Chapter 8 transcription in prokaryotes

合集下载

分子生物学名词解释

分子生物学名词解释

Appendix C :Glossary附录C :名词解释α helixα螺旋A helical secondary structure in proteins. Pl. α helices.蛋白质中一种螺旋形的二级结构。

复数:α helices 。

α-amanitin α鹅膏蕈碱A toxin that inhibits the three eukaryotic RNA polymerases to different extents. Name derives from mushroom of genus Amanita in which toxin is found.一种能不同程度地抑制三种真核生物RNA 聚合酶的毒素。

名称来自于产生此毒素的Amanita 属蘑菇。

β-galactosidase β-半乳糖苷酶Enzyme that cleaves lactose into galactose and glucose. Name origin: the bond cut by this enzyme is called a β-galactosidic bond.将乳糖分解为半乳糖和葡萄糖的酶。

名称来源:该酶切割的键称为β-半乳糖苷键。

β sheet β折叠A secondary structure in proteins, relatively flat and formed hydrogen bonding between two parallel or anti-parallel stretches of polypeptide.蛋白质的一种二级结构,相对平坦,在两条平行的或反向平行的肽段之间形成氢键。

σ subunit σ亚基Component of prokaryotic RNA polymerase holoenzyme. Required for recognition of promoters. 原核生物RNA 聚合酶全酶的组成成分。

微生物学 双语教学Chapter 8 Microbial genetics

微生物学 双语教学Chapter 8 Microbial genetics

WORKING GLOSSARY
Auxotroph an organism that has developed a nutritional requirement through mutation Cloning vector genetic element into which genes can be recombined and replicated Conjugation transfer of genes from one prokaryotic cell to another by a mechanism involving cell-to-cell contact and a plasmid Diploid a eukaryotic cell or organism containing two sets of chromosomes Electroporation the use of an electric pulse to induce cells to take up free DNA Gene disruption use of genetic techniques to inactivate a gene by inserting within it a DNA fragment containing an easily selectable marker. The inserted fragment is called a cassette, and the process of insertion, cassette mutagenesis
Section 2. Techniques of bacterial genetics: in vivo
In vivo : manipulate the genetic material within the organism

RNA的调节功能

RNA的调节功能
© 2014 Pearson Education, Inc.
• One class of bacterial regulatory RNAs (called sRNAs) acts in trans to control translation of target genes, rather as microRNAs do in eukaryotes. • They are, however, larger (80–110 nt) than those eukaryotic regulatory RNAs (21-30 nt), and they are not generally formed by processing of larger double-stranded RNA (dsRNA) precursors (as those eukaryotic RNA regulators are); instead, they are encoded in their final form by small genes. • Many of these genes have been identified by bioinformatics, with more than 100 sRNAs being uncovered in E. coli. • Most sRNAs work by base pairing with complementary sequences within target mRNAs and directing destruction of the mRNA, inhibiting its translation or even in some cases stimulating translation.

RNA转录

RNA转录

• 起始后, σ因子解离, β 和 β’ 亚基构象发生变化
2、 真核生物.
• 多种辅助因子的共同作用来保证这一转变
二、 延伸过程(原核生物)
★ 酶与产物RNA不解离

★ ★ ☻
底物NTP不断加到RNA链的 3’-OH 端
形成一个磷酸二酯键后,核心酶向前滑动 延伸位点不断地接受新的NTP,RNA链不断延伸 始终保持三元复合物的结构
Φ RNA-DNA杂交链也要求作旋转运动
旋转酶
第五节 转录的终止
Transcription termination

终止过程: 酶停止添加底物→→释放RNA链→→酶解离
终止反应…杂合双链的氢键断裂,
…重新形成双螺旋,酶的解离。

终止子:在转录的过程中,提供转录终止
信号的RNA序列
真正起终止作用的是RNA序列---与启动子不同
☆ Prok.和Euk. 都具有----一种基因表达调控的手段
一、原核生物的终止子
RNApol Ⅱ

RNApol Ⅲ的转录起始

两种内部启动子的转录起始需要三种辅助因子
TFⅢA TFⅢB TFⅢC
第四节 转录延伸
一、 起始到延伸的转变
★ 始于第一个磷酸二酯键的形成 ★ 伴随着DNA分子和酶分子构象的变化 1、原核生物. • 起始时, σ因子有利于β 和 β’亚基具有与DNA专一 性结合所要求的构象
(2) 核心酶 (Core Enzyme) • • 作用于转录的延伸过程(终止) 依靠静电引力与DNA模板结合(蛋白
质中碱性基团与DNA的磷酸根之 间)

