最新-江西省赣州市于都三中2018年九年级上学期第一次月考(无答案) 人教新课标版 精品
【九年级数学试题】2018届九年级上册数学第一次月考试卷(有答案)

2018届九年级上册数学第一次月考试卷(有答案)
因式分解法;三角形三边关系.
专题压轴题.
分析首先用因式分解法求得方程的根,再根据三角形的每条边的长都是方程x2﹣6x+8=0的根,进行分情况计算.
解答解由方程x2﹣6x+8=0,得x=2或4.
当三角形的三边是2,2,2时,则周长是6;
当三角形的三边是4,4,4时,则周长是12;
当三角形的三边长是2,2,4时,2+2=4,不符合三角形的三边关系,应舍去;
当三角形的三边是4,4,2时,则三角形的周长是4+4+2=10.综上所述此三角形的周长是6或12或10.
点评本题一定要注意判断是否能构成三角形的三边.
三、解答题(共8个小题、共72分)
17.(16分)用适当的方法解方程
(1)x2﹣2x﹣3=0;__________
(2)x2﹣3x﹣1=0;
(3)x(2x+3)=4x+6;
(4)(2x+3)2=x2﹣6x+9.
考点解一元二次方程-因式分解法;解一元二次方程-配方法;解一元二次方程-式法.
分析(1)分解因式,即可得出两个一元一次方程,求出方程的解即可.
(2)求出b2﹣4ac的值,再代入式求出即可.
(3)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.
(4)运用完全平方式,再开方,即可得出两个一元一次方程,求出方程的解即可.。
2018届九年级上学期语文第一次月考试卷第5套真题)

2018届九年级上学期语文第一次月考试卷一、字词书写1. 用正楷字或行楷字抄写下面语句。
银星万点,银波微漾。
2. 根据拼音写汉字,给划线字注音。
gāo________suī润如油________拮据恣________二、句子默写3. 用诗文原句填空。
(1)足蒸暑土气,________。
(白居易《观刈麦》)(2)更深月色半人家,________。
(刘方平《月夜》)(3)________,人迹板桥霜。
(温庭筠《商山早行》)(4)________,只有香如故。
(陆游《卜算子·咏梅》)(5)疑怪昨宵春梦好,________,笑从双脸生。
(晏殊《破阵子》)(6)过尽千帆皆不是,________。
(温庭筠《望江南》)(7)________,燕然未勒归无计。
(范仲淹《渔家傲·秋思》)(8)________,西北望,射天狼。
(苏轼《江城子·密州出猎》)(9)________,欲语泪先流。
(李清照《武陵春》)(10)江山如此多娇,________。
(毛泽东《沁园春·雪》)(11)陈述作者临危受命的千古名句是:________,________。
(诸葛亮《出师表》)三、综合性学习4. 下面是摘自不同作品中的书信内容,按要求完成题目。
【甲】“亲爱的菲利普,我给你写这封信,免得你担心我的健康。
我身体很好,买卖也好。
明天我就动身到南美去作长期旅行,也许要好几年不给你写信。
”【乙】“我更高兴的更安慰的是:多少过分的谀词与夸奖,都没有使你丧失自知之明,众人的掌声、拥抱,名流的赞美,都没有减少你对艺术的谦卑!【丙】“读史使人明智,读诗使人灵秀,数学使人周密,科学使人深刻,伦理学使人庄重,逻辑修辞之学使人善辩;凡有所学,皆成性格。
”(1)【甲】出自作品________,【乙】出自作品________。
(2)【乙】选自的作品是一本普通而又奇特的书。
这些家书凝聚着________对祖国、对儿子深厚的爱。
2018届九年级上学期语文第一次月考试卷第6套真题)

2018届九年级上学期语文第一次月考试卷一、选择题1. 下列划线字注音有误的一项是()A . 惘然(wǎng)嗤笑(chī)阴晦(huì)B . 恣睢(zì suī)胆怯(qiè)给予(jǐ)C . 狗吠(feī)戳穿(cuó)妒忌(dù jī)D . 诧异(chà)过瘾(yǐn)拮据(jié)2. 下列词语中有错别字的一项是()A . 鄙夷隔膜撅断朦胧B . 恣睢跌落皱痕煞白C . 阔绰瑟索栈桥萧索D . 一缕阔悼打拱嚼着3. 下列词语中解释划线字有误的一项是()A . 大事渲染(作)相时而动(看、观察)B . 狼狈不堪(不能忍受)缄默(封口)C . 莫名其妙(没有人)与日俱增(一起)D . 弄性尚气(注重)动辄(就)4. 下列对人物的描写方法判断有误的一项是()A . 他的脸色十分苍白,两只眼也跟寻常不一样。
(神态描写)B . 他真想站起来。
可是,如果举了手,程老师会喊他吗?课后赵小桢会不会嘲笑他?(心理描写)C . 却见一个凸颧骨,薄嘴唇,五十岁上下的女人站在我面前。
(肖像描写)D . 脸上现出欢喜和凄凉的神情;动着嘴唇,却没有作声。
他的态度终于恭敬起来了。
(动作捕写)5. 下列搭配有误的一项是()A . 鲁迅——《放乡》――《彷徨》B . 曹文轩——《孤独之旅》一一《草房子》C . 莫泊桑——《我的叔叔于勒》一一《羊脂球》D . 黄蓓佳一一《心声》——《儿童时代》6. 与下面的文字衔接起来最为连贯的一个句子是()可惜正月过去了,闫土须回家里去,我急得大哭,他也躲到厨房里,哭着不敢出门,。
A . 但父亲终于带走了他。
B . 但他父亲终于把他带走了。
C . 但终于被他父亲带走了。
D . 但他终于随他父亲走了。
7. 下列句子中使用了排比修辞的一项是()A . 应该承认,好读书这个习惯的养成是很重要的。
B . 读书足以怡情,足以傅彩,足以长才。
2018九年级第一次月考卷

九年级第一次月考英语试题第I卷(共65分)听力部分Ⅰ. 听对话,选答案(共15小题,计15分)第一节:听下面10段对话,每段对话后有一个问题,读两遍,请根据每段对话的内容和后面的问题,从所给的三个选项中选出最恰当的一项。
1. A. Mother and son. B. Teacher and student. C. Father and daughter.2. A. It’s Blue. B. It’s green. C. It’s black.3. A.To the hospital. B. To the bank. C. To the school.4. A .Noodles. B. Rice. C. Dumplings.5. A. To go climbing. B. To watch TV. C. To stay at home.6. A.A listening test . B. A reading test. C.A writing test7. A. It’s sunny. B. It’s cloudy. C. It’s rainy.8. A. It’s Monday. B. It’s Sunday C. It’s Wednesday.9. A. The sports club. B.The art club. C.The music club.10.A.An actor. B. A player. C. A singer.第二节:听下面两段对话,每段对话后有几道小题,请根据每段对话的内容和后面的问题,从所给的三个选项中选出最恰当的一项,每段对话读两遍。
听第11段对话,回答第11至12小题。
11. Who is out?A. Sam.B. Mary.C. John.12. What is the message?A. To buy a bag in the afternoon.B. To call back in the afternoon.C. To go back in the afternoon.听第12段对话,回答第13至15小题。
【九年级数学试题】2018九年级上学期第一次月考数学试卷(含答案)

2018九年级上学期第一次月考数学试卷(含答案)
江西省宜春七中因式分解法.
