简述亲水性药物脂质体的制备(1).

合集下载

脂质体的制备概要

脂质体的制备概要

实验十五脂质体的制备一实验目的1.了解脂质体(liposome)在细胞工程技术中的应用及其制备方法。

2.掌握采用超声波法、冰冻干燥法和冻融法三种不同的方法制备脂质体的方法并了解该技术在细胞工程中的应用。

二实验原理脂质体(liposome)的制备技术,一般采用超声波法、振荡法、乙醚蒸发法、去污剂透析法、冰冻干燥法和冻融法等。

制备方法不同,所得脂质体结构、大小不同,性质和用途也就不同(表15-1)。

种类制备方法大小(m) 特性多层大脂质体(MLV) 乙醚蒸发法、醇醚水法、振荡法、液相快速混合振荡法0.1~50 易制备,包被物释放速度慢单层小脂质体(SUV) 直接超声波法、溶剂超声波法、乙醚注射法0.02~0.05 体积小,适合包被离子、小分子药物等单层大脂质体(LUV) 递相蒸发法、去污剂(胆酸纳等)透析法、冰冻干燥法0.05~0.5 适合包被蛋白质、RNA、DNA片段、大分子药物及细胞融合单层巨大脂质体(GUV) 冻融法5~30 适合包被蛋白质、RNA、DNA片段,除菌处理较难本实验采用超声波法、冻融法、冰冻干燥法三种不同类型的方法,超声波法的原理是:在超声波作用下,磷脂类双亲媒性分子被打碎为分子或分子团,并自动重新排布成类似生物膜的双分子层囊泡。

冻融法是在超声波法形成的小脂质体基础上,通过冷冻和融解过程使其破裂,重组为大体积脂质体,在通过透析时膜内外渗透压的变化而膨胀为更大体积的脂质体。

冰冻干燥法语原理与冻融法基本一致,只在处理条件上有所不同。

三实验用品1.器材超声波清洗机、光学显微镜、荧光显微镜、荧光分光光度计、漩涡混合器、核酸蛋白检测仪、柱层析装置、冰冻干燥机。

2.试剂1)磷脂液:100mg经丙酮-乙醚法纯化的卵磷脂,57.2mg胆固醇,溶于1ml氯仿。

2)荧光液:钙黄绿素(calcein)47mg溶于100ml Tris缓冲液。

3)Tris 缓冲液:称取Tris 0.12g,EDTA0.288mg,溶于80ml去离子水中,用0.1 mol/L盐酸调Ph7.2,再加水至100ml。

高中生物 实验十四脂质体的制备

高中生物 实验十四脂质体的制备

实验十四脂质体的制备一、目的和要求1.了解脂质体的基本制备方法。

2.掌握脂质体的基本结构和特征。

二、基本概念和实验原理脂质体系指将药物包封于类脂质双分子层内而形成的微型泡囊(vesicle),也有人称脂质体为类脂小球或液晶微囊,类脂双分子层厚度约4nm。

脂质体可分为:①单室脂质体(SUV),粒径约10~100nm;②大单室脂质体(LUV),粒径约100~1000nm;③多层脂质体(MLV),粒径约100~20000nm;④多孔脂质体(MVV),粒径约100~20000nm。

在脂质体内,由双分子层分成不同的隔室,亲脂性基团彼此包封隔室称油相隔室,由亲水性基团包封隔室称水相隔室。

在脂质体制备过程中,若为非极性药物,则先与磷脂、胆固醇混合后,溶于有机溶媒中,当形成脂质体时,包封在油相隔室中;当包封药的药物是极性药物时,则先溶于水相中,当形成脂质体时,包封在水相隔室中。

常用的脂质体制备方法有:注入法、薄膜分散法、超声波分散法、逆相蒸发法、冷冻干燥法等。

三、仪器和材料仪器:水浴旋转蒸发仪、水循环真空泵、振荡器、水浴超声仪、探针式超声仪、电子分析天平、温度计、梨形瓶、试管等。

材料:环孢素、胰岛素、大豆磷脂、胆固醇、氯仿、乙醚、氯化钠、pH7.4磷酸盐缓冲液[137mmol/L NaCl, 2.6mmol/LKCl, 6.4mmol/L Na2HPO4·12H2O, 1.4mmol/L NaH2PO4]等。