非专一性的结合(与DNA的序列无关)
2α+β
α 2 β + β’

转录 (transcription)

转录 (transcription)

真核生物RNA聚合酶II的小亚基
有6-10种,分为三类: 3种RNA聚合酶所共有,与DNA结合有关; 只在RNA聚合酶II中发现; 在某些条件下可以去掉的亚基,参与酶的
基本结构。
真核生物RNA聚合酶I
位于核仁,与rRNA合成有关; 分子量约500-600kD,有6-13种亚基; 最大的两个亚基分子量分别为190kD和
Prokaryotes: one polymerase transcribes all genes.
3.3 原核生物基因的转录
1. 转录的起始 (启动子的结构,RNA聚合 酶识别、结合启动子等)
2. 转录的延伸(形成RNA聚合酶-新生RNA 链-DNA模板三元复合物)
3. 转录的终止(终止子及转录终止的辅助因 子ρ蛋白)
有义链和反义链
编码链(coding strand,有义链sense strand):与mRNA序列相同的DNA链。
模板链(template strand,反义链antisense strand):根据碱基互补原则指导mRNA 合成的DNA链。
基因转录为RNA
RNA
mRNA(messenger):编码特定蛋白质序列 tRNA(transfer):特异性解读mRNA中的
RNA的转录
与转录有关的一些概念
1. 转录起始于RNA聚合酶和启动子(promoter) 结合之后,转录起始的第一个碱基称为转录起 始点(start point) 。在RNA聚合酶的作用下 合成RNA,至终止子(terminator)终止。
2. 由启动子到终止子之间的序列称为转录单位 (transcription unit)。转录起始点前面的序 列称为上游(upstream),后面的序列称为下 游(downstream)。

色氨酸(trp)操纵子讲述

色氨酸(trp)操纵子讲述
influences whether transcription of the trp operon is complete. 3. If [Trp] is adequate transcription is terminated before the trp operon. 4. If [Trp] is inadequate transcription is completed. 5. Termination of transcription is determined by leader mRNA sequence.
?当培养基中色氨酸的浓度很低时负载有色氨酸的trnatrp也就少这样翻译通过两个相邻色氨酸密码子的速度就会很慢当4区被转录完成时核糖体才进行到1区或停留在两个相邻的trp密码子处这时的前导区结构是23配对不形成34配对的终止结构所以转录可继续进行直到将trp操纵子中的结构基因全部转录
色氨酸(trp)操纵子
Several key points: 1. Transcription & translation are tightly coupled in
bacteria (attenuation requires this). 2. Synthesis of a leader sequence rich in Trp
转录弱化作用
转录的弱化理论认为mRNA转录的终止是通过前导 肽基因的翻译来调节的。因为在前导肽基因中有两 个相邻的色氨酸密码子,所以这个前导肽的翻译必 定对tRNATrp的浓度敏感。
当培养基中色氨酸的浓度很低时,负载有色氨酸的 tRNATrp也就少,这样翻译通过两个相邻色氨酸密 码子的速度就会很慢,当4区被转录完成时,核糖 体 才 进 行 到 1 区 ( 或 停 留 在 两 个 相 邻 的 trp 密 码 子 处),这时的前导区结构是2-3配对,不形成3-4配 对的终止结构,所以转录可继续进行,直到将trp 操纵子中的结构基因全部转录。

RNA的剪接-课件PPT

16
17
第二节 真核生物RNA的加工
18
卵清蛋白基因
19
DNA mRNA
7.7Kb
L 12 3 4 5 6 7
transcription
exon intron
spliceosome
form lariat RNA, exons close
1872bp
Remove lariat RNA, join exons
RNase III RNase III
7
8
二、原核生物tRNA的加工
(1) tRNA基因:约60个 多数:多顺反子 几个相同(不同)tRNA连在一起,成簇存在 与rRNA基因或蛋白基因相连,组成混合 转录单位 少数:单顺反子
9
10
(2)加工过程 ◆剪切、修剪和剪接(斩头、去尾 ) 核酸内切酶:在tRNA两端切断(cutting) RNA酶P:核糖核蛋白,使tRNA 5’端成熟 RNA酶F:切除多余的3’端序列 RNaseIII和RNaseE:使转录产物变小 核酸外切酶:从3’端逐个切去附加的顺序,进行修剪 RNaseD:切除tRNA 3’-CCA-OH下游序列 则露出CCA-OH端, 3’ tRNA 成熟酶
(3)核苷内的转位反应 如:U ψ
(4)脱氨反应 如:A I
26
真核tRNA内含子的切除和其他内含子的切除的不 同
①即没有交界序列,也没有内部引导序列;
②是依赖于蛋白质性的RNase,而不是核糖拟酶 或snRNP; ③反应的本质不是转酯反应。
真核tRNA内含子的精确剪切是依赖对tRNA共同的二 级结构的识别,而不是内含子的保守序列。分子不同部分 的区域对于剪切是重要的,包括受体臂,D环,TψC环和 反密码子环。

