、(2),则它一定是某个二维随机变量的概率密度函数.6 (3)若)(y x f 、在点)(y x 、处连续,则有)()(2y x f yx y x F ,,=∂∂∂; (4)设D 是xoy 平面上任一区域,则点),(y x 落在D 内的概率为{σd y x f D Y X P D)(})(,,⎰⎰=∈.在几何上,{})(D Y X P ∈,的值等于以D 为底,曲面)(y x f Z 、=为顶的曲顶柱体的体积.与一维随机变量相似,有如下常用的二维均匀分布和二维正态分布二维均匀分布:设D 是平面上的有界区域,其面积为A ,若二维随机变量),(Y X 具有概率密度函数⎪⎩⎪⎨⎧∈=其他,0),(,1),(Dy x A y x f则称),(Y X 在D 上服从均匀分布.二维正态分布:若二维随机变量)(Y X ,的概率密度为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡-+-⋅---⋅---=2222221121212221)(2)()1(21exp 121),(σμσμσμρσμρρσσπy y x x y x f(+∞<<∞-+∞<<-∞y x ,)其中参数ρσσμμ,,,,2121均为常数,且10021<>>ρσσ,,,则称)(Y X ,服从参数为2121σσμμ,,,及ρ的二维正态分布,记作);,,,,ρσσμμ222121(~)(N Y X .7如图3-4所示,二维正态分布以),(21μμ为中心,在中心附近具有较高的密度,离中心越远,密度越小,这与实际中很多现象相吻合.图 3-3 二维正态分布密度函数图象例3.2 设二维随机变量)(Y X ,的概率密度函数为⎩⎨⎧≥≥=+-其它,,,,000)()32(y x Ce y x f y x求:(1)常数C ;(2))(Y X ,的分布函数)(y x F ,;(3)}{Y X P <.解:(1)由)(y x f ,的性质2可知:⎰⎰⎰⎰∞+∞++-∞+∞-∞+∞-==)32()(1dxdy Ce dxdy y x f y x ,=⎰⎰∞+∞+--⋅=03261C dy e dx e Cy x所以:6=C (2)⎰⎰∞-∞-=xydxdy y x f y x F )()(,,8 ⎪⎩⎪⎨⎧≥≥--==⎰⎰--+-其它,,,000)1)(1(60032)32(y x e e dxdy e x y y x y x(3).526),(}{00)32(⎰⎰⎰⎰∞++-<===<y y x yx dy e dx dxdy y x f Y X P .例3.3 设二维随机变量)(Y X ,的密度函数为⎩⎨⎧≤≤≤≤=其它,,,,010104)(y x xy y x fD 为xoy 平面内由x 轴、y 轴和不等式1<+y x 所确定的区域,求{}DY X P ∈)(,.解:如图3-4所示: {}⎰⎰=∈Ddxdy y x f D Y X P )(),(,⎰⎰-=xxydy dx 101461=例3.4 设),(Y X 在圆域}{4),(22≤+y x y x 上服从均匀分布,求(1)),(Y X 的概率密度;(2)}{10,10<<<<Y X P解:(1)圆的面积为π4=A ,故),(Y X 的概率密度为9⎪⎩⎪⎨⎧≤+=其他,04,41),(22y x y x f π(2)用G 表示不等式10,10<<<<y x 所确定的区域,由分布函数的性质4有}{10,10<<<<Y X P =⎰⎰=Gdxdy y x f 41),(.(注意概率密度),(y x f 在圆以外的区域都等于零)10 §3.2 边缘分布二维随机变量)(Y X ,作为一个整体,它具有分布函数)(y x F ,.而分量X 和Y 也都是随机变量,也有其各自的分布函数. 记X 和Y 的分布函数为)(x F X 和)(y F Y ,分别称它们为二维随机变量)(Y X ,关于X 和关于Y 的边缘分布函数. 边缘分布函数可以由)(Y X ,的联合分布函数)(y x F ,来确定:{}{})()(∞+=+∞<≤=≤=,,x F Y x X P x X P x F X即:)()(∞+=,x F x F X ;同理)()(y F x F Y ,+∞=. 