四、实验内容(一) 薄膜分散法制备环孢素脂质体1.处方大豆磷脂1 00mg胆固醇25mg 环孢素5mg0.9%氯化钠5 mL2.制备精确称取环孢素5mg置茄形瓶中,加入大豆磷脂100mg和胆固醇25mg,用氯仿10mL使溶解,利用水浴旋转蒸发仪在不断旋转振摇下,减压蒸发除去溶剂(水浴温度35℃±1℃), 使脂质混合物以薄膜状均匀地沉积于瓶的内壁形成。

然后加入0.9%氯化钠水溶液5ml,充分振摇5min,在水浴旋转蒸发仪上旋转水合1h,然后用探式超声仪在冰水浴中超声1min, 即得脂质体混悬液。

脂质体

脂质体

脂质体(Liposomes)是由卵磷脂和神经酰胺等制得的脂质体(空心),具有的双分子层结构与皮肤细胞膜结构相同,对皮肤有优良的保湿作用,尤其是包敷了保湿物质如透明质酸、聚葡糖苷等的脂质体是更优秀的保湿性物质。

脂质体(liposome)是一种人工膜。

在水中磷脂分子亲水头部插入水中,脂质体疏水尾部伸向空气,搅动后形成双层脂分子的球形脂质体,直径25~1000nm不等。

脂质体可用于转基因,或制备的药物,利用脂质体可以和细胞膜融合的特点,将药物送入细胞内部生物学定义:当两性分子如磷脂和鞘脂分散于水相时,分子的疏水尾部倾向于聚集在一起,避开水相,而亲水头部暴露在水相,形成具有双分子层结构的的封闭囊泡,称为脂质体。

药剂学定义脂质体(liposome): 系指将药物包封于类脂质双分子层内而形成的微型泡囊体。

脂质体的分类1.脂质体按照所包含类脂质双分子层的层数不同,分为单室脂质体和多室脂质体。

小单室脂质体(SUV):粒径约0.02~0.08μm;大单室脂质体(LUV)为单层大泡囊,粒径在0.1~lμm。

多层双分子层的泡囊称为多室脂质体(MIV),粒径在1~5μm之间。

2.按照结构分:单室脂质体,多室脂质体,多囊脂质体3.按照电荷分:中性脂质体,负电荷脂质体,正电荷脂质体4.按照性能分:一般脂质体,特殊功效脂质体组成和结构脂质体的组成:类脂质(磷脂)及附加剂。

脂质体脂质体如注射给药脂质体的粒径应小于200nm,且分布均匀,呈正态性,跨距宜小。

2、包封率和载药量包封率:包封率=(脂质体中包封的药物/脂质体中药物总量)×100%一般采用葡聚糖凝胶、超速离心法、透析法等分离方法将溶液中游离药物和脂质体分离,分别测定,计算包封率。

通常要求脂质体的药物包封率达80%以上。

载药量:载药量=[脂质体中药物量/(脂质体中药物+载体总量)]×100%载药量的大小直接影响到药物的临床应用剂量,故载药量愈大,愈易满足临床需要。

试验十五脂质体的制备

试验十五脂质体的制备

实验十五脂质体的制备一、目的要求1.掌握薄膜分散法和逆相蒸发法制备脂质体的工艺。

2.掌握用阳离子交换树脂法测定小檗碱脂质体包封率的方法.3.熟悉脂质体形成的原理及其作用特点。

二、实验提要1。

含义脂质体是指药物包封于类脂双分子层形成的薄膜中所制成的超微型球状的药物载体。

根据类脂双分子层的层数的不同,脂质体可分为单室脂质体(含大、小单室)和多室脂质体.2.制备要点脂质体的制法有多种,应根据药物的性质或需要进行选择。

经典的薄膜分散法可形成多室脂质体,再经超声处理可得到小单室脂质体。

此法操作简便,但包封率较低。

注入法有乙醚注入法和乙醇注入法两种,乙醚注入法是将磷脂、胆固醇和脂溶性药物及抗氧剂等溶于适量的乙醚中,在搅拌下慢慢滴于55℃~65℃水性介质中,蒸去乙醚,继续搅拌1小时~2小时,即可形成脂质体。