专题计算题.
分析本方程的左边为两个一次因式相乘,右边为0,所以直接得方程x(x+1)=0的根是0,﹣1.
解答解x(x+1)=0
x=0或x+1=0
x1=0,x2=﹣1
故本题的答案是x1=0,x2=﹣1
点评因式分解法解一元二次方程时,应使方程的左边为两个一次因式相乘,右边为0,再分别使各一次因式等于0即可求解.9.(3分)已知2是关于x的一元二次方程x2+4x﹣p=0的一个根,则该方程的另一个根是﹣6.
考点根与系数的关系;一元二次方程的解.
分析根据根与系数的关系x1+x2=﹣,x1 x2= ,此题选择两根和即可求得.
解答解∵2是关于x的一元二次方程x2+4x﹣p=0的一个根,
∴2+x1=﹣4,
∴x1=﹣6,
∴该方程的另一个根是﹣6.
点评此题主要考查了一元二次方程的根与系数的关系.
10.(3分)若|b﹣1|+ =0,且一元二次方程x2+ax+b=0有两个实数根,则的取值范围是≤4且≠0.
考点根的判别式;非负数的性质绝对值;非负数的性质算术平方根.
专题计算题.
分析首先根据非负数的性质求得a、b的值,再由二次函数的根。
2024-2025学年九年级上册数学第一次月考试卷02【人教版】

2024-2025学年九年级上册数学第一次月考试卷02【人教版】数学(人教版)注意事项:1.你拿到的试卷满分150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分.“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1.一元二次方程212302x x --=的一次项系数是()A.2B.12C.12-D.-32.对于二次函数()253y x =+的图象,下列说法不正确的是()A.开口向上B.对称轴是直线3x =-C.顶点坐标为()3,0- D.当3x <-时,y 随x 的增大而增大3.关于x 的一元二次方程224(41)0x m x m +++=有实数根,则m 的最小整数值为()A.1B.0C.-1D.-24.二次函数()220y ax ax c a =-+≠的图象过点()3,0,方程220ax ax c -+=的解为()A.123,1x x =-=-B.121,3x x =-=C.121,3x x == D.123,1x x =-=5.2023年4月23是第28个世界读书日,读书已经成为很多人的一种生活方式,城市书院是读书的重要场所之一,据统计,某书院对外开放的第一个月进书院600人次,进书院人次逐月增加,到第三个月末累计进书院2850人次,若进书院人次的月平均增长率为x ,则可列方程为()A.600(12)2850x += B.2600(1)2850x +=C.2600600(1)600(1)2850x x ++++= D.22850(1)600x -=6.若点()13,A y -,()21,B y ,()32,C y 是抛物线22y x x =-+上的三点,则1y ,2y ,3y 的大小关系为()A.123y y y >> B.231y y y >> C.321y y y >> D.213y y y >>7.二次函数()20y ax bx c a =++≠的图象如图所示,则一次函数y bx a =+的图象不经过()A.第四象限B.第三象限C.第二象限D.第一象限8.如图,在平面直角坐标系中,点A 、E 在抛物线2y ax =上,过点A 、E 分别作y 轴的垂线,交抛物线于点B 、F ,分别过点E 、F 作x 轴的垂线交线段AB 于两点C 、D .当点()24E ,,四边形CDFE 为正方形时,则线段AB 的长为()A.4B.C.5D.9.如图,四边形ABCD 是边长为5的菱形,对角线AC BD ,的长度分别是一元二次方程2240x mx ++=的两实数根,DH 是AB 边上的高,则DH 值为()A.1.2B.2.4C.3.6D.4.810.已知,0ab >,420a b c ++=,420a b c -+>,则下列结论成立的是()A.0a >,24b ac≥ B.0a >,24b ac< C.0<a ,24b ac< D.0<a ,24b ac>二、填空题(本大题共4小题,每小题5分,满分20分)11.已知关于x 的一元二次方程()221210m x x m -++-=有一个根是0,则m 的值是________.12.将二次函数22y x x =+的图象向右平移1个单位长度,再向上平移2个单位长度,平移后的二次函数的图象的顶点坐标是________.13.非零实数m ,()n m n ≠满足220m m --=,220n n --=,则11m n+=______.14.在平面直角坐标系中,设二次函数()()1y x a x a =+--,其中0a ≠.(1)此二次函数的对称轴为直线x =______;(2)已知点(),P t m 和()1,Q n 在此函数的图象上,若m n ≤,则t 的取值范围是______;三、(本大题共2小题,每小题8分,满分16分)15.解方程(1)2x 2+4x +1=0(配方法)(2)x 2+6x =5(公式法)16.已知二次函数2y ax bx c =++的图象经过()1,5A ,()0,3B ,()1,3C --三点.(1)求这个函数的解析式;(2)用配方法求出这个二次函数图象的顶点坐标.四、(本大题共2小题,每小题8分,满分16分)17.在平面直角坐标系xOy 中,已知点()1,m -,()2,n 在二次函数23y x bx =+-的图象上.(1)当m n =时,求b 的值;(2)在(1)的条件下,当32x -<<时,求y 的取值范围.18.定义:如果关于x 的一元二次方程()200ax bx c a ++=≠满足0a b c -+=,那么我们称这个方程为“黄金方程”.(1)判断一元二次方程22530x x ++=是否为黄金方程,并说明理由.(2)已知230x ax b -+=是关于x 的黄金方程,若a 是此黄金方程的一个根,求a 的值.五、(本大题共2小题,每小题10分,满分20分)19.已知关于x 的方程()23260x k x k +--=.若等腰三角形ABC 的一边6a =,另两边长b ,c 恰好是这个方程的两个根,求ABC 的周长.20.某社区在开展“美化社区,幸福家园”活动中,计划利用如图所示的直角墙角(阴影部分,两边足够长),用50米长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,AD 两边).(1)若花园的面积为400米2,求AB 的长;(2)若在直角墙角内点P 处有一棵桂花树,且与墙BC ,CD 的距离分别是10米,30米,要将这棵树围在矩形花园内(含边界,不考虑树的粗细),则花园的面积能否为625米2?若能,求出AB 的值;若不能,请说明理由.六、(本题满分12分)21.