小学五年级奥数趣味学习——火车行程问题
小学数学5年级培优奥数讲义 第27讲 火车行程问题(教师版)

第27讲 火车行程问题清楚理解火车行程问题中的等量关系;能够透过分析实际问题,提炼出等量关系;培养分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力;一、基本公式路程=时间×速度时间=路程÷速度 速度=路程÷时间二、火车行程问题有关火车过桥(隧道)、两列火车车头相遇到车尾相离等问题,是一种行程问题。
在考虑速度、时间和路程三种数量关系时,必须考虑到火车本身的长度。
如果遇到复杂的情况,可利用作图或演示的方法来帮助解题。
解答火车行程问题可记住以下几点:1、火车过桥(或隧道)所用的时间=[桥长(隧道长)+火车车长]÷火车的速度;2、两列火车相向而行,从相遇到相离所用的时间=两火车车身长度和÷两车速度和;3、两车同向而行,快车从追上到超过慢车所用的时间=两车车身长度和÷两车速度差。
考点一:求时间 例1、一列火车长150米,每秒钟行19米。
全车通过长800米的大桥,需要多少时间?【解析】列车过桥,就是从车头上桥到车尾离桥止。
车尾经过的距离=车长+桥长,车尾行驶这段路程所用的时间用车长与桥长和除以车速。
知识梳理典例分析教学目标火车长桥长火车所走的路程解:(800+150)÷19=50(秒)答:全车通过长800米的大桥,需要50秒。
例2、一列火车长119米,它以每秒15米的速度行驶,小华以每秒2米的速度从对面走来,经过几秒钟后火车从小华身边通过?【解析】本题是求火车车头与小华相遇时到车尾与小华相遇时经过的时间。
依题意,必须要知道火车车头与小华相遇时,车尾与小华的距离、火车与小华的速度和。
解:(1)火车与小华的速度和:15+2=17(米/秒)(2)相距距离就是一个火车车长:119米(3)经过时间:119÷17=7(秒)答:经过7秒钟后火车从小华身边通过。
考点二:求隧道长例1、一列火车长200米,以每秒8米的速度通过一条隧道,从车头进洞到车尾离洞,一共用了40秒。
五年级第六讲火车行程问题(课堂PPT)

火车行程问题
1
主讲教师:
火车行程问题是行程问题中又一种较典 型的专题。由于火车有一定的长度,因此在 研究有关火车相遇与追及,以及火车过桥、 穿越隧道等问题时,列车运动的总路程与其 它类型的行程问题就有区别,这也是解决火 车行程问题的关键。因此,对于这一类型的 题目,要弄清和理解火车、桥、隧道等长度, 这样才能正确运用路程,速度和时间这三者 之间的关系予以解答。
=火车长度的和÷速度和 即:
两列火车错车用的时间是:
(A的车身长+B的车身长)÷(A车的 速度+B车的速度)
9
练习: 在有上、下行的轨道上,两列火车
相对开来,甲列车的车身长235米, 每秒行驶25米,乙列车的车身长 215米,每秒行驶20米。求这两列 火车从车头相遇到车尾离开需要多 少秒钟。
10
例4、一列客车通过250米长的隧道用25秒, 通过210米长的隧道用23秒.已知在客车的前 方有一列行驶方向与它相同的货车,车身 长为320米,速度每秒17米.求列车与客车从 相遇到离开所用的时间.
头
尾
头
尾
解:队伍长:1×16分(528÷4-1)=131(米) 队伍行进的路程:
25×16=400(米) 桥长:400-131=269(米)
14
答:这座桥长269米。
练习: 少先队员346人排成两路纵队去
参观科技成果展览,队伍行进 的速度是每分23米,前后两人 都相距1米,现在通过一座长 702米的大桥,整个队伍从上桥 到离开桥用多长时间?
用同样的速度通过一座长100米的桥用 了20秒。这列火车的速ቤተ መጻሕፍቲ ባይዱ是多少?
7
例3.有两列火车,一车长130米,每秒行23 米,另一车长250米,每秒行15米,现在两 车相向而行,问从相遇到离开需要几秒钟?
五年级奥数培训——行程问题(四 ) (共27张PPT)

春季五年级直播课程
行程问题(四)
17、一辆货车以每小时40千米的速度从甲地驶往乙地,出发1小时后, 一辆面包车以每小时60千米的速度也从甲地到乙地,结果比货车早到半 小时,求甲乙两地间的路程?