下面分别讨论二维离散型随机变量和二维连续型随机变量的边缘分布3.2.1 二维离散型随机变量)(Y X ,的边缘分布设)(Y X ,是二维离散型随机变量,设其概率分布为{}.21 ,,,,,====j i p y Y x X P ij j i则X 的边缘分布律为:{}{}{}{}.21121,,,,,==+==++==+====∑∞=i p y Y x X P y Y x X P y Y x X P x X P j ijj i i i i X 的边缘分布函数为 ∑∑≤=+∞=x x jijX i px F x F ),()(.若将{}∑∞===1j iji px X P 记为),.21( =∙i p i ,则X 的边缘分布可写成表格形式且满足1=∑⋅ii p .同理,Y 的边缘分布律为:{}{}{}{}.21121,,,,,===+==++==+====⋅∞=∑j p p y Y x X P y Y x X P y Y x X P y Y P ji ij j i j j j写成表格形式有满足1=∑⋅jj p .Y 的边缘分布函数为∑∑≤=+∞=y y iijY j py F y F ),()(例3.5 设)(Y X ,的概率分布由下表给出,求X 和Y 的边缘分布.解:{}{}000====Y X P X P ,+{}10==Y X P ,+{}20==Y X P , 80.035.030.015.0=++=同理可求得:20.003.012.005.0}1{=++==X P20.0}0{==Y P , 42.0}1{==Y P , 38.0}2{==Y P将X 和Y 的边缘分布列入),(Y X 的联合分布表中通过该例,可以很明显地看出,边缘分布∙i p 和j p ∙分别是联合分布表中第i 行和第j列各元素之和.3.2.2 二维连续型随机变量)(Y X ,的边缘分布设)(Y X ,是二维连续型随机变量,它的概率密度函数为),(y x f ,则X 的边缘分布函数为: ⎰⎰∞-∞+∞-⎢⎣⎡⎥⎦⎤=∞+=x X dx dy y x f x F x F )()()(,, 其密度函数为:⎰∞+∞-=∞+'='=dy y x f x F x F x f XX )()()()(,,同理,Y 的边缘分布函数为⎰⎰∞-∞+∞-⎢⎣⎡⎥⎦⎤=+∞=y Y dy dx y x f y F y F )(),()(,其密度函数为⎰∞+∞-='=dx y x f y F y f Y Y )()()(,通常分别称)(x f X 和)(y f Y 为二维随机变量)(Y X ,关于X 和Y 的边缘密度函数. 例3.6 设随机变量)(Y X ,的密度函数为⎩⎨⎧≤≤≤=其它,,,010)(y x y x k y x f试求参数k 的值及X 和Y 的边缘密度.解:根据联合密度函数的性质,有⎰⎰⎰⎰∞+∞-∞+∞-===101181)(x k ydydx x k dxdy y x f , 所以: 8=kX 的边缘密度函数⎰+∞∞-=dy y x f x f X )()(,当x <0或1>x 时,),(y x f 都等于零,所以此时0)(=x f X当10≤≤x 时,且1≤≤y x 时,xy y x f 8),(=,所以⎰-==12)1(48)(xX x x xydy x f即: ⎩⎨⎧≤≤-=其它,,010)1(4)(2x x x x f X同理可得: ⎩⎨⎧≤≤=其它,,0104)(3y y y f Y例3.7 设随机变量)(Y X ,的密度函数为⎩⎨⎧≤≤≤≤=其它,,,010,104)(y x y x y x f试求X 和Y 的边缘密度.解:关于X 的边缘密度⎰+∞∞-=dy y x f x f X )()(,当x <0或1>x 时,),(y x f 都等于零,所以此时0)(=x f X当10≤≤x 时,且10≤≤y 时,xy y x f 4),(=,所以⎰==124)(x xydy x f X即: ⎩⎨⎧≤≤=其它,,0102)(x x x f X同理可得:⎩⎨⎧≤≤=其它,,0102)(y y y f Y例3.8 求二维正态随机变量)(~)(222121ρσσμμ;,,,,N Y X 的边缘密度.