8.转录产物的加工


图8-1为原核生物rRNA前体加工的示意图,图中1所指的是 RNase III的水解位置,2所指的是RNase P的水解位置,3所指的 是RNase E的水解位置。
不同细菌rRNA前体的加工过程并不完全相同, 但基本过程类似。在rrn操纵子的16S rRNA与23S rRNA基因之间具有400~500bp的间隔序列,并有一 到几个tRNA基因。如E.coli有4个rrn操纵子的这一间 隔序列内有单个tRNAGlu因。其他3个rrn操纵子的间 隔序列有2个tRNA基因,即tRNA1Ile和tRNA2Glu。 rRNA前体要先经过甲基化的修饰,才能被内切 核酸酶和外切核酸酶切割。原核生物rRNA有多个甲 基修饰成分,可甲基化碱基和核糖,最常见是2'-甲基 核糖。16S rRNA约含10个甲基,23S rRNA约20个, 其中N4-2'-O-甲基胞苷(m4Cm)是16S rRNA特有的成分。 5S rRNA一般无修饰成分,不进行甲基化反应。
8.2.2 内含子的剪接
真核生物tRNA前体分子的剪接分为两步:① tRNA内切核酸酶(tRNA endonuclease)切割前体分子中的内含子;② RNA连接酶(RNA ligase)将两个 半分子连接在一起。用凝胶电泳分析在tRNA前体中加入内切核酸酶后的反 应结果,呈现两条带,其中一条是剪切后游离的内含子片段,另一条是通 过氢键配对结合在一起的5'-端和3'-端外显子,又称为tRNA的半分子(tRNA half molecule),是剪切的中间产物(图8-4)。
8.1.3 原核生物mRNA前体的加工 细菌的转录和翻译不存在时空间隔,mRNA的初始转录 产物一般不需要加工,在转录的同时即可翻译。多顺反子的 mRNA可被翻译成多聚蛋白质,再切割成不同的蛋白质分子, 但也有少数多顺反子mRNA需通过内切核酸酶切成较小的单位 后才进行翻译。例如,E.coli位于89~90位置的一个操纵子含 有rp1J(编码核糖体大亚基蛋白L10)、 rplL(编码核糖体大亚基 蛋白L7/L12)、rpoB(编码 RNA pol β亚基)和rpoC (编码 RNA pol β'亚基)4个基因,在转录出多顺反子mRNA前体后,由 RNase III将核糖体蛋白与RNA pol亚基的mRNA切开,各产生 两个成熟的mRNA,之后再各自进行翻译。核糖体蛋白质的生 成必须与rRNA的合成水平,和细胞的生长速度相适应,其 mRNA应当有较高的翻译水平。而细胞内RNA pol的水平则要 低得多,其mRNA不需要较高的翻译水平。将二者的mRNA切 开,有利于它们各自的翻译调控。