18、AB两地相距20千米,甲乙二人同时从A地出发去B地,家骑自行车 每小时行10千米,乙步行每小时行5千米,甲在途中修车停留一段时间 ,已到达B地后,甲再骑车行2千米才到达B地,求甲修车用了多长时间 ?
13、同学们去春游,排成一列对以每秒1米的速度前进,队伍长600米, 王老师因事以每秒1.5米的速度从队伍的排尾追到排头,又立即从队伍的 排头回到排尾,问王老师从出发到结束一共用了多少分钟?
14、小刚和小亮两人练习跑步,如果小亮让小刚先跑12米,那么小亮跑 6秒钟可追上小刚;如果小亮让小刚先跑4秒钟,那么小亮8秒钟就能追 上小刚,问小亮和小刚两人的速度各是多少?
3、小张、小王、小李同时从湖边同一地点出发,绕湖行走。小张5.4千 米每小时,小王4.2千米每小时,他俩同向而行,小李反向而行,半小时 后小李与小张相遇,再过5分钟,小李与小王相遇,那么绕湖一周的行程 是多少千米?
4、甲乙丙三人行的速度分别是每分钟30米、40米、50米,甲乙在A地 ,而丙在B地同时相向而行,丙遇上乙后10分钟和甲相遇,求A、B两地 间的路长是多少米?
温故知新
1、甲乙两地相距216千米,客货两车同时从甲乙两地相向而行,已知客 车每小时行58千米,火车每小时行50千米,到达对方出发点后立即返回 ,两车第二次相遇时,客车比货车多行多少千米?
人教版五年级奥数练习:火车行程问题 (5)

人教版五年级奥数练习:火车行程问题
例5 甲列车每秒行20米,乙列车每秒行14米,若两列车齐头并进,则甲车行40秒超过乙车;若两列车齐尾并进,则甲车行30秒超过乙车。
甲列车和乙列车各长多少米?
分析根据题意可知:甲列车每秒比乙列车多行20-14=6米,当两列车齐头并进,甲列车超过乙列车时,比乙列车多行的路程就是甲列车的车长。
6×40=240米;当两列车齐尾并进,甲列车超过乙列车时,比乙列车多行的路程就是乙列车的车长,即6×30=180米。
练习五
1,一列快车长200米,每秒行22米;一列慢车长160米,每秒行17米。
两列车齐头并进,快车超过慢车要多少秒?若齐尾并进,快车超过慢车要多少秒?
2,快车每秒行18米,慢车每秒行10米。
两列火车同时同方向齐头并进,行10秒钟后快车超过慢车;如果两列火车齐尾并进,则7秒钟后快车超过慢车。
求两列火车的车长。
3,王叔叔沿铁路边散步,他每分钟走50米,迎面驶来一列长280米的列车,他与列车车头相遇到车尾相离共用了半分钟,求这列火车的速度。
人教版五年级奥数练习:火车行程问题 (3)

人教版五年级奥数练习:火车行程问题
例3 有两列火车,一车长130米,每秒行23米;另一列火车长250米,每秒行15米。
现在两车相向而行,从相遇到离开需要几秒钟?分析从两车车头相遇到两车车尾相离,一共要行130+250=380米,两车每秒共行23+15=38米,所以,从相遇到相离一共要经过10秒钟。
练习三
1,有两列火车,一列长260米,每秒行18米;另一列长216米,每秒行30米。
现两列车相向而行,从相遇到相离需要几秒钟?
2,一列火车长500米,要穿过一个长150米的山洞,如果火车每秒钟行26米,那么,从车头进洞到车长全部离开山洞一共要用几秒钟?
3,一列火车长210米,以每秒40米的速度过一座桥,从上桥到离开桥共用20秒。
桥长多少米?
第1 页共1 页。
五年级奥数题及答案-甲火车与乙火车

五年级奥数题及答案-甲火车与乙火车
导语:行程问题是奥数中的常见题型,也占有一定的比重,所以同学们一定要认真对待小编给同学们带来的奥数题。
甲火车长210米,每秒行18米;乙火车长140米,每秒行13米。
乙火车在前,两火车在双轨车道上行驶。
甲火车从后面追上到完全超过乙火车要用多少秒?