在平面直角坐标系中,抛物线()2220y x mx m m x =-+-+≥的顶点为A ,与y 轴相交于点B .(1)点A 的坐标为________,点B 的坐标为________;(用含m 的式子表示)(2)设抛物线()2220y x mx m m x =-+-+≥的函数图象最高点的纵坐标为n .①当1m =时,n =________;当1m =-时,n =________;②写出n 关于m 的函数解析式及自变量m 的取值范围.七、(本题满分12分)22.已知关于x 的一元二次方程22210x kx k k -+++=有两个实数根.(1)试求k 的取值范围;(2)若221210x x +=,求k 的值;(3)若此方程的两个实数根为1x ,2x ,且满足122x x +=,试求k 的值.八、(本题满分14分)23.如图,抛物线2y x bx c =-++的图象与x 轴交于点()30A -,和点C ,与y 轴交于点()0,3B .(1)求抛物线的解析式;(2)设点P 为抛物线的对称轴上一动点,当PBC 的周长最小时,求点P 的坐标;的面积最大?若存在,求出点Q的坐标;若(3)在第二象限的抛物线上,是否存在一点Q,使得ABQ不存在,请说明理由.2024-2025学年九年级上册数学第一次月考试卷02【人教版】数学(人教版)注意事项:1.你拿到的试卷满分150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分.“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1.一元二次方程212302x x --=的一次项系数是()A.2 B.12C.12-D.-3【答案】C 【解析】【分析】根据一元二次方程的一般形式,即可解答.【详解】解:一元二次方程212302x x --=的一次项系数是12-,故选:C .【点睛】本题考查了一元二次方程的一般形式及其概念,熟练掌握和运用一元二次方程的一般形式及其概念是解决本题的关键.2.对于二次函数()253y x =+的图象,下列说法不正确的是()A.开口向上B.对称轴是直线3x =-C.顶点坐标为()3,0- D.当3x <-时,y 随x 的增大而增大【答案】D 【解析】【分析】根据二次函数的表达式,可得出抛物线的开口方向,对称轴,顶点坐标及增减性,据此可解决问题.【详解】解:因为二次函数的表达式为25(3)y x =+,所以抛物线的开口向上,故A 说法正确;又抛物线的对称轴是直线3x =-,故B 说法正确;因为抛物线的顶点坐标为()3,0-,故C 说法正确;因为抛物线对称轴为直线3x =-,且开口向上,所以当3x <-时,y 随x 的增大而减小.故D 说法不正确;故选:D .【点睛】本题考查二次函数的图象和性质,能根据所给函数表达式得出开口向下、对称轴、顶点坐标和增减性是解题的关键.3.关于x 的一元二次方程224(41)0x m x m +++=有实数根,则m 的最小整数值为()A.1B.0C.-1D.-2【答案】B 【解析】【分析】根据判别式24b ac ∆=-用含有m 的式子将∆表示出来,再根据有实数根,则可知0∆≥,列出不等式即可解决问题.【详解】解: 224(41)0x m x m +++=,∴()2222411616811681m m m m m m ∆=+-=++-=+,有实数根,∴810m +≥,∴18m ≥-,∴最小整数值为0.故选:B .【点睛】本题考查了根据一元二次方程根的情况求参数,解决本题的关键是熟记根的情况与判别式的关系.4.二次函数()220y ax ax c a =-+≠的图象过点()3,0,方程220ax ax c -+=的解为()A.123,1x x =-=-B.121,3x x =-=C.121,3x x ==D.123,1x x =-=【答案】B 【解析】【分析】首先求出二次函数的对称轴,然后根据二次函数的对称性得到抛物线与x 轴的另一个交点坐标为()3,0,进而利用二次函数与一元二次方程的关系即可求解.【详解】解:抛物线的对称轴为直线212ax a-=-=,∵抛物线与x 轴的一个交点坐标为()3,0,且1(31)1--=-,∴抛物线与x 轴的另一个交点坐标为()1,0-,∴方程220ax ax c -+=的解为:121,3x x =-=.故选:B .【点睛】本题考查了抛物线与x 轴的交点:把求二次函数2y ax bx c =++(a ,b ,c 是常数,0a ≠)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.5.2023年4月23是第28个世界读书日,读书已经成为很多人的一种生活方式,城市书院是读书的重要场所之一,据统计,某书院对外开放的第一个月进书院600人次,进书院人次逐月增加,到第三个月末累计进书院2850人次,若进书院人次的月平均增长率为x ,则可列方程为()A.600(12)2850x += B.2600(1)2850x +=C.2600600(1)600(1)2850x x ++++= D.22850(1)600x -=【答案】C 【解析】【分析】先分别表示出第二个月和第三个月的进馆人次,再根据第一个月的进馆人次加第二和第三个月的进馆人次等于2850,列方程即可.【详解】解:设进馆人次的月平均增长率为x ,则由题意得:2600600(1)600(1)2850x x ++++=.故选:C .【点睛】本题属于一元二次方程的应用题,列出方程是解题的关键.本题难度适中,属于中档题.6.若点()13,A y -,()21,B y ,()32,C y 是抛物线22y x x =-+上的三点,则1y ,2y ,3y 的大小关系为()A.123y y y >>B.231y y y >> C.321y y y >> D.213y y y >>【答案】B 【解析】【分析】根据二次函数的性质得到抛物线22y x x =-+的开口向下,对称轴为直线1x =,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:∵抛物线22y x x =-+,∴抛物线开口向下,对称轴为直线()2121x =-=⨯-,而()13,A y -离直线1x =的距离最远,()21,B y 在直线1x =上,∴231y y y >>.故选:B .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.7.二次函数()20y ax bx c a =++≠的图象如图所示,则一次函数y bx a =+的图象不经过()A.第四象限B.第三象限C.第二象限D.第一象限【答案】C 【解析】【分析】先根据二次函数图象与系数的关系得到a<0,0b >,再根据一次函数图象与系数的关系求解即可.【详解】解:∵二次函数开口向下,对称轴在y 轴右侧,∴002ba a<>-,,∴0b >,∴一次函数y bx a =+的图象经过第一、三、四象限,不经过第二象限,故选C .