解:记X 和Y 的边缘密度函数分别为)(x f X 和)(y f Y由于222222112121)(2)(σμσμσμρσμ-+-⋅---y y x x=211221122))(1()(σμρσμρσμ--+---x x y所以:dy eedy y x f x f x y x X 211222121)()1(212)(221121)()(σμρσμρσμρσπσ-----∞+∞-∞+∞---∞+∞-⎰⎰⎰⋅-==,令 )(1111222σμρσμρ----=x y t则 )(x f X dt eet x ⎰∞+∞----=22)(1212121σμσπ21212)(121σμσπ--=x e (+∞<<-∞x )可见 )(~211σμ,N X ;同理可得:2222)(221)(σμσπ--=y Y ey f (+∞<<-∞y )即)(~222σμ,N Y .比较联合密度)(y x f ,和边缘密度函数)()(y f x f Y X 、,我们注意到当且仅当0=ρ时,对一切)y x ,(有)()()(y f x f y x f Y X ⋅=,. 以上对二维正态分布的讨论说明:(1)二维正态分布的边缘分布是一维正态分布,由二维联合分布可以唯一确定其每个分量的边缘分布;(2)已知X 与Y 的边缘分布,并不能唯一确定其联合分布,还必须知道参数ρ的值.譬如两个二维正态分布);,,,2/11100(N 和);,,,3/11100(N ,它们的联合分布不同,但其边缘分布都是标准正态分布. 引起这一现象的原因是二维联合分布不仅含有每个分量的概率分布,而且还含有两个变量X 与Y 之间相互关系的信息,而后者正是人们研究多维随机变量的原因. 联合分布中的参数ρ的值,反映了两个变量X 与Y 之间相关关系的密切程度.从以上几个例题可知,联合密度决定边缘密度,但反过来知道边缘密度并不能唯一确定联合密度3.2.3.二维随机变量的独立性在前面我们已经知道,随机事件的独立性在概率计算中起着很大的作用.在多维随机变量中,它们的分量的独立性在概率论和数理统计的研究中占有十分重要的地位。
二维连续型随机变量函数的分布

旦
, ,
此时,
( ) = P X ≤ z } =. 0 . A x , y ) d  ̄ d y
王 《i . y> 0
Y 。
) = 几 号 专 d ] d y
一
+
+ A x , y ) a  ̄ d y = 几 , y ) a  ̄ ] a y
固定 z 和 , 对方括号内的积分作变量代换 引,
, 得
, ) I d x
现在 若 知 道 ( , l , )的 分 布 ,如 何 确 定 Z = g ( X, Y )的分 布 】 .
般的, 连续 型 随机变 量 的 函数 不一定 是 连续 型 随机 变量 , 下 面我们 仅对 连续 型 随机变 量 的函数
4 " y
( )=
) 】 出
函数 Z :g ( X, Y )的分布. 例如 , 考察全 国5 O岁以 上的人群 , 用 和 y 分别表示一个人 的身高和体
重, Z表示此 人 的脉 搏 , 并 且 已知 他 们 之 间 的 函数 关 系式为
Z =g ( X, 】 , )
“ y <0
。
号 , , , ) l d ] d y
=
, o
∞
, +∞
f
+f[ J f
一
, Y ) d x ] d y
—
固定 z 和y , 对方 括 号 内的积 分作 变量 代换 , 令 =
z l , , ,
J = J = 【
第 2期
刘春 霞 : 二 雏连 续 型随机 变量 函数 的 分布
( 2 )当 口=1 , b=1 , c=0 , X和 l , 独立时, 即得 卷 积公 式
二维随机变量(ξ ,η)

多维随机变量及其概率分布
§3.1 多维随机变量及其联合概率分布
第三章作业题
P158
1,3,5,7,8 10,12,14,17,18 21,26,27,30 31,34,39,40
有些随机现象用一个随机变量来描述不够, 例如
1、 在打靶时,命中点的位置是由一对r.v(两个坐
标)来确定的.
2、 飞机的重心在空中的位置是由三个r.v (三个 坐标)来确定的等等.