答案与解析:甲火车从追上到超过乙火车,比乙火车多行了甲、乙两火车车身长度的和,而两车速度差是18-13=5(米),因此,甲火车从追上到超过乙火车所用的时间是:(210+140)\(18-13)=70(秒)。
五年级常考的奥数题:行程问题
五年级常考的奥数题:行程问题
五年级常考的奥数题:行程问题
导语:五年级是奥数成绩提高得最快的时候,下面是小编为大家
整理的五年级的.奥数题。希望对大家有所帮助。欢迎阅读,仅供参考,
更多相关的知识,请关注CNFLA学习网!
五年级奥数题:
甲乙两列火车同时从东西两城相向开出,甲车每小时行49千米,
乙车每小时行47千米,相遇时甲车比乙车多行36千米.求两城之间的
路程.
答案与解析:36÷(49-47)×(49+47)=1728(千米).
五年级奥数题:
甲、乙两列火车同时从A地开往B地,甲车8小时可以到达,乙
车每小时比甲车多行20千米,比甲车提前2小时到达。求A、B两地
间的距离。
答案与解析:
乙车行驶了6小时到达B地,此时乙车比甲车多行了20×6=120
千米,即甲车还要在2小时内行驶120千米,故甲的速度为60千米/
时,A、B间距离为60×8=480千米。
29.五年级奥数思维训练 火车行程问题
五年级奥数思维训练火车行程问题
一、尝试练习
1、一列火车长150米,每秒钟行19米。
问:全车通过420米的大桥,需要多少时间?
2、一列车通过530米的隧道要40秒钟,以同样的速度通过380米的大桥要用30秒钟。
求这列车的速度及车长。
二、训练营地
1、一条隧道长760米,现在有一列长240米的火车以每秒25米的速度经过这条隧道,要用多少时间?
2、一列火车通过一座长1000米的大桥要用65秒钟。
如果以同样的速度穿过一条730米的隧道则要用50秒钟。
求这列火车的车身长和速度。
3、有两列火车,一列长130米,每秒行23米。
另一列长250米,每秒行15米。
现在两车相向而行,从相遇到离开需要几秒钟?
4、一列火车通过297米长的停车场,需42秒钟。
过216米长的大桥需要33秒钟,求:(1)车速;(2)车长。
五年级奥数专题 火车问题初步(学生版)
学科培优数学“火车问题初步”学生姓名授课日期教师姓名授课时长知识定位在行程问题这个大家族中,除了我们常常研究的相遇与追击外,还有三大类我们必须了解的问题:火车过桥、流水行程和时钟问题.它们虽然也涉及速度、时间、路程这三个基本关系,但在应用中要兼顾考虑一些其它因素,譬如:火车车长、水流速度等等.其中火车过桥、流水行程是我们在以前的学习中已经有所接触的内容,在下面的学习中我们先回忆巩固原有基本概念,而后相应的拓展提高!知识梳理一、解火车过桥问题常用方法⑴火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和.⑵火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.⑶火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.【重点难点解析】1.火车过桥要谨记车身长度2.火车与多人多次相遇与追及【竞赛考点挖掘】1. 火车与多人多次相遇与追及例题精讲【试题来源】【题目】慢车的车身长是142米,车速是每秒17米,快车车身长是173米,车速是每秒22,慢车在前面行驶,快车从后面追上到完全超过慢车需要多少时间?【试题来源】【题目】一列客车长190米,一列货车长240米,两车分别以每秒20米和23米的速度相向行进,在双轨铁路上,两车从车头相遇到车尾相离共需要多少时间.【试题来源】【题目】一列长72米的列车,追上长108米的货车到完全超过用了10秒,如果货车速度为原来的1.4倍,那么列车追上到超过货车就需要15秒。
货车的速度是每秒多少米?【试题来源】【题目】长180米的客车速度是每秒15米,它追上并超过长100米的货车用了28秒,如果两列火车相向而行,从相遇到完全离开需要多少时间?【试题来源】【题目】快车长106米,慢车长74米,两车同向而行,快车追上慢车后,又经过1分钟才超过慢车;如果相向而行,车头相接后经过12秒两车完全离开。
五年级奥数专题--行程问题