【点睛】本题主要考查了一次函数图象与系数的关系,二次函数图象与系数的关系,正确推出a<0,0b >是解题的关键.8.如图,在平面直角坐标系中,点A 、E 在抛物线2y ax =上,过点A 、E 分别作y 轴的垂线,交抛物线于点B 、F ,分别过点E 、F 作x 轴的垂线交线段AB 于两点C 、D .当点()24E ,,四边形CDFE 为正方形时,则线段AB 的长为()A.4B.C.5D.【答案】B 【解析】【分析】通过待定系数法求出函数解析式,然后设点A 横坐标为m ,则4CD CE ==,从而得出()8A m ,,将点坐标代入解析式求解.【详解】解:把点()24E ,代入2y ax =中得44a =,解得1a =,∴2y x =,∵点()24E ,,四边形CDFE 为正方形,∴4CD CE EF ===,设点A 横坐标为m ,则()8A m ,,代入2y x =得28m =,解得m =或m =-.∴2AB m ==.故选:B .【点睛】本题考查二次函数与正方形的结合,解题关键是利用待定系数法求得函数解析式.9.如图,四边形ABCD 是边长为5的菱形,对角线AC BD ,的长度分别是一元二次方程2240x mx ++=的两实数根,DH 是AB 边上的高,则DH 值为()A.1.2B.2.4C.3.6D.4.8【答案】B【解析】【分析】根据对角线AC BD ,的长度分别是一二次方程2240x mx ++=的两实数根,得到24AC BD ⨯=,根据菱形的面积公式得到1122ABCD S AC BD =⨯=菱形,再根据ABCD S AB DH =⨯菱形得到12 2.45DH ==.【详解】解:∵对角线AC BD ,的长度分别是一二次方程2240x mx ++=的两实数根,∴24AC BD ⨯=,∴1122ABCD S AC BD =⨯=菱形,∵ABCD S AB DH =⨯菱形,∴12AB DH ⨯=,∴12 2.45DH ==,故选:B .【点睛】本题考查了菱形的面积和一元二次方程根与系数的关系的应用,掌握菱形面积的计算方法是解题的关键.10.已知,0ab >,420a b c ++=,420a b c -+>,则下列结论成立的是()A.0a >,24b ac≥ B.0a >,24b ac < C.0<a ,24b ac < D.0<a ,24b ac >【答案】D【解析】【分析】设2y ax bx c =++,由0ab >,420a b c ++=,420a b c -+>可得二次函数过(2,0),(2,)t -()0t >,且其对称轴在x 轴负半轴,即可求解.【详解】解:设2y ax bx c =++,∵420a b c ++=,420a b c -+>,∴二次函数过(2,0),(2,)t -()0t >,∵0ab >,∴二次函数对称轴<02b x a=-,二次函数的大致图象如下:由图象可知0<a ,∵二次函数与x 轴有2个交点,∴240b ac ∆=->,即24b ac >,故选:D .【点睛】本题考查二次函数的图象与性质.由题意确定二次函数经过的点和其对称轴的特点是解答本题的关键.二、填空题(本大题共4小题,每小题5分,满分20分)11.已知关于x 的一元二次方程()221210m x x m -++-=有一个根是0,则m 的值是________.【答案】1-【解析】【分析】把0x =代入方程进行计算,结合一元二次方程的二次项系数不为0,即可得到答案.【详解】解:把0x =代入方程,得:210m -=,∴1m =±,∵10m -≠,∴1m ≠,∴1m =-;故答案为:1-.【点睛】本题考查了解一元二次方程,以及方程的解,解题的关键是熟练掌握解一元二次方程的方法,利用方程的解正确求出参数.12.将二次函数22y x x =+的图象向右平移1个单位长度,再向上平移2个单位长度,平移后的二次函数的图象的顶点坐标是________.【答案】()0,1【解析】【分析】按照“左加右减,上加下减”的规律解答.【详解】解:()22211y x x x =+=+- ,∴二次函数22y x x =+的图象的顶点坐标是()11--,,图象向右平移1个单位,再向上平移2个单位,得到函数图象的顶点坐标是()0,1.故答案为:()0,1.【点睛】此题主要考查了二次函数图象与几何变换,关键是掌握平移的规律.13.非零实数m ,()n m n ≠满足220m m --=,220n n --=,则11m n+=______.【答案】12-##0.5-【解析】【分析】根据已知判断出m ,n 是方程220x x --=的两实数根,然后利用根与系数关系即可求解.【详解】解:∵实数m ,()n m n ≠满足等式220m m --=,220n n --=,∴m ,n 是方程220x x --=的两实数根,∴1m n +=,mn 2=-,∴111122m n m n mn ++===--,故答案为:12-.【点睛】本题考查了方程的解以及一元二次方程的根与系数关系,能熟练利用方程解的定义得到m ,n 是方程220x x --=的两实数根是解题的关键.14.在平面直角坐标系中,设二次函数()()1y x a x a =+--,其中0a ≠.(1)此二次函数的对称轴为直线x =______;(2)已知点(),P t m 和()1,Q n 在此函数的图象上,若m n ≤,则t 的取值范围是______;【答案】①.12##0.5②.01t ≤≤【解析】【分析】(1)根据二次函数()()1y x a x a =+--,经过(),0a -和()1,0a +,是对称点,算出对称轴即可;(2)根据对称轴为直线12x =,点(),P t m 和()1,Q n 在二次函数()()1y x a x a =+--的图象上,画出函数图象,点Q 关于对称轴的对称点Q ',分析图象,写出t 的取值范围即可.【详解】(1) 二次函数()()1y x a x a =+--,∴函数经过(),0a -和()1,0a +,是对称点,∴对称轴为直线1122a a x -++==,故答案为:12(2) 二次函数()()1y x a x a =+--,∴二次项系数为10>,∴函数图象开口向上,又(),P t m 和()1,Q n 在此函数的图象上,对称轴为直线12x =,∴画出图象如下图,点Q 关于对称轴的对称点Q '横坐标12102=⨯-=,m n ≤ ,∴点P 应在线段QQ '下方部分的抛物线上(包括点Q 、Q '),01t ∴≤≤,故答案为:01t ≤≤【点睛】本题考查了二次函数的图象和性质,画出图象数形结合是解题的关键.三、(本大题共2小题,每小题8分,满分16分)15.解方程(1)2x 2+4x +1=0(配方法)(2)x 2+6x =5(公式法)【答案】(1)121122x x =-+=--(2)13x =-+,23x =-.