二维连续型随机变量的边缘密度
3.3 二维连续型随机变量及其分布

1 6xydy 3x(1 x4 ), 故 x2
f
X
(
x)
3x(1 x4 0,其它
),0
x
1,
当0 y 1时,fY ( y)
f (x, y)dx
0
y
6xydx
3x2 y
|x
x0
y
3y 2 , 故得
fY
(
y)
3y2,0 0,其它.
定义:设二维随机变量(X,Y)的联合分布函数为F(x,y),边缘分
布函数为FX(x),FY(y),若对任意的实数x,y,有 F(x,y)=FX(x)FY(y)
则称X与Y相互独立。
推广定义. 设n维随机变量(X1,X2,...Xn)的分布函数为F(x1,x2,...xn), 若Xk 的边缘分布函数为FXk(xk),k=1,2,…,n,
0 3
3
所以, 随机变量X的边缘密度函数为
f
X
x
2x
2
2 3
x
0 x 1
0
其它
当0 y 2 时,
fY
y
f
x,
ydx
1 0
x2
1 3
xy dx
1 3
1 6
y
所以, 随机变量Y的边缘密度函数为
fY
y
1 3
y x2
O
x
(1)求常数c;(2)求关于X及Y的边缘概率密度
1x
解:(1)由归一性 dx cdy 1 c 6
《概率学》3.2_3.3二维随机变量的边缘分布及独立性

连续型
f (x, y)
第三章 多维随机变量及其分布
(X,Y)边缘分布
FX(x) = F(x,+∞) F Y(y) = F(+∞, y)
pi .=P{X= xi}= pij i=1, 2, ..., j 1
p.j=P{Y= yj}= pij j=1, 2, ..., i 1
连续型 f (x, y)
第三章 多维随机变量及其分布
(X,Y)边缘分布
FX(x)=(
)
F Y(y) =(
)
pi .=P{X= xi}(=
)
p.j=P{Y= yj}=(
)
f X ( x) (
)
fY ( y) (
)
作答
1
8
山东农业大学公共数学系概率统计课程组 版权所有
第2节 二维随机变量的边缘分布
第三章 多维随机变量及其分布
f X (x)
f (x, y)dy
fY ( y)
f (x, y)dx
1
7
山东农业大学公共数学系概率统计课程组 版权所有
主第观2节题二维随2机分变量的填边缘空分布 填空
( X, Y )联合分布 一般 F(x,y)= P{X ≤ x,Y≤y}
离散型 P{X=xi ,Y=y j}= pi j
i, j=1, 2, ...,
1
2
fX (x)
f (x, y)dy
1
exp{ 1 (u2 2u v2)}dv
21 1 2
2(1 2)
1
u2
e2
1
exp{ (v u)2 }dv
2 1
2 1 2
2(1 2)
3.3二维连续型随机变量

② P{(,) B} p(x, y)dxdy B
p(x, y)dxdy x y3
1
3 x
dx
1
(6
x
y)dy
5
.
0 28
24
(5) 若 p(x, y) 在 (x, y) 点连续,则 2F(x, y) p(x, y) . xy
例3、 设 ( ,) 的分布函数
F (x, y) A(B arctan x)(C arctan y) , x, y R
1, 2 0 , 1 1,
称
(
,)
服从参数为
1 ,
2
,
2 1
,
2 2
,
的二维正态分布,记为:
(
,)
~
N
(1,
2
,
2 1
,
2 2
,
)
二维正态分布的密度
函数如图所示
信息系刘康泽
若
(
,)
~
N
(1,
2
,
2 1
,
2 2
,
)
,则
p (x)
1
e
x 1 212
2
,
2 1
p ( y)
1
e
y2
2
2 2
2
2 2
这说明二维正态分布的两个边缘分布都是一维正态分
布。即:若
( ,)
~
N (1,
2
,
2 1
,
2 2
,
)
,则:
~
N
(1,
2 1
)
,
~
N
(2
,
2 2
)
二维连续型随机变量及其概率密度