五年级奥数专题-行程问题行程问题是小学奥数中变化最多的一个专题,不论在奥数竞赛中还是在“小升初”的升学考试中,都拥有非常重要的地位.行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程,等等.每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)三个关系:1. 简单行程:路程 = 速度× 时间2. 相遇问题:路程和 = 速度和× 时间3. 追击问题:路程差 = 速度差× 时间牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的.①追击及遇问题一、例题与方法指导例1. 有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行.甲每分钟走40米,乙每分钟走38米,丙每分钟走36米.在途中,甲和乙相遇后3分钟和丙相遇.问:这个花圃的周长是多少米?思路导航:这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间.第一个相遇:在3分钟的时间里,甲、丙的路程和为(40+36)×3=228(米)第一个追击:这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228÷ (38-36)=114(分钟)第二个相遇:在114分钟里,甲、乙二人一起走完了全程所以花圃周长为(40+38)×114=8892(米)我们把这样一个抽象的三人行程问题分解为三个简单的问题,使解题思路更加清晰.例2.东西两地间有一条公路长217.5千米,甲车以每小时25千米的速度从东到西地,1.5小时后,乙车从西地出发,再经过3小时两车还相距15千米.乙车每小时行多少千米?思路导航:从图中可以看出,要求乙车每小时行多少千米,关键要知道乙车已经行了多少路程和行这段路程所用的时间.解:(1)甲车一共行多少小时?1.5+3=4.5(小时)(2)甲车一共行多少千米路程?25×4.5=112.5(千米)(3)乙车一共行多少千米路程?217.5-112.5=105(千米)(4)乙车每小时行多少千米?(105-15)÷3=30(千米)答:乙车每小时行30千米.例3.兄妹二人同时从家里出发到学校去,家与学校相距1400米.哥哥骑自行车每分钟行200米,妹妹每分钟走80米.哥哥刚到学校就立即返回来在途中与妹妹相遇.从出发到相遇,妹妹走了几分钟?相遇处离学校有多少米?思路导航:从图中可以看出,哥与妹妹相遇时他们所走的路程的和相当于从家到学校距离的2倍.因此本题可以转化为“哥哥妹妹相距2800米,两人同时出发,相向而行,哥哥每分钟行200米,妹妹每分钟行80米,经过几分钟相遇?”的问题,解答就容易了.解:(1)从家到学校的距离的2倍:1400×2=2800(米)(2)从出发到相遇所需的时间:2800÷(200+80)=10(分)(3)相遇处到学校的距离:1400-80×10=600(米)答:从出发到相遇,妹妹走了10分钟,相遇处离学校有600米.二、巩固训练1.两城市相距328千米,甲、乙两人骑自行车同时从两城出发,相向而行.甲每小时行28千米,乙每小时行22千米,乙在中途修车耽误1小时,然后继续行驶,与甲相遇,求出发到相遇经过多少时间?分析:如果乙在中途不停车,那么甲、乙两人从出发到相遇共行路程的和:328+22×1=350(千米),两车的速度和:28+22=50(千米/小时),然后根据相遇问题“路程和÷速度和=相遇时间”得350÷50=7(小时)解:(328+22×1)÷(28+22)=350÷50=7(小时)解法2:(328-22×1)÷(28+22)=300÷50=6(小时)6+1=7(小时)答:从出发到相遇经过了7小时.2.快车和慢车同时从甲乙两地相对开出,已知快车每小时行40千米,经过3小时快车已过中点12千米与慢车相遇,慢车每小时行多少千米?分析:从图中可知:快车3小时行的路程40×3=120千米,比全程的一半多12千米,全程的一半是120-12=108千米.而慢车3小时行的路程比全程的一半还少12千米,所以慢车3小时行的路程是108-12=96千米,由此可以求出慢车的速度.解:①甲乙两地路程的一半:40×3-12=108(千米)②慢车3小时行的路程:108-12=96(千米)③慢车的速度:96÷3=32(千米)答:慢车每小时行32千米.3.小华和小明同时从甲、乙两城相向而行,在离甲城85千米处相遇,到达对方城市后立即以原速沿原路返回,又在离甲城35千米处相遇,两城相距多少千米?分析:从图上可以看出,小华和小明两人第一次相遇时,行了一个全程,小华行了85千米.当小华和小明第二次相遇时,共行了3个全程,这时小华共行了3个85千米,如果再加上35千米,相当于小华行了2个全程,甲乙两地全长也就可以求出来了.解:(1)甲乙出发到第二次相遇时,小华共行了多少千米?85×3=255(千米)(2)甲乙两城相距多少千米?