区域A是x=0,y=0和x+y=1三条直线所围成的 三角区域,并且包含在圆域x2+y2≤4之内,面积 =0.5
∴ P{(ξ,η)A}=0.5/4=1/8
2、 二维正态分布
若二维随机变量(ξ,η)具有概率密度
p(x,
y)
1
21 2
1
2
exp{
2(1
1
2
)
[(
x
1 1
3、研究某年龄段儿童的身体发育情况,同时 考虑身高、体重、肺活量、血压等指标
4、研究某日的天气状况,同时考虑最高温度、最 大湿度、最大风力等指标。
一、多维随机变量的概念
设随机试验E的样本空间是Ω.ξ =ξ() 和η=η()都是定义在Ω上的随机变量,由它 们构成的变量(ξ,η),称为二维随机变量.
对任意n个实数x1,x2, xn,n元函数 F (x1,x2, xn, ) P{ X1 x1, X 2 x2,
Xn xn}
§3.4 边际分布与 随机变量的独立性
一、 边际分布
1、随机变量的边际分布函数
二维随机变量(ξ,η)作为一个整体,具有 分布函数F(x,y).
其分量ξ和η也都是随机变量,也有自己 的分布函数,将其分别记为Fξ (x ),Fη(y). 依次称为ξ 和η的 边际分布函数.
二维连续型随机变量函数的分布

当1 z < 2 时,
1
zx
FZ
(
z)
(
z
1)
dx
z1
0
1dy
1
z
1
(z z1
x)dx
2z z2 1 2
y 1 •z
•(x,z-x) z-(1x,•0)1•zx
fZ (z) 2 z
y 当2 z 时,
2
FZ (z) 1 1
fZ (z) 0
0,
f
Z
(
z
)
z,
2 z,
z 0或z 2 0 z 1 1 z 2
(z, z) 22
•
•
(z, 0)
yx
1x
fZ (z)
f (x, y)dx
AB
z z
3xdx
9
z2
2
8
当 1 z 2 时
fZ (z)
f (x, y)dx
AB
1
z 3xdx
2
3 (1 z2 ) 24
z
z2
1 z 2
yx
zz
0 z 1 z0
(,)
(
z
,
z
2 )
•
2
22
•
•(1, z 1)
z (4)
称之为函数 f X ( z) 与 f Y ( z)的卷积
例1 已知( X ,Y ) 的联合概率密度为
f
(
x,
y)
1, 0,
0 x 1,0 y 1 其他 y
Z = X + Y ,求 f Z (z)
1
解:先求分布函数
显然X ,Y 相互独立,且
f
概率论与数理统计第3章

试求常数a和b。
π F xlim F x a b 2 0 解: F lim F x a b π 1 x 2
1 1 a , b 2 π
P ( 2 4) P ( 2) P ( 2 4) 0.3 0.6 0.5 0.4
P ( 3) 1 P ( 3) 1 0.5 0.5
6
例3:设r.v. 的分布函数
F x a b arctan x
b a
因此求概率可从分布函数与密度函数两条途径入手。
5、密度的图像称分布曲线,相应有两个特征: ⑴ 曲线在x轴上方;
概率面积
y
f(x)分布曲线
⑵ 曲线于x轴之间的 面积是1。
x c o d
10
例4:设 的密度在[a,b]以外为0,在[a,b]内为
一常数 ,
, a x b f ( x) 0, 其它
x2 2
16
⑶ f(x)符合密度函数的两性质: ① f(x) > 0;②
f x d x 1。
x2 2
以标准正态分布为例, e
e d t e
t2 2 2 x2 2
d x 称为高斯积分。
dy
r2 2 0
从F(x)求f(x): f x F x 从f(x)求F(x): F x f t d t
x
9
4、对于连续型随机变量 ,
⑴ P a 0 ,即某指定点的概率为0; ⑵ Pa b Pa b
Pa b Pa b f x d x
第五章 二维随机变量及其概率分布

P{( X ,Y ) G }的值等于以G为底 , 以曲面z f ( x, y) 为顶面的柱体体积.