2 F (x, y) f (x, y) xy
5
这表示若 f (x, y) 在点 (x, y) 连续,则当 x, y 很小时,
P{x X x x, y Y y y} f (x, y)xy
即 (X ,Y)落在小长方形 (x, x x](y, y y] 内的概率近似 地等于 f (x, y)xy
我们指出,如果随机变量 X、Y相互独立,则任一 变量的条件概率密度等于其边缘概率密度.事实上,
这时我们有
fX
Y (x
y)
f (x, y) fY ( y)
fX (x) fY ( y) fY ( y)
fX (x)
fY
X (y
x)
f (x, y) fX (x)
fX (x) fY ( y) fX (x)
1
S
D
,
(x, y) D ,
0,
其它
其中SD 为区域 D 的面积,则称 (X,Y) 服从 D
区域上的均匀分布.特别地,设 (X,Y) 在以圆
点为中心、r 为半径的圆域 R 上服从均匀分
布,求二维联合概率密度.
解:
8
例2 设二维随机变量 (X ,Y) 具有概率密度
2e(2x y) , x 0, y 0
其它
0
问随机变量和是否相互独立的?
解:
34
例11 二维正态随机变量 (X,Y)的概率密度为
f (x, y)
1
1
(
x
1
)2
2
(x 1)(y2 ) ( y
2 )2
e 2(1
2
)
12
1 2Leabharlann 2 2,2 1 2 1 2
( x, y )
二维连续型随机变量的边缘分布函数与边缘概率密度

y→+∞
数学学习与研究 2021 20
JIETI JIQIAO YU FANGFA
解题技巧与方法
159
- ∞ <x<+∞ ,
F Y( y)= lim F( x,y)
x→+∞
( π1 arctan x+ 21 ) ( π1 arctan 3y + 21 )
0,其他.
-∞
4 5
+∞
y 2 ,0≤y≤1,
f Y( y)=
f( x,y) dx = 3
-∞
0, 其他.
2.2 已知联合分布函数求边缘概率密度
主要有两种方法:方法一:利用联合分布函数和边缘分
布函数之间的关系求出边缘分布函数,由于边缘分布函数
在其定义域内是可导的,则对边缘分布函数求导即可得到
边缘概率密度,即:
+∞
+∞
3
f X( x)=
f( x,y) dy =
dy
2
2
2
-∞
- ∞ π (1+x ) (9+y )
1
=
,
π(1+x2 )
- ∞ <x<+∞ ,
+∞
+∞
3
f Y( y)=
f( x,y) dx =
dx
2
2
2
-∞
- ∞ π (1+x ) (9+y )
3
=
,
π(9+y2 )
- ∞ <y<+∞ .
一般地,当联合分布函数或者联合概率密度已知求边
【 摘要】 二维连续型随机变量( X,Y) 的边缘分布函数与
边缘概率密度,能够全面地描述二维连续型随机变量( X,
Y) 的分布规律,是概率论与数理统计的重要组成部分.若不
理解相关概念和性质就盲目求解边缘概率密度与边缘分布
二维随机变量边缘概率密度上下限