【解析】【分析】(1)配方法求解可得;(2)公式法求解可得.【小问1详解】(1)解:2x 2+4x =﹣1,x 2+2x =﹣12,x 2+2x +1=﹣12+1,即(x +1)2=12,∴x +1=±22,则x =﹣1±2∴121122x x =-+=--【小问2详解】解:x 2+6x ﹣5=0,∵a =1,b =6,c =﹣5,∴△=36﹣4×1×(﹣5)=56,则x =62142-±=﹣313x =-+,23x =-.【点睛】本题考查了公式法和配方法解一元二次方程,熟悉用公式法和配方法解一元二次方程的解题步骤是解题的关键.16.已知二次函数2y ax bx c =++的图象经过()1,5A ,()0,3B ,()1,3C --三点.(1)求这个函数的解析式;(2)用配方法求出这个二次函数图象的顶点坐标.【答案】(1)二次函数的解析式为2243y x x =-++(2)顶点坐标是()1,5【解析】【分析】(1)将点()1,5A 、()0,3B 、()1,3C --代入二次函数的解析式2y ax bx c =++,利用待定系数法求得这个二次函数的解析式;(2)利用(1)的结果,将二次函数的解析式转化为顶点式,然后根据解析式求这个二次函数的顶点坐标.【小问1详解】解:将()1,5A 、()0,3B 、()1,3C --代入二次函数2y ax bx c =++,得533a b c c a b c ++=⎧⎪=⎨⎪-+=-⎩,解得243a b c =-⎧⎪=⎨⎪=⎩.∴二次函数的解析式为2243y x x =-++.【小问2详解】解:∵()22243215y x x x =-++=--+,∴顶点坐标是()1,5.【点睛】本题考查了待定系数法求二次函数的解析式、二次函数的三种形式.将二次函数的一般解析式转化为顶点式时,采用了“配方法”.四、(本大题共2小题,每小题8分,满分16分)17.在平面直角坐标系xOy 中,已知点()1,m -,()2,n 在二次函数23y xbx =+-的图象上.(1)当m n =时,求b 的值;(2)在(1)的条件下,当32x -<<时,求y 的取值范围.【答案】(1)1b =-(2)1394y -≤<【解析】【分析】(1)将点()1,m -,()2,n 代入23y xbx =+-可得2m b =--,12n b =+,结合m n =,再建立方程求解即可;(2)由22113324y x x x ⎛⎫=--=-- ⎪⎝⎭可得函数最小值,再分别计算3x =-,2x =时的函数值,从而可得答案.【小问1详解】解:将点()1,m -,()2,n 代入23y xbx =+-,得2m b =--,12n b =+,∵m n =,∴212b b --=+,∴1b =-.【小问2详解】∵22113324y x x x ⎛⎫=--=-- ⎪⎝⎭,∴当12x =时,最小值134y =-,当3x =-时,9y =,当2x =时,1y =-,∴当32x -<<时,y 的取值范围为1394y -≤<.【点睛】本题考查的是利用待定系数法求解二次函数的解析式,二次函数的图象与性质,熟练的利用图象性质求解函数值的取值范围是解本题的关键.18.定义:如果关于x 的一元二次方程()200ax bx c a ++=≠满足0a b c -+=,那么我们称这个方程为“黄金方程”.(1)判断一元二次方程22530x x ++=是否为黄金方程,并说明理由.(2)已知230x ax b -+=是关于x 的黄金方程,若a 是此黄金方程的一个根,求a 的值.【答案】(1)一元二次方程22530x x ++=是黄金方程,理由见解析(2)1a =-或32a =【解析】【分析】(1)根据黄金方程的定义进行求解即可;(2)根据黄金方程的定义得到3b a =--,则原方程为2330x ax a ---=,再由a 是此黄金方程的一个根,得到2230a a --=,解方程即可.【小问1详解】解:一元二次方程22530x x ++=是黄金方程,理由如下:由题意得,253a b c ===,,,∴2350a b c -+=+-=,∴一元二次方程22530x x ++=是黄金方程;【小问2详解】解:∵230x ax b -+=是关于x 的黄金方程,∴()30b a +--=,∴3b a =--,∴原方程为2330x ax a ---=,∵a 是此黄金方程的一个根,∴22330a a a ---=,即2230a a --=,∴()()1230a a +-=,解得1a =-或32a =.【点睛】本题主要考查了解一元二次方程,一元二次方程解的定义,正确理解题意是解题的关键.五、(本大题共2小题,每小题10分,满分20分)19.已知关于x 的方程()23260x k x k +--=.若等腰三角形ABC 的一边6a =,另两边长b ,c 恰好是这个方程的两个根,求ABC 的周长.【答案】周长为14【解析】【分析】当0∆≥时,求出k 值,进而找出方程的根,再进行分类讨论从而得出三角形的周长.【详解】解:∵22224(32)4(6)9124(32)0b ac k k k k k ∆=-=--⋅-=++=+≥,∴无论k 取何值,方程总有实数根.①若6a =为底边,则b ,c 为腰长,则b c =,则Δ0=,∴()2320k +=,解得23k =-.此时原方程化为2440x x -+=,∴122x x ==,即2b c ==.此时ABC 三边为6,2,2,不能构成三角形,舍去;②若6a =为腰,则b ,c 中一边为腰,不妨设6b a ==,将6x =代入方程,得()2663260k k +--=,解得2k =-,则原方程化为28120x x -+=,∴12x =,26x =,即6b =,2c =,此时ABC 三边为6,6,2,能构成三角形.综上所述,ABC 三边为662,,,∴周长为66214++=.【点睛】本题考查了根的判别式、三角形的三边关系以及等腰三角形的性质,掌握根的判别式是解题的关键.20.某社区在开展“美化社区,幸福家园”活动中,计划利用如图所示的直角墙角(阴影部分,两边足够长),用50米长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,AD 两边).(1)若花园的面积为400米2,求AB 的长;(2)若在直角墙角内点P 处有一棵桂花树,且与墙BC ,CD 的距离分别是10米,30米,要将这棵树围在矩形花园内(含边界,不考虑树的粗细),则花园的面积能否为625米2?若能,求出AB 的值;若不能,请说明理由.【答案】(1)10米或40米(2)不能,见解析【解析】【分析】(1)设AB 的长为x 米,则BC 的长为()50x -米,由矩形的面积公式列出方程,解方程即可得到答案;(2)设AB 的长为x 米,则BC 的长为()50x -米,由矩形的面积公式列出方程,解方程即可得到答案.