例3.1 设( X ,Y )的联合密度函数为
f
(
x,
y)
cxy
0
0 x 1, 0 y 1 ,
others
(1)求常数C的值;(2)求P{X Y};
(3).求F (x, y)
解 (1)由
解 由于
43 2 P{X 0,Y 0} P{X 0}P{Y 0 X 0}
10 9 15
46 4 P{X 0,Y 1} P{X 0}P{Y 1 X 0}
10 9 15
64 4 P{X 1,Y 0} P{X 1}P{Y 0 X 1}
10 9 15
65 5 P{X 1,Y 1} P{X 1}P{Y 1 X 1}
例1.1 已知二维随机变量(X,Y)的分布函数为
F (x, y) A[B arctan x)][C arctan y)] ( x, y )
1)求常数A,B,C;
解: 由分布函数的性质,有
lim F(x, y) lim A(B arctan x)(C arctan y)
x
x
y
y
A(B
G
(4)若 f ( x, y)在( x, y)连续,则有2F ( x, y) f ( x, y). xy
3.说明
几何上, z f ( x, y) 表示空间的一个曲面.
f ( x, y)d x d y 1,
表示介于 f (x, y)和 xoy 平面之间的空间区域的 全部体积等于1.
P{( X ,Y ) G} f ( x, y) d x d y,
设二维离散型随机变量( X ,Y )所有可能取的 值为 ( xi , y j ), i, j 1, 2,, 记
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 6xydy 3x(1 x4 ), 故 x2
f
X
(
x)
3x(1 x4 0,其它
),0
x
1,
当0 y 1时,fY ( y)
f (x, y)dx
0
y
6xydx
3x2 y
|x
x0
y
3y 2 , 故得
fY
(
y)
3y2,0 0,其它.
定义:设二维随机变量(X,Y)的联合分布函数为F(x,y),边缘分
布函数为FX(x),FY(y),若对任意的实数x,y,有 F(x,y)=FX(x)FY(y)
则称X与Y相互独立。
推广定义. 设n维随机变量(X1,X2,...Xn)的分布函数为F(x1,x2,...xn), 若Xk 的边缘分布函数为FXk(xk),k=1,2,…,n,
0 3
3
所以, 随机变量X的边缘密度函数为
f
X
x
2x
2
2 3
x
0 x 1
0
其它
当0 y 2 时,
fY
y
f
x,
ydx
1 0
x2
1 3
xy dx
1 3
1 6
y
所以, 随机变量Y的边缘密度函数为
fY
y
1 3
y x2
O
x
(1)求常数c;(2)求关于X及Y的边缘概率密度
1x
解:(1)由归一性 dx cdy 1 c 6
0 x2
0 x 0 或 x 1
(2) f X (x) f (x, y)dy x
6dy 6(x x2 ) 0 x 1
x2
y
内的位置无关。
例3.3.2.设G {( x, y) | y sin x,0 x , y 0},
随机变量 ( X ,Y )在G上服从均匀分布,求 Y大于 2 X的概率。
解:G的面积A
sin xdx cosx | 2,
0
0
故得( X ,Y )的联合密度
解 (1)区域G的面积为1
y
1
y=2x
G
G1
G2
1 (x, y) G
O
0.5 1 x
f (x, y) 0 (x, y) G
11 1
(2) 区域G1的面积为 AG1 P(Y<2X) AG1 1 AG 4
(3)F(0.5,0.5)=P(X≤0.5,Y≤0.5)
1 22 4
y
f (x, y) 0
其它
y=x
1
(1)求常数k;(2)求概率P(X+Y≤1)。
解 (1)
f (x, y)dxdy 1
11
( kx2 ydy)dx 1
0x
O
x+y=1
1
x
1 (1 kx2 1 kx4 )dx 1
02
2
(1 kx3 6
1 kx5 ) 10
f
( x,
y)
1 2
,
( x,
y)
G,
0, 其 它.