此法适于实验室小量制备脂质体。

乙醇注入法制备脂质体,脂质体混悬液一般可保留10%~20%乙醇.此法适用于不耐热的药物。

反相蒸发法是制备多层脂质体或大单室脂质体的方法,此法包封率高。

冷冻干燥法适用于水中不稳定药物脂质体的制备。

熔融法制备的脂质体为多相脂质体,其性质稳定,可加热灭菌。

3.质量评价指标有粒径、粒径分布和包封率等。

包封率是评价脂质体内在质量的一个重要指标,常见的包封率测定方法有分子筛法、超速离心法、超滤膜法和阳离子交换树脂法等。

阳离子交换树脂法是利用离子交换作用,将带正电荷的未包进脂质体中的药物(即游离药物),如本实验中的游离小檗碱,吸附除去.而包封于脂质体中的药物,由于脂质体带负电荷,不被阳离子交换树脂吸附,从而达到分离的目的,用以测定包封率。

4.其他制备脂质体的材料主要有磷脂和胆固醇。

磷脂有天然磷脂(豆磷脂、卵磷脂等)和合成磷脂(二棕榈酰磷脂酰胆碱、二硬脂酰磷脂酰胆碱等)。

胆固醇为两亲性物质,是常用的附加剂,与磷脂混合使用,可制备稳定的脂质体。

其作用是调节双分子层的流动性,减低脂质体膜的通透性。

逆向蒸发法制备脂质体原理

逆向蒸发法制备脂质体原理

温馨小提示:本文主要介绍的是关于逆向蒸发法制备脂质体原理的文章,文章是由本店铺通过查阅资料,经过精心整理撰写而成。

文章的内容不一定符合大家的期望需求,还请各位根据自己的需求进行下载。

本文档下载后可以根据自己的实际情况进行任意改写,从而已达到各位的需求。

愿本篇逆向蒸发法制备脂质体原理能真实确切的帮助各位。

本店铺将会继续努力、改进、创新,给大家提供更加优质符合大家需求的文档。

感谢支持!(Thank you for downloading and checking it out!)阅读本篇文章之前,本店铺提供大纲预览服务,我们可以先预览文章的大纲部分,快速了解本篇的主体内容,然后根据您的需求进行文档的查看与下载。

逆向蒸发法制备脂质体原理(大纲)一、引言1.1脂质体的概念及分类1.2脂质体的应用领域1.3制备脂质体的重要性二、脂质体制备方法概述2.1溶液分散法2.2薄膜分散法2.3逆向蒸发法2.4其他制备方法三、逆向蒸发法制备脂质体原理3.1逆向蒸发法的原理3.2制备过程中的关键因素3.2.1脂质材料的选择3.2.2溶剂与辅助溶剂的选择3.2.3超声条件3.2.4温度与压力控制四、逆向蒸发法操作步骤4.1原料准备4.2脂质体的制备4.3脂质体的纯化与表征4.3.1纯化方法4.3.2表征方法五、逆向蒸发法制备脂质体的优缺点5.1优点5.2缺点六、逆向蒸发法制备脂质体的应用实例6.1药物载体6.2纳米药物6.3靶向给药系统七、总结与展望7.1逆向蒸发法在脂质体制备中的应用总结7.2未来发展趋势与挑战一、引言脂质体是一种具有双层膜结构的微型囊泡,由磷脂和胆固醇等分子组成。

作为一种新兴的药物载体,脂质体在生物医药领域具有广泛的应用前景。

本文主要介绍了逆向蒸发法制备脂质体的原理,并探讨了其在药物输送、基因治疗和疫苗研发等领域的应用潜力。

1.1 脂质体的概念及分类脂质体是一种类似于细胞膜的微型囊泡,由两层磷脂分子层组成,中间夹杂着胆固醇等物质。

脂质体(2h)

脂质体(2h)