【小问1详解】解:设AB 的长为x 米,则BC 的长为()50x -米,由题意得:()50400x x -=,解得:121040x x ==,,即AB 的长为10米或40米;【小问2详解】解:花园的面积不能为625米2,理由如下:设AB 的长为x 米,则BC 的长为()50x -米,由题意得:()50625x x -=,解得:1225x x ==,当25x =时,50502525BC x =-=-=,即当25AB =米,25BC =米<30米,∴花园的面积不能为625米2.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.六、(本题满分12分)21.在平面直角坐标系中,抛物线()2220y x mx m m x =-+-+≥的顶点为A ,与y 轴相交于点B .(1)点A 的坐标为________,点B 的坐标为________;(用含m 的式子表示)(2)设抛物线()2220y x mx m m x =-+-+≥的函数图象最高点的纵坐标为n .①当1m =时,n =________;当1m =-时,n =________;②写出n 关于m 的函数解析式及自变量m 的取值范围.【答案】(1)(),m m ,()20,m m -+(2)①1,2-;②2,0,0m m n m m m ≥⎧=⎨-+<⎩【解析】【分析】(1)首先将抛物线转化成顶点式,即可求出A 点坐标,然后将0x =代入即可求出B 点坐标;(2)①首先将抛物线转化成顶点式,分别将1m =或1m =-代入求解即可;②首先将抛物线转化成顶点式,然后根据二次函数的性质求解即可.【小问1详解】∵()2222y x mx m m x m m =-+-+=--+,∴(),A m m ,令0x =,则2222y x mx m m m m =-+-+=-+,∴()20,B m m -+.故答案为:(),m m ,()20,m m -+;【小问2详解】()()22220y x mx m m x m m x =-+-+=--+≥.①当1m =时,()()2110y x x =--+≥,则函数的最高点为()1,1;当1m =-时,()()2110y x x =-+-≥,则函数的最高点为()0,2-,故答案为:1,2-.②()2222y x mx m m x m m =-+-+=--+,则抛物线的对称轴为x m =.当0m ≥时,()()20y x m m x =--+≥的图象过顶点(),m m ,则n m =;当0m <时,()()20y x m m x =--+≥的图象都在对称轴的右侧,y 随x 的增大而减小,所以函数的最高点为()20,m m -+,则2n m m =-+,综上,2,0,0m m n m m m ≥⎧=⎨-+<⎩.【点睛】此题考查了二次函数的性质,解题的关键是熟练掌握二次函数的性质.七、(本题满分12分)22.已知关于x 的一元二次方程22210x kx k k -+++=有两个实数根.(1)试求k 的取值范围;(2)若221210x x +=,求k 的值;(3)若此方程的两个实数根为1x ,2x ,且满足122x x +=,试求k 的值.【答案】(1)1k ≤-(2)2k =-(3)1k =-【解析】【分析】(1)根据方程的系数结合根的判别式0∆≥,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围;(2)由根与系数的关系可得出122x x k +=,2121x x k k =++,结合221210x x +=可得出关于k 的方程,解之即可得出k 的值;(3)由(2)可知:122x x k +=,2121x x k k =++,根据22131024k k k ⎛⎫++=++> ⎪⎝⎭,可得120x x >,即由122x x +=,可得22112224x x x x ++=,进而可得22112224x x x x ++=,则有()2124x x +=,即()224k =,问题得解.【小问1详解】∵关于x 的一元二次方程22210x kx k k -+++=有两个实数根,∴()()222Δ424110b ac k k k =-=--⨯⨯++≥,解得:1k ≤-;【小问2详解】∵方程22210x kx k k -+++=的两个实数根为1x ,2x ,∴122x x k +=,2121x x k k =++,∵221210x x +=,∴222121212()210x x x x x x +=+-=,∴()22(2)2110k k k -++=,整理得:260k k --=,解得:3k =或者2k =-,∵根据(1)有1k ≤-,即2k =-;【小问3详解】由(2)可知:122x x k +=,2121x x k k =++,∵22131024k k k ⎛⎫++=++> ⎪⎝⎭,∴120x x >,∵122x x +=,∴()2124x x +=,∴22112224x x x x ++=,∵120x x >,∴22112224x x x x ++=,∴()2124x x +=,∴()224k =,∴1k =±,∵根据(1)有1k ≤-,即1k =-.【点睛】本题考查了一元二次方程根的判别式,一元二次方程根与系数的关系,熟练掌握一元二次方程根的判别式和根与系数的关系,灵活运用完全平方公式的变形是解题的关键.八、(本题满分14分)23.如图,抛物线2y x bx c =-++的图象与x 轴交于点()30A -,和点C ,与y 轴交于点()0,3B .(1)求抛物线的解析式;(2)设点P 为抛物线的对称轴上一动点,当PBC 的周长最小时,求点P 的坐标;(3)在第二象限的抛物线上,是否存在一点Q ,使得ABQ 的面积最大?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)抛物线的解析式为223y x x =--+(2)点P 坐标为()1,2-(3)存在,点Q 的坐标为315,24⎛⎫-⎪⎝⎭【解析】【分析】(1)利用待定系数法求解即可;(2)易得抛物线的对称轴为1x =-,又可求出()1,0C .连接AB 与对称轴1x =-的交点即为所求点P .利用待定系数法即可求出直线AB 的解析式,令=1x -,则2y =,即点P 坐标为()1,2-;(3)设()2,23Q x x x --+是第二象限的抛物线上一点,过点Q 作QD x ⊥轴交直线AB 于点E ,则点E 的坐标为(),3x x +,从而可求出23QE x x =--,再根据ABQ BQE AQE S S S =+△△△,结合二次函数的性质即可求解.【小问1详解】解:∵抛物线2y x bx c =-++的图象经过点()30A -,和点()0,3B ,∴0933b c c =--+⎧⎨=⎩,解得23b c =-⎧⎨=⎩,∴抛物线的解析式为223y x x =--+;【小问2详解】解:()222314y x x x =--+=-++,∴抛物线的对称轴为1x =-,令2230y x x =--+=,解得:13x =-,21x =,∴()1,0C .