于是,设D G {(x, y) | y 2 x},则有
P(Y
2
X
)
D
f
( x,
y)dxdy
D
1dxdy 2
1 (1 1 ) 4 (用几何概率更简单)
2 22 8
练习 设(X,Y)服从如图区域G上的 均匀分布, (1)求(X,Y)的概率密度; (2)求P(Y<2X); (3)求F(0.5,0.5)。
分必条件是有f(x,y)、 fx(x)、 fy(y)的一切公共连续
点处有
f (x, y) fX (x) fY ( y)
推广:设X1,X2,…,Xn为n 个连续型随机变量, 且X1,X2,…,Xn相互独立,则在一切公共连续 点处有 f (x1, x2, …, xn)=fX1(x1)fX2(x2)…fXn(xn)。
由此性质看到,(X,Y)的边缘分布都与r无关, 说明r不同,得到的二维正态分布也不同,但 其边缘分布相同。因此边缘分布是不能唯一 确定联合分布的,即使X,Y都是服从正态分布 的随机变量, (X,Y)不一定是服从二维正态分 布。
二维正态分布的边缘分布必为一维正态分布,反之 不真。
3.3.4 独立性
f
(x,
y)
Axy, (x, 0, 其 它
y)
G,
(1)求A的 值 ;
(2)计算概率P( X 1 ,Y 1). 22
解:由题设,有
1=
+
+
f
(x,
y)dxdy
11
dx
Axydy
- -
0
x2
A 1 x. 1(1 x4 )dx A
02
6
故A 6
(2).P( X
1 2
,Y
1) 2
6xydxdy
D
(其中D G {(x, y) | x 1 , y 1}) 22
1
2 dx
1
2 6xydy 3
1 2
x(
1
x4
)dx
0
x2
04
11 128
练习:设二维随机变量(X,Y)的联合概率密度函数为
kx2 y 0 x y 1
FY(y)的函数值表示随机点(X,Y)落入如下右图所示区 域内的概率。
y
y
y
O
x
x
O
x
定理 设二维随机变量(X,Y)的联合密度为f(x,y), 则X的边缘密度为
fX (x) f (x, y)dy,
Y的边缘密度为
fY ( y) f (x, y)dx,
x , y ,
y)
x
x y
f
(u, v)dvdu
y
f
(x, v)dv
2F(x, y) xy
y
y
f
(x, v)dv
f
(x, y)
例3.3.1.设G表 示 由 曲 线y x2及 直 线y 1围 成 的图形在第一象限内的部分,设( X ,Y )的联合 (2)P(X 1)
2
1
2
fX
(x)dx
1
2 3x(1 x4 )dx
0
47 128
P(Y 1)
2
1 fY ( y)dy
2
1 1 2
3y2dy
7 8
y
(1,1)
练习:设(X,Y)的概率密度为
y x
c x2 y x f (x, y) 0 其它
1 6
y
0 y2
0
其它
fX
x
2x2
2 3
x
0
f
x,
y
x 2
1 3
xy
0 x 1, 0 y 2
0
其它
0 x 1 其它
由于当0<x<1,0<y<2时,
f x, y fX x fY y
所以,随机变量X与Y不独立。
例: 设随机变量(X ,Y)的概率密度为:
xye(x y) , x 0, y 0
f
(x,
y)
0,
其它
问X与Y是否独立?
解 : 当X 0时 ,X有 边 缘 密 度 :
P( X ,Y ) G f (x, y)dxdy.
G
另外:对任意的平面曲线L,有
P( X ,Y ) L 0.
(4) 若f (x, y)在(x0,y0) 处连续,则有
2F (x, y)
xy
f (x0 , y0 )
( x0 , y0 )
事实上
F (x, x
分布函数 F(x,y)=P({Xx}∩{Yy})=P(Xx,Yy)
xy
f (u,v)dudv
联合密度f(x, y)的性质
(1)非负性:f(x,y)0,(x,y)R2;
(2)归一性:
f (x, y)dxdy 1F(,)
(3) 设G是平面上一个区域,则二维连续型随机变量 (X,Y)落在G内的概率是概率密度函数f(x, y)在G上的 积分,即
F(x1,...xn ) FX1 (x1)FX2 (x2 )....FXn (xn )
则称X1,X2,...Xn 相互独立,或称(X1,X2,...Xn)是独立的。
对连续型随机变量有下面的定理:
定理:设二维连续型随机变量(X,Y)的联合密度
为f(x,y),边缘密度fx(x),fy(y),则X与Y独立的充
由分布函数的定义可得到联合分布函数和边缘分 布函数的关系(注意总结)
FX (x) P(X x) P(X x,Y ) F(x,)
FY ( y) P(Y y) P(X ,Y y) F(, y)
边缘分布的几何意义
FX(x)的函数值表示随机点(X,Y)落入如下左图所示区域 内的概率;