一、概述 Introductions
脂质体在体内与细胞的作用过程:分吸附 adsorption 、 脂 交 换 lipid exchange 、 内 吞 endocytosis、融合 四个阶段。 、融合fusion四个阶段。 四个阶段 吸附是脂质体与细胞作用的开始 是脂质体与细胞作用的开始, 吸附是脂质体与细胞作用的开始,受粒子大小和 表面电荷等因素影响; 表面电荷等因素影响; 脂交换是脂质体的脂类与细胞膜上脂类发生交换 是脂质体的脂类与细胞膜上脂类发生交换; 脂交换是脂质体的脂类与细胞膜上脂类发生交换; 内吞作用是脂质体被作为外来异物吞噬 是脂质体被作为外来异物吞噬, 内吞作用是脂质体被作为外来异物吞噬,通过内 吞,脂质体能特异地将药物浓集于起作用的细胞 内; 融合指脂质体的膜与细胞膜融合进入细胞内 指脂质体的膜与细胞膜融合进入细胞内, 融合指脂质体的膜与细胞膜融合进入细胞内,然 后经溶酶体消化释放药物。 后经溶酶体消化释放药物。
二、制备脂质体的材料 Materials for preparation of liposomes • 3.正电荷脂质 . • 正电荷脂质均为人工合成产品,目前常用 正电荷脂质均为人工合成产品, 的正电荷脂质有: 的正电荷脂质有: • 硬脂酰胺(stearylamine, SA); 硬脂酰胺( ); • 胆固醇衍生物等。 胆固醇衍生物等。 • 正电荷脂质制备的脂质体在基因的传递系 统中应用非常普遍。 统中应用非常普遍。
三、制备脂质体的方法 Preparation of liposomes
2.逆相蒸发法 .逆相蒸发法Reverse-phase evaporation • 最初由 最初由Szoka提出。一般的制法系将磷脂等膜材溶于 提出。 提出 有机溶剂如氯仿、乙醚等, 有机溶剂如氯仿、乙醚等,加入待包封药物的水溶 水溶液:有机溶剂 有机溶剂=1:3-1:6)进行短时超声,直 液(水溶液 有机溶剂 )进行短时超声, 至形成稳定的W/ 型乳剂 减压蒸发有机溶剂, 型乳剂, 至形成稳定的 /O型乳剂,减压蒸发有机溶剂, 形成脂质体。 形成脂质体。 • 用逆相蒸发法制备的脂质体一般为大单层脂质体, 用逆相蒸发法制备的脂质体一般为大单层脂质体, 常称为REVs。 常称为 。 • 本法特点是包封的药物量大,体积包封率可大于超 本法特点是包封的药物量大, 声波分散法30倍 声波分散法 倍,它适合于包封水溶性药物及大分 子生物活性物质如各种抗生素、胰岛素、 子生物活性物质如各种抗生素、胰岛素、免疫球蛋 碱性磷脂酶、核酸等。 白、碱性磷脂酶、核酸等。

脂质体的制备概要

脂质体的制备概要

实验十五脂质体的制备一实验目的1.了解脂质体(liposome)在细胞工程技术中的应用及其制备方法。

2.掌握采用超声波法、冰冻干燥法和冻融法三种不同的方法制备脂质体的方法并了解该技术在细胞工程中的应用。

二实验原理脂质体(liposome)的制备技术,一般采用超声波法、振荡法、乙醚蒸发法、去污剂透析法、冰冻干燥法和冻融法等。

制备方法不同,所得脂质体结构、大小不同,性质和用途也就不同(表15-1)。

种类制备方法大小(m) 特性多层大脂质体(MLV) 乙醚蒸发法、醇醚水法、振荡法、液相快速混合振荡法0.1~50 易制备,包被物释放速度慢单层小脂质体(SUV) 直接超声波法、溶剂超声波法、乙醚注射法0.02~0.05 体积小,适合包被离子、小分子药物等单层大脂质体(LUV) 递相蒸发法、去污剂(胆酸纳等)透析法、冰冻干燥法0.05~0.5 适合包被蛋白质、RNA、DNA片段、大分子药物及细胞融合单层巨大脂质体(GUV) 冻融法5~30 适合包被蛋白质、RNA、DNA片段,除菌处理较难本实验采用超声波法、冻融法、冰冻干燥法三种不同类型的方法,超声波法的原理是:在超声波作用下,磷脂类双亲媒性分子被打碎为分子或分子团,并自动重新排布成类似生物膜的双分子层囊泡。