(255+35)÷2=290÷2=145(千米)答:两城相距145千米.三、拓展提升1.客车和货车同时从甲、乙两地相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原来的速度继续前进,客车到达乙站后立即返回,货车到达甲站后也立即返回,两车再次相遇时,客车比货车多行216千米.求甲乙两站相距多少千米?分析如图,从出发到第二次相遇时,客车和货车共行3个全程,在这段时间里客车一共比货车多行216千米,客车每小时比货车快54-48=6千米,这样可以求出行3个全程的时间为216÷6=36小时,由此可求出行一个全程时间:36÷3=12小时,因而可以求出甲乙两站的距离.解:①从出发到第二次是两车行驶的时间:216÷(54-48)=36(小时)②从出发到第一次相遇所用的时间:36÷3=12(小时)③甲乙两站的距离:(54+48)×12=1224(千米)答:求甲乙两站相距1224千米.2.甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车速度分别为每小时60千米和48千米,有一辆迎面开来的卡车分别在他们出发后6小时、7小时、8小时先后与甲、乙、丙三车相遇.求丙车的速度.分析:解答的关键是求出卡车的速度,从图上明显看出,甲车6小时的行程与乙车7小时的行程差正好是卡车的速度.再根据速度和、相遇时间和路程三者之间的关系,求出丙车速度.解:(1)卡车的速度:(60×6-48×7)÷(7-6)=24÷1=24(千米)(2)AB两地之间的距离:(60+24)×6=504(千米)(3)丙车与卡车的速度和:504÷8=64(千米)(4)丙车的速度:64-24=40(千米/小时)答:丙车的速度每小时40千米.3.两列火车从某站相背而行,甲车每小时行58千米,先开出2小时后,车以每小时62千米才开出,乙车开出5小时后,两列火车相距多少千米?②火车过桥过桥问题也是行程问题的一种.首先要弄清列车通过一座桥是指从车头上桥到车尾离桥.列车过桥的总路程是桥长加车长,这是解决过桥问题的关键.过桥问题也要用到一般行程问题的基本数量关系:过桥问题的一般数量关系是:因为:过桥的路程= 桥长+ 车长所以有:通过桥的时间=(桥长+ 车长)÷车速车速= (桥长+ 车长)÷过桥时间公式的变形:桥长= 车速×过桥时间—车长车长= 车速×过桥时间—桥长后三个都是根据第二个关系式逆推出的.火车通过隧道的问题和过桥问题的道理是一样的,也要通过上面的数量关系来解决.一、例题与方法指导例1.一列客车经过南京长江大桥,大桥长6700米,这列客车长100米,火车每分钟行400米,这列客车经过长江大桥需要多少分钟?思路导航:从火车头上桥,到火车尾离桥,这之间是火车通过这座大桥的过程,也就是过桥的路程是桥长+ 车长.通过“过桥的路程”和“车速”就可以求出火车过桥的时间.(1)过桥路程:6700 + 100 = 6800(米)(2)过桥时间:6800÷400 = 17(分)答:这列客车通过南京长江大桥需要17分钟.例2.一列火车长160米,全车通过440米的桥需要30秒钟,这列火车每秒行多少米?思路导航:要想求火车过桥的速度,就要知道“过桥的路程”和过桥的时间.(1)过桥的路程:160 + 440 = 600(米)(2)火车的速度:600÷30 = 20(米)答:这列火车每秒行20米.例3.某列火车通过360米的第一个隧道用了24秒钟,接着通过第二个长216米的隧道用了16秒钟,求这列火车的长度?思路导航:火车通过第一个隧道比通过第二个隧道多用了8秒,为什么多用8秒呢?原因是第一个隧道比第二个隧道长360—216 = 144(米),这144米正好和8秒相对应,这样可以求出车速.火车24秒行进的路程包括隧道长和火车长,减去已知的隧道长,就是火车长.(1)第一个隧道比第二个长多少米?360—216 = 144(米)(2)火车通过第一个隧道比第二个多用几秒?24—16 = 8(秒)(3)火车每秒行多少米?144÷8 = 18(米)(4)火车24秒行多少米?18×24 = 432(米)(5)火车长多少米?432—360 = 72(米)答:这列火车长72米.二、巩固训练1.某列火车通过342米的隧道用了23秒,接着通过234米的隧道用了17秒,这列火车与另一列长88米,速度为每秒22米的列车错车而过,问需要几秒钟?思路导航:通过前两个已知条件,我们可以求出火车的车速和火车的车身长.(342—234)÷(23—17)= 18(米)……车速18×23—342 = 72(米)……………………车身长两车错车是从车头相遇开始,直到两车尾离开才是错车结束,两车错车的总路程是两个车身之和,两车是做相向运动,所以,根据“路程÷速度和= 相遇时间”,可以求出两车错车需要的时间.