二维随机变量边缘概率密度上下限二维随机变量边缘概率密度函数是描述二维随机变量各个分量的概率分布的函数。
在二维随机变量的概率密度函数中,我们可以通过对其中一个分量积分去除另一个分量的影响,得到边缘概率密度函数。
边缘概率密度函数的求解是概率论和数理统计中一个重要的基本问题,在实际应用中也具有广泛的应用。
为了更好地理解二维随机变量边缘概率密度上下限,我们先了解一下二维随机变量的概念。
在概率论和数理统计中,二维随机变量是指一个包含两个分量的向量,可以表示为(X, Y),其中X和Y是两个独立的随机变量。
对于一个给定的二维随机变量(X, Y),假设其联合概率密度函数为f(x, y),我们可以通过对其中一个分量积分去除另一个分量的影响,得到边缘概率密度函数。
设(X, Y)是一个二维随机变量,其联合概率密度函数为f(x, y),则随机变量X的边缘概率密度函数为:fX(x) = ∫ f(x, y)dy其中,fX(x)表示随机变量X的边缘概率密度函数,f(x, y)表示联合概率密度函数。
随机变量X的边缘概率密度函数fX(x)描述了X的取值范围内的概率分布情况。
在求解边缘概率密度函数时,需要对联合概率密度函数的另一个变量进行积分。
这个积分的上下限就是边缘概率密度函数的上下限。
一般来说,对于连续型随机变量,边缘概率密度函数的上下限是整个实数轴。
也就是说,边缘概率密度函数在整个定义域范围内都有定义。
但是需要注意的是,对于某些特殊的二维随机变量,边缘概率密度函数的上下限可能会有所不同。
下面我们来看几个常见的二维随机变量的边缘概率密度上下限的例子:1.独立随机变量的边缘概率密度上下限如果X和Y是相互独立的随机变量,那么它们的联合概率密度函数可以表示为f(x, y) = g(x)h(y),其中g(x)表示X的概率密度函数,h(y)表示Y的概率密度函数。
在这种情况下,X的边缘概率密度函数为:fX(x) = ∫ f(x, y)dy = ∫ g(x)h(y)dy = g(x)同理,Y的边缘概率密度函数为:fY(y) = ∫ f(x, y)dx = ∫ g(x)h(y)dx = h(y)在这个例子中,X的边缘概率密度函数的上下限与X的取值范围相同,Y的边缘概率密度函数的上下限与Y的取值范围相同。
二维连续随机变量及其概率分布

定理2 二维随机变量(X,Y)的两个分量独立的充 分必要条件是: 对任意实数x, y有
P{X x,Y y} P{X x}P{Y y}
定理3 若(X , Y ) 是离散型随机变量,则X与Y相 互独立的充分必要条件是
lim F ( x, y) 0
x
lim F ( x, y) 0
y
lim F ( x, y) 1
x, y
性质3 对于x 和y,F(x, y)都是右连续的,即对任意 的实数x0和y0,均有
Lim xx0 F(x, y)=F(x0 , y), Lim yy0 F( x, y )=F(x, y0 )
(3) f (x, y)与 fX (x), fY (y)之间的关系
f X (x)
f (x, y)dy
fY ( y) f (x, y)dx.
例3 设随机变量X 和Y 具有联合分布
f
(
x,
y)
6, 0,
求X 和Y 边缘密度
x2 y x 其他
解:
f X (x)
f (x, y)dy
x
6dy x2
0
x 0, y 0 其它
求 (X, Y )的边缘分布函数。
解: X的边缘分布函数为
FX
(x)
F
( x,)
lim
y
F ( x,
y)
1 ex x 0
0 x0
1 ex ey exyxy x 0, y 0
(X ,Y) ~ F(x, y)
0
其它
Y的边缘分布函数为
FY
(
y)
F
(,
3-3 二维连续型随机变量

F (,y) 0 F ( x, ) 0 2)非负性: f ( x) 0 . F (, ) 0 F (, ) 1 2)单调性 F ( x,y) 是单调不减函数 3)右连续性 F ( x 0,y) F ( x,y) , 3)规范性: f ( x)dx 1. F ( x,y 0) F ( x,y) . 4)任意实数 a , b ,且 a b ,有 4)对任意的 x1 x 2 , y1 y 2
x
C 1
(2)P X 2
e y , x 0, y x, f x, y 其他. 0,
x2
2
f ( x , y )dxdy dx
x
e dy
y
2
e x dx e 2.
(3)f X ( x )
x 3dy, 0 x 1 2 2 3( x x ), 0 x 1 f ( x, y )dy x 0, 其它 0, 其它
fY ( y )
y 3dx, 0 y 1 y 2 3( y y 2 ), 0 y 1 f ( x, y )dx 0, 其它 其它 0,
( 3) 设 G 是 xoy 平面上的一个区域 , 点 ( X ,Y ) 落在 G 内的概率为
P {( X ,Y ) G } f ( x , y ) d x d y .
2F ( x, y) (4) 若 f ( x , y ) 在 ( x , y ) 连续, 则有 f ( x, y) . xy
P X , Y D
D
1 SD f x, y dxdy dxdy SG D SG