冻融法是在超声波法形成的小脂质体基础上,通过冷冻和融解过程使其破裂,重组为大体积脂质体,在通过透析时膜内外渗透压的变化而膨胀为更大体积的脂质体。

冰冻干燥法语原理与冻融法基本一致,只在处理条件上有所不同。

三实验用品1.器材超声波清洗机、光学显微镜、荧光显微镜、荧光分光光度计、漩涡混合器、核酸蛋白检测仪、柱层析装置、冰冻干燥机。

2.试剂1)磷脂液:100mg经丙酮-乙醚法纯化的卵磷脂,57.2mg胆固醇,溶于1ml氯仿。

2)荧光液:钙黄绿素(calcein)47mg溶于100ml Tris缓冲液。

3)Tris 缓冲液:称取Tris 0.12g,EDTA0.288mg,溶于80ml去离子水中,用0.1 mol/L盐酸调Ph7.2,再加水至100ml。

脂质体

脂质体
将水溶性药物溶于磷酸盐缓冲液
磷脂、胆固醇与脂溶性药物共溶 于有机溶剂
制备方法
4.逆相蒸发法
W/O乳剂 超 声
混合,超声处理直至形成稳定的W/O乳剂
制备方法
4.逆相蒸发法
蒸发
有机溶剂
磷酸盐 缓冲液
减压蒸发除去有机溶剂 达到胶态后,加入磷酸 盐缓冲液,旋转使器壁
上凝胶脱落,继续减压
蒸发除去有机溶剂,得 到脂质体水性混悬液。
制备方法
制备方法
5.冷冻干燥法
作用机理:
吸附 adsorption
脂交换 lipid exchange 磷酸脂酶消化 内吞 endocytosis 扩散 融合 fusion
膜间转运与接触释放
吸附
内吞、融合
优点
靶向性
细胞亲和性
长效性
优点
组织相容性
降低毒副作用
保护稳定性
应用概况
• 1971年英国莱门等人开始将脂质体用于药物载体。 • 我国上世纪80年代开始进行脂质体的研究工作 • 2000年,世界脂质体产品销售额为12亿美元。2005年,达 33亿美元,增长率为175%。 • 国外已上市的脂质体药物品种有两性霉素、多柔比星和柔红 霉素,均为抗癌药物。抗癌药物脂质体是脂质体最重要的应 用。目前还有约30种脂质体抗癌药物正在临床试验或等待批 准上市。
1 抗癌药物脂质体
应用
2 主动靶向脂质体 3 基因治疗用脂质体
药品名 阿霉素
柔红霉素 长春新碱 紫杉醇 顺铂 维甲酸 羟基喜树碱 氨基喜树碱 拓扑替康 依立替康 Lurtotecan 阿糖胞苷
商品名 Myocet Doxil Caelyx Dox-sl LED MCC-465(免疫脂质体) DaunoXome Onco TCS VincaXome LEP SPI-77 ATTA-IV
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简述亲水性药物脂质体的制备(1) 一,前言 脂质体作为一种新型的载药系统,今年来得到广泛的应用和研究。评价脂质体质量的指标有外观、粒径分布和包封率等。其中包封率是衡量脂质体内在质量的一个重要指标。对于亲脂性药物,由于其对磷脂膜的亲和性,可以在制备过程中得到很高的包封率,且不易渗漏。而亲水性药物在制备时则必须包封在脂质体囊内部或多层脂质体层间的水性介质中,除一些特殊药物外包封率普遍不高,且易泄露。制备中为了得到更大的包封率,不得不增加囊内的容积,而这与控制脂质体在有效的粒径范围内又相互矛盾。以下将介绍一些用于提高亲水性药物在脂质体中的包封率的方法。 二,制备方法 1,常规方法 对于一些亲水性药物,使用常规的制备方法也可以得到满意的包封率。胡静等(1)用简单的薄膜水化-机械分散法研究了硫唑嘌呤(Aza)脂质体包封率的影响因素。这些因素包括卵磷脂与胆醇摩尔比、缓冲液(PBS)pH值、水相用量及药脂重量比。通过正交设计得到最佳处方所制得的3批硫唑嘌呤脂质体形态圆整,大小均匀,粒度范围0.01~0.42μm,包封率均达30%以上。但在实验中发现药脂重量比增加时,包封率反而下降,这说明Aza的利用率在减少。 吴骏等(2)使用逆相蒸发法制备阿昔洛韦ACV脂质体,经过正交优化后,得到阿昔洛韦脂质体的平均粒径为219.8nm,多分散系数为0.158,包封率为65%,且具有良好的稳定性。