∵点C 与点A 关于直线1x =-对称,∴连接AB 与对称轴1x =-的交点即为所求点P .设直线AB 的解析式为y kx m =+,∴303k m m -+=⎧⎨=⎩,解得:13k m =⎧⎨=⎩,∴直线AB 的解析式为3y x =+;当=1x -时,2y =,∴点P 坐标为()1,2-;【小问3详解】存在.设()2,23Q x x x --+是第二象限的抛物线上一点,过点Q 作QD x ⊥轴交直线AB 于点E ,∴点E 的坐标为(),3x x +,∴2223(3)3QE x x x x x =--+-+=--,∴()22133327322228ABQ BQE AQES S S QE OA x x x ⎛⎫=+=⋅=-+=-++ ⎪⎝⎭△△△,∴当32x =-时,ABQ S △取得最大值,此时215234y x x =--+=,∴315,24Q ⎛⎫- ⎪⎝⎭.综上,在第二象限的抛物线上,存在一点Q ,使得ABQ 的面积最大,且点Q 的坐标为315,24⎛⎫- ⎪⎝⎭.【点睛】本题为二次函数综合题,考查利用待定系数法求函数解析式,二次函数的图象和性质等知识.利用数形结合的思想是解题关键.。
九年级数学上学期【第一次月考卷】(原卷版)
九年级数学上学期【第一次月考卷】(人教版)(满分120分,完卷时间100分钟)考生注意:1.本试卷含三个大题,共26题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出解题的主要步骤.一.选择题(共10小题)1.若关于x的一元二次方程(m﹣3)x2+5x+m2﹣3m+2=0的常数项为0,则m的值等于()A.1B.2C.1或2D.02.方程(x﹣1)(x+3)=12化为ax2+bx+c=0的形式后,a、b、c的值为()A.1、2、﹣15B.1、﹣2、﹣15C.﹣1、﹣2、﹣15D.﹣1、2、﹣153.某果园2012年水果产量为100吨,2014年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100B.100(1﹣x)2=144C.144(1+x)2=100D.100(1+x)2=1444.下列一元二次方程中,两实数根之和为3的是()A.x2﹣3x+3=0B.x2+3x﹣3=0C.x2﹣3x﹣3=0D.x2+3x+3=05.二次函数y=2x2﹣x﹣1的顶点坐标是()A.(0,﹣1)B.(2,﹣1)C.(,﹣)D.(﹣,)6.方程x(x−2)=x−1化成一元二次方程的一般形式是()A.x2﹣2x+2=0B.x2﹣2x=0C.x2﹣3x﹣1=0D.x2﹣3x+1=07.如图,△ABC的边BC=y,BC边上的高AD=x,△ABC的面积为3,则y与x的函数图象大致是()A.B.C.D.8.已知三角形的一边长是3,三角形的另两条边长分别是关于x的方程x2﹣4x+2=0的两个根,则此三角形的周长为()A.10B.8C.7D.59.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570D.32x+2×20x﹣2x2=57010.已知四个二次函数的图象如图所示,那么a1,a2,a3,a4的大小关系是()A.a1>a2>a3>a4B.a2>a1>a4>a3C.a2>a1>a3>a4D.a1>a2>a4>a3二.填空题(共8小题)11.当方程(m﹣1)x﹣(m+1)x﹣2=0是一元二次方程时,m的值为.12.如果关于x的方程x2﹣2x+m=0(m为常数)有两个相等实数根,那么m=.13.已知二次函数y=2x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则m =.14.如图是一张长9cm、宽5cm的矩形纸板,将纸板四个角各剪去一个同样的正方形,可制成底面积是12cm2的一个无盖长方体纸盒,设剪去的正方形边长为xcm,则可列出关于x的方程为.15.参加一次聚会的每两人都握了一次手,所有人共握手66次,则有人参加聚会.16.若抛物线y=ax2+bx+c过点A(﹣1,2),B(3,2),则此抛物线的对称轴是直线.17.对于实数a,b,定义运算“⊗”:,例如:5⊗3,因为5>3,所以5⊗3=5×3﹣32=6.若x1,x2是一元二次方程x2﹣6x+8=0的两个根,则x1⊗x2=.18.已知抛物线y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②b2>4ac;③4a+2b+c>0;④(a+b)2<b2,其中正确的有.三.解答题(共8小题)19.解下列方程:5x2﹣3x=x+1.20.求二次函数y=x2﹣2x﹣1的顶点坐标及它与x轴的交点坐标.21.已知等腰三角形底边长为8,腰长是方程x2﹣9x+20=0的一个根,求这个三角形的面积.22.某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为万元;(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.23.已知关于x的方程x2﹣(k+1)x+k2+1=0.(1)当k取何值方程有两个实数根.(2)是否存在k值使方程的两根为一个矩形的两邻边长,且矩形的对角线长为.24.如图,抛物线y=ax2+4ax+2的顶点A在x轴上,经过点A的直线交该抛物线于点C,交y轴于点B,且点B是线段AC的中点,(1)求该抛物线的解析式;(2)求直线AC的解析式.25.在Rt△ABC中,∠C=90°,点O是AB的中点,M、N分别在边AC、BC上,OM⊥ON,连MN,AC=4,BC=8.设AM=a,BN=b,MN=c.(1)求证:a2+b2=c2;(2)①若a=1,求b;②探究a与b之间的函数关系式;(3)△CMN的面积等于△ABC的面积的时,求b.26.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(A在B的左侧),与y轴交于点N,过A点的直线l:y=kx+n与y轴交于点C,与抛物线y=﹣x2+bx+c的另一个交点为D,已知A(﹣1,0),D(5,﹣6),P点为抛物线y=﹣x2+bx+c上一动点(不与A、D重合).(1)求抛物线和直线l的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的点,探究是否存在点M,使得以点N、C,M、P为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.。
【九年级数学试题】2018九年级数学上册第一次月考试卷(有答案)
2018九年级数学上册第一次月考试卷(有答案)
安微师范学院附中式法;解一元二次方程-配方法.专题计算题.