(72 + 88)÷(18 + 22)= 4(秒)答:两车错车而过,需要4秒钟.2.一列火车全长265米,每秒行驶25米,全车要通过一座985米长的大桥,问需要多少秒钟?(265 + 985)÷25 = 50(秒)答:需要50秒钟.3.一列长50米的火车,穿过200米长的山洞用了25秒钟,这列火车每秒行多少米?(200 + 50)÷25 = 10(米)答:这列火车每秒行10米.三、拓展提升1.一列长240米的火车以每秒30米的速度过一座桥,从车头上桥到车尾离桥用了1分钟,求这座桥长多少米?1分= 60秒30×60—240 = 1560(米)答:这座桥长1560米.2.一列货车全长240米,每秒行驶15米,全车连续通过一条隧道和一座桥,共用40秒钟,桥长150米,问这条隧道长多少米?15×40—240—150 = 210(米)答:这条隧道长210米.3.一列火车开过一座长1200米的大桥,需要75秒钟,火车以同样的速度开过路旁的电线杆只需15秒钟,求火车长多少米?1200÷(75—15)= 20(米)20×15 = 300(米)答:火车长300米.4.在上下行轨道上,两列火车相对开来,一列火车长182米,每秒行18米,另一列火车每秒行17米,两列火车错车而过用了10秒钟,求另一列火车长多少米?(18 + 17)×10—182 = 168(米)答:另一列火车长168米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学五年级奥数趣味学习——火车行程问题
火车行程问题
两列火车错车用的时间是:
(A的车身长+B的车身长)÷(A车的速度+B车的速度)
两列火车超车用的时间是:
(A的车身长+B的车身长)÷(A车的速度-B车的速度)
(注:A车追B车)
火车过桥问题,可用下面的关系式求火车通过的时间:
(列车长度+桥的长度)÷列车速度
火车通过两座桥,或通过一座桥,隧道,车头走过的长度是:桥长+火车长或隧道长+火车长
其中火车长一样,比较长和隧道长,再比较所用的时间的差,就又求出火车的速度以及车身长。
人坐在列车上往窗外看另一列车,相当人在一定时间内走过一座桥。
例1:
一列慢车,车身长120米,车速是每秒15米,一列快车车身长160米,车速是每秒20米,两车在双轨轨道上相向而行,从车头相遇到车尾相离要用多少秒钟?
解答:(120+160)÷(15+20)
=280÷35
=8(秒)
答:两车从车头相遇到车尾相离用8秒钟。
例2:
一列火车长150米,每秒行20米,全车通过一座450米长的大桥,需多长时间?
解:
(150+450)÷20=30(秒)
答:需要30秒。
例3:
一列客车通过860米长的大桥,需要45秒钟,用同样速度穿过620米长的隧道需要35秒钟,求这列客车行驶的速度及车身的长度各多少米。
解:这列客车每秒行驶:
(860-620)÷(45-35)
=240÷10
=24(米)
这列客车的车身长:
24×45-860=1080-860=220(米)
答:这列客车每秒行驶24米,车身长220米。
例4:
某小学三、四年级学生共528人,排成四路纵队去看电影,队伍进行的速度是每分25米,前后两人都相距1米,现在队伍要走过一座桥,整个队伍从上桥到离桥共需16分,这座桥走多少米?
解:队伍长:1×(528÷4-1)=131(米)
队伍行进的路程:25×16=400(米)
桥长:400-131=269(米)
答:这座桥长269米。
例5:
某人沿着铁路边的便道步行,一列货车从身后开来,从他身旁通过的时间是15秒钟,货车长105米,每小时行驶28.8千米,求步行人每小时行多少千米?
解:(1000×28.8)÷(60×60)-105÷15
=8-7
=1(米/秒)
1×60×60=3.6(千米/时)
答:步行人每小时行3.6千米。
例6:
一列客车每分钟行1000米,一列货车每分钟750米,货车比客车的车身长135米。
两车在平行的轨道上同向行驶,当客车从后面超过货车,两车交叉的时间为1分30秒。
求货车与客车的车身长各是多少米?
解:(1000-750)×1.5
=250×1.5
=375(米)
这“375米”就正好是客车与货车的长度之和,题目已经告诉我们货
车比客车的车身长135米,这两车的长度,列式如下:
(375+135)÷2 (375-135)÷2
=510÷2 =240÷2
=255(米) =120(米)
答:货车长255米,客车长120米。