作者将卵磷脂、胆固醇、油酸和去氧胆酸钠溶于乙醚,于室温搅拌下滴入ACV水溶液,使形成稳定的W/O型乳剂。25℃减压蒸去乙醚,得乳白色混悬液,通过微孔滤膜后,即得ACV脂质体。产品经离心加速实验表现出良好的稳定性。此实验通过选择适当的油水体积比可使内相体积增加,提高包封率;同时加入了乳化剂可以防止脂质体的粒径增大。 翟光喜等(3)也将表面活性剂胆酸钠引入脂质体的处方中制备了低分子肝素的柔性纳米脂质体,此类脂质体具有高度的形变性,可由于经皮给药系统。制备方法就是简单的将处方混合后至冰水浴中超声处理,再通过微孔滤膜即得。经正交优化后包封率可达到33.1%。但该制剂的稳定性和储存中的渗漏作者并没有做进一步研究。陈鹰等(4)也研究了双氯芬酸钠的柔性脂质体,试验将磷脂等脂溶性成分和胆酸盐溶于乙醚中,药物则溶解在磷酸缓缓冲液中,混合后减压旋转挥干后再超声过滤。得到的脂质体包封率为73.12%。 侯新朴等对低包封率的水溶性药物(如甲硝唑)进行疏水衍生化,其疏水链将药物分子插入脂质体膜,包封率和稳定性都提高十多倍(5)。 在这些常规的制备方法中,首先应该对药物的性质有充分的了解。同时工艺参数的选择,尤其是合适的油水相比及乳化剂的用量对于水溶性药物的包封率有很大的影响。在制备过程中采用超声,加乳化剂的方法都可以有效地控制脂质体的粒径。 2,三维网状脂质体 亲水性药物在脂质体内包封的多少取决于在脂质体形成时其在囊内溶液和囊间溶液中的分配,此比率越高,包封率也越高。因此提高囊内溶液的体积可以提高药物的包封率。M. Brandl(6)等通过提高单位体积内磷脂的浓度,以增加在内相中的体积同时又不改变脂质体的形状和大小,从而增加药物的包封率。它将磷脂溶解在水性介质中达到200-300mM浓度,形成一种半固体的糊状物,再用一步高压匀质法(7)使磷脂“强制水化”制成了“Three-dimensional liposome network”。通过电镜观察,发现这种糊状物包埋了水溶性的标记药物,而且还具有缓释作用。所谓一步高压匀质法就是将磷脂粉末和药物分散在水或磷酸盐缓冲液中,轻微振摇后在GM Lab 40 匀质机中高压匀质切割即得脂质体。 3,将药物引入制好的空白脂质体中 由于脂质体一般为混悬液,在储存和运输中难免出现渗漏,聚合等现象影响了包封率和粒径。采用空白脂质体加药物的方法可能可以解决这一问题。 Anye首先提出了前提脂质体(proliposome )的概念,将水溶性甘露醇分散在脂质体膜材的乙醇溶液中,挥干乙醇制的粉状的前体脂质体,此前体脂质体是以甘露醇为主要支架,磷脂膜粘附在其上的结构。该前体脂质体易于保存。药物则溶解在水中,临用前与前体脂质体混合,药物随水分子进入脂质体内,即得含药脂质体制剂。翟光喜等(8)将此方法用于低分子肝素,制得用于静脉注射的脂质体制剂。测得平均包封率为37.3%。这种制剂包封率主要受甘露醇与类脂的总量和配比以及混合的时间影响。在稳定性问题解决的同时,也存在粒径较大且不易控制等问题。还须进一步的研究加以解决。他(9)还将肝素加入少量PBS成糊状,再加入商品化的Natipide Ⅱ空白脂质体,研磨后加入抗氧剂和防腐剂,加PBS稀释后即得。药物在研磨中被包入空白脂质体凝胶颗粒中,再加入大量的水破坏凝胶状态,形成混悬液。试验所的包封率在43%左右。该制备方法中,温度对包封率又较大影响,温度升高时,脂质体流动性变大,膜内包封的药物易于渗漏。 邓意辉等(10)用主动载药法制备盐酸小檗碱脂质体,包封率得到大大的提高:被动载药法得到的包封率仅有13.3%,主动载药法的包封率最高可达84.6%。他将膜材的乙醇溶液在枸橼酸缓冲液中减压蒸发得到空白脂质体,依次加入盐酸小檗碱溶液和NaHCO3溶液调外水相pH值,水浴孵化即得。由于混合时内外水相不同的离子或化合物梯度,有利于特殊药物(离子型药物)的包封,且制剂较为稳定(放置一年无分层现象,包封率下降8%)。