分析(1)找出a,b,c的值,计算出根的判别式的值大于0,代入求根式即可求出解;
(2)方程二次项系数化为1,常数项移到右边,两边加上一次项系数一半的平方,变形后开方即可求出解.
解答解(1)这里a=3,b=﹣4,c=﹣1,
∵△=16+12=28,
∴x= = ;
(2)方程整理得x2﹣2x=﹣,
配方得x2﹣2x+1= ,即(x﹣1)2= ,
开方得x﹣1=± ,
解得x1=1+ ,x2=1﹣.
点评此题考查了解一元二次方程﹣式法与配方法,熟练掌握各自的解法是解本题的关键.
17.(8分)已知关于x的方程2x2+x﹣1=0.
(1)求证方程有两个不相等的实数根;
(2)若方程的一个根是﹣1,求另一个根及值.
考点解一元二次方程-因式分解法;根与系数的关系.
专题计算题;证明题.
分析若方程有两个不相等的实数根,则应有△=b2﹣4ac>0,故计算方程的根的判别式即可证明方程根的情况,第二小题可以直接代入x=﹣1,求得的值后,解方程即可求得另一个根.
解答证明(1)∵a=2,b=,c=﹣1
∴△=2﹣4×2×(﹣1)=2+8,
∵无论取何值,2≥0,。
2018届九年级数学上学期第一次月考试题含答案
2018届九年级数学上学期第一次月考试题(满分:120分,考试时长:120分钟)一、选择题(每小题3分,共30分)1.下列关于x 的方程中,为一元二次方程的是( )A .02=++c bx axB .1)3(2-=+x x xC .02=-x mxD .01=+xx 2.一元二次方程x 2-6x -5=0配方可变形为( )A.(x -3)2=14B.(x -3)2=4C.(x +3)2=14D.(x +3)2=43.已知实数x 1,x 2满足x 2+x 2=7,x 1x 2=12,则以x 1,x 2为根的一元二次方程是( )A .x 2-7x +12=0B .x 2+7x +12=0C .x 2+7x -12=0D .x 2-7x -12=04. 二次函数y =2(x -3)2-4的图像与y 轴的交点坐标为( )A .(3,-4)B .(-3,-4)C .(0,-4)D .(0,14)5.在同一平面直角坐标系内,将函数y =2x 2+4x -3的图象向右平移2个单位,再向下平移1个单位,得到图象的顶点坐标是( ) A .(-3,-6) B .(1,-4) C .(1,-6) D .(-3,-4)6.我省2015年的快递业务量为2.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2016年增速位居全国第一.若2017年的快递业务量达到5.5亿件,设2016年与2017年这两年的平均增长率为x ,则下列方程正确的是( ) 、 B 、 C 、 D 、于B ,且长方形OAPB 的面积为6,则这样的点P 个数共有( )A .1B .2C .3D .49.有两个一元二次方程M :ax 2+bx +c =0;N :cx 2+bx +a =0,其中a ·c ≠0,a ≠c.下列四个结论中,错误的是( )A .如果方程M 有两个相等的实数根,那么方程N 也有两个相等的实数根B .如果方程M 的两根符号相同,那么方程N 的两根符号也相同C .如果5是方程M 的一个根,那么15是方程N 的一个根D .如果方程M 和方程N 有一个相同的根,那么这个根必是x =110.如图,一次函数y 1=x 与二次函数y 2=ax 2+bx+c 图象相交于P 、Q 两点,则函数y=ax 2+(1﹣b )x+c 的图象可能是( )A B C D二、填空题(每小题3分,共18分)11.关于x 的一元二次方程(k -1)x 2+x +k 2-1=0的一个根是0,则k 的值是_________.12.已知关于x 的方程(a ﹣3)x 2﹣4x ﹣5 = 0是一元二次方程,那么a 的取值范围是_________.13.若x 1,x 2是关于x 的方程x 2+mx -3m =0的两个根,且x 12+x 22=7,那么m 的值是_________.14.设t 是方程x 2-2017x +1=0的一个实数根,则t 2-2016t +220171t +的值为_________. 15.已知二次函数2y ax bx c =++的图像过点A (1,2),B (3,2),C (5,7).若点M (2,1y ),N (-1,2y ),K (8,3y )也在二次函数2y ax bx c =++的图像上,则1y ,2y ,3y 的从小到大的关系是 .16.已知关于x 的二次函数y =ax 2-2ax -3,当m ≤x ≤m +2时,函数有最小值﹣3和最大值5.计算a 与m 的积,其可能的结果有 个.三、解答题(17题9分,18、19、20、21、题8分,22题9分,23题10分,24题12分)17..解下列方程(1) x 2-2x=3 (2)2x 2-3x + =0(2)(x -1)2x 222-=18.先已知关于x 的一元二次方程k x 2-(2k+1)x +k+1=0(1)证明:方程有两个不相等的实数根;(2)k 为何整数时,方程有两个不相等的正整数根。
最新人教版九年级上册第一次月考试题卷(含答题卡及答案)
7. , , ; 8.
; 9.
10.
;
11.
12.
.
三、解答题(本大题共4小题,13题12分,14、15、16题每题6分,共30分)
13.(12 分) (1) x 22 25
2 x2 4x 3 0
;
16.(6 分)
;
33xx 1 2 x 1
4 x2 5x 14 0
四.(本大题共 3 小题,每小题 8 分,共 24 分) 17.(8 分)
14.(6 分) 15.(6 分)
18.(8 分)
密
封
线
-------------------------------------- --------------------------------------------------- --------------------------------------------------------- ---------------
2017—2018 学年第一学期
九年级数学第一次月考试题卷
命题人:杨 颖
审题人:陈科仁
一、填空题(本大题共 6 小题,每小题 3 分,共 18 分,每小题只有一个正确选项)
1. 下列方程中,是一元二次方程的是( )
A . (x 3)x x 2 2
B . ax2 bx c 0
C . 3x2 1 2 0 x
1
2
3
4
5
6
D
A
C
C
B
C
二、填空题 (本大题共 6 个小题,每小题 3 分,共 18 分)
7. 4 , —3 , —7 ; 8. x2 x 6 0 ; 9. m 1;
10. 4 ; 11. 4 ; 12. (1)(3)(4) .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。