研究发现加药顺序、孵化时间、孵化温度、外水相pH值等都对药物的包封率有影响。由于采用主动载药法制备脂质体的包封率高、渗漏小,非常适合于工业化大生产。 4,反复冻融法 亲水性药物脂质体无论是在制备还是储存过程中都存在一个渗漏的问题,药物分配在外水相增多,使包封率降低。反复冻融法被证明是一种有效的保护药物不渗漏的方法。与其他方法相比, 冻融法具有操作简单,包封率高,药物避免接触有机溶媒等特点。张奇等(11)使用了冻融法制备氟尿嘧啶脂质体,并考察了其稳定性。作者使用对水溶性药物包封率较高的逆向蒸发法制备了5-FU脂质体的混悬液后,置冰箱内反复冻融3次,发现药物的包封率比冻融前明显提高(由约25%上升到45%左右)且离心加速实验的稳定性也比冻融前好得多。这是由于冰冻使磷脂周围药物浓度增高,在反复冻融过程中粒径小的脂质体互相融合成稍大脂质体,粒径趋于均匀化,使脂质体包封率明显提高。但作者并没有控制冻融后脂质体的粒径分布。 董泽民(12)在研究赖氨匹林的鼻腔给药脂质体时也使用了冻融法。他先将磷脂等制成空白脂质体后,把药物和甘露醇溶于其中冻干,加入缓冲液振摇分散,再冻干即得。这样制得的重建性脂质体的包封率为55.94% 。由于制作过程无需加热,尤其适用于对热不稳定的水溶性药物。 Wei Liang等(13)在研究含有ATP的免疫脂质体的制备时也使用到此方法。作者将包有ATP的PEG修饰脂质体结合上单克隆抗体2G4以增加其靶性,在结合的过程中未发现有ATP的泄漏。作者将脂质体材料和PEG溶于氯仿中旋转挥干成膜,加入溶有ATP的缓冲液,强力蜗旋后反复冻融5次后过膜均化,再过柱分离得脂质体,再进行进一步化学修饰。制备方法在冻融后过聚碳酸酯的膜可使脂质体的离径缩小(约200nm),且分布窄。作者认为冻融法提高包封率的机理可能是形成了某种暂时的孔洞是药物在平衡前由外相进入了内水相中。 5,使用糖保护剂防止载药脂质体的渗漏 有研究表明,在脂膜中加入蛋白,糖等类物质,会使其稳定性提高。李晓燕等(14)探讨了具有疏水链的糖保护剂癸烷基葡萄糖(β-DG)对于延缓脂质体渗漏的影响。实验使用超声法制备了水溶性药物盐酸氯喹的小单层脂质体,发现在制膜时加入β-DG,由于长链的亲脂性,使其均匀的分散在双分子层中,改变了膜的通透性,不仅提高了脂质体对药物的包封率(上升了5%),还有效地防止了药物泄漏(降低了一个数量级)。证明了癸烷基葡萄糖是一种有效的脂质体渗漏保护剂。但加入量不宜过多,因为过多的非脂类分子进入脂膜,会影响脂膜的稳定性,反而会使泄漏量上升。 6,其他新进展 对于亲水性药物脂质体,最新研究并不局限于传统的脂质体制剂的研究模式,而是灵活积极地采用其他剂型的优点和方法,提高药物的包封率和稳定性。 小分子水溶性药物在普通的水凝胶中可以被很快的释放出来,这是由于水凝胶中含有大量的水分(>90%)并且有很大的孔洞,因此达不到缓释的作用。近年来有人将此类药物包裹在脂质体中,再分散在凝胶里,可以明显延缓药物的释放,药物穿透脂质层的过程成为限速步骤。M arija(15)等研究了5-氟脲嘧啶的凝胶脂质体(liposome gels)的制备和体外释药特性。作者使用脂质成膜水化的方法制备脂质体,用缓冲液洗涤后加入冻干保护剂蔗糖进行冻干,后加入到具有壳聚糖骨架结构的凝胶中即得,药物的体外释放受脂质的组成和水化成膜的条件影响,符合Higuchi扩散模式。与对照的5-FU水凝胶相比有明显的缓释作用。在制备脂质体时,作者发现由于药物对脂相有一定的亲合力,因此其包封率随胆固醇量的下降和药物/水相质量比的增加而增加。处方中最高的包封率可达25.4%左右。作者并没有探讨该制剂的稳定性,但根据其缓释的特点可以推测脂质体周围的高粘度凝胶可能对药物的渗透有一定的保护作用。E. Ruel-Gariepy等(16)也用类似的方法制备了供体内埋植的温度敏感型凝胶脂质体。作者用逆相蒸发法先将药物制备成大单层脂质体,多层脂质体则用水化法制的。模型药物CF的包封率在1-8%之间。另制备了壳聚糖和甘油

相关文档
最新文档