分子生物学第三章 RNA转录

第三章 RNA 转录(RNA transcription)3.1. Basic concept3.2. Trancription survey3.3. Promoter in Eukaryotes and Prokaryotes3.4. Transcription Termination3.5. Pre-RNA processing in Eukaryotes3.1. 基本概念(P64) Basic concept● 基因表达的第一步● 以D. S. DNA 中的一条单链作为转录的模板某一基因只以一条单链DNA 为模板进行转录(不对称转录)● 在依赖DNA 的RNA 聚合酶的作用下● 按A U ,C G 配对的原则,合成RNA 分子● 模板单链 DNA 的极性方向为3’ → 5’, 而非模板单链DNA 的极性方向与RNA 链相同,均为5’ → 3’.● RNA 的转录包括promotion, elongation, termination 三个阶段● 从启动子(promoter )到终止子(terminator )的DNA序列称为转录单位 (transcriptional unit )● 原核生物中的转录单位多为 polycistron in operon真核生物中的转录单位多为monocistron, No operon● 转录原点记为+1,其上游记为负值,下游记为正值● RNA 的主要种类及功能:mRNA ——携带编码多肽的遗传信息tRNA ——将核苷酸信息转化为aa 信息转运aa 进入核糖体rRNA ——参与多肽合成3.2.RNA 转录概况3.2.1转录的基本过程1. 模板识别:RNApol 与启动子相互识别并结合的过程(形成封闭的二元复合物)• 启动子(promoter ):DNA 分子上结合RNApol 并形成转录起始复合物的区域,通常也包括促进这一过程的调节蛋白结合位点rich A/T ,易发生DNA 呼吸现象形成单链区2转录起始:启动子区解链,转录起始(封闭的二元复合物 开放的二元复合物 三元复合物)通常在这一过程中RNApol 移动较慢,且易发生脱落——流产式起始 ——决定启动子的强弱3延伸:延伸过程中的延宕现象(Eukaryotes ):Euk genome G/C 分布不均匀σ脱离全酶(Pro )/RNApol 脱离转录起始复合物(Euk )4终止:在终止子(terminator )处停止转录3.2.2 RNApolymerase1 RNA polymerase in Prokaryotes (以E.coli 为例)1)构成• 核心酶(core enzyme):2αββ’DNA3’----TACTCAT----5’ RNA 5’----AUGAGUA----3’5’---ATGAGTA----3’ Non-template (sense strand)template (antisense strand)•全酶(holoenzyme)2αββ’σ•α:核心酶组建因子/ 启动子识别•β:RNA合成的活性中心•β’:与β共同构成活性中心•σ:识别启动子,增加酶与DNA的亲和力σ因子可减少RNApol与非启动子DNA序列的亲和力,而增加RNApol与启动子的亲和力,一旦转录起始,σ因子将脱离RNApol再次引导新的RNApol进行转录•ρ:参与转录终止2)Rifamycin(利福霉素)及Streptolydigin(利链菌素)对Pro转录的影响Rif可结合β,阻止NTP的进入I位点(Initiation site )(一旦形成三元复合物Rif不再起抑制作用);利链菌素结合β的延伸位点(Elongation site),抑制延伸。

Chapter 8 Microbial genetics


T7012-a.gif
T7012-b.gif
T7012-c.gif
Complementation
When two mutant strains are genetically crossed (mated), homologous recombination can yield a wildtype recombinant unless both of the mutations include changes in exactly the same base pairs. If two different Trp− Escherichia coli (strains that require the amino acid tryptophan in the medium) are crossed and Trp − recombinants are obtained, it is clear that the mutations in the two strains did not include the same base pairs. However, this experiment cannot detect whether the mutations were in the same gene. This can be determined by a type of experiment called a complementation test.
Value in industry
• • • Antibiotics Increase yields and improve manufacturing processes Diseases Understanding the genetics of disease-causing microorganisms
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


How to recognize the specific promoter ?

σ factor is critical in promoter recognition, by decreasing the affinity of the core enzyme for non-specific DNA sites (104) and increasing the affinity for the corresponding promoter (103).
(2) β and β’subunit


β is encoded by rpoB gene, and β ’ is encoded by rpoC gene . Make up the catalytic center of the RNA polymerase
βsubunit The β subunit can be crosslinked to the template DNA, the product RNA, and the substrate ribonucleotides; β subunit may contain two domains responsible for transcription initiation and elongation
2. Differences Between transcription and replication
(1) using one of the two DNA strands as a template. (asymmetrical transcription) (2) The substrates are NTP (3) No free 3’-OH end needed for initiation. No primer needed. (4) DNA-RNA duplex less stable than DNA-DNA duplex. RNA falls away from transcription site. (5) RNA polymerase catalyzes the reaction. Less accurate (error rate: 10-4) (6)Transcription selectively copies only certain parts of the genome
Upstream Downstream +1 sequences (~ -1) sequences (+1 ~) Transcription initiation site
Transcription initiation site A specific nucleotide of the gene sequence corresponding to the first base incorporated into RNA is called the start site and is designated as +1.
8.1 an overview
1. Definition: describes synthesis of RNA on a DNA template.
template substrate enzyme product Base pair direction primer one of the two DNA strands NTP RNA polymerase mRNA, tRNA, rRNA,small RNA A-U, G-C 5’ → 3’ No primer needed
…AAGCGCCGCCGGCGCTTTTTT… Coding strand …TTCGCGGCGGCCGCGAAAAAA… Template strand
…AAGCGCCGCCGGCGCUUUUUU… RNA
The only difference among DNA sense strand and RNA transcript is a base substitution (T or U), which is the base of gene prediction from DNA sequence
Chapter 8
Transcription in prokaryotes
The Central Dogma
DNA
replication Transcription
RNA
Translation
Protein

Contents

Basic principles of transcription Escherichia coli RNA polymerase The E. coli σ70 promoter Transcription process
2. σ70 promoter
(1) size: a sequence of between 40 and 60 bp -55 to +20: bound by the polymerase -20 to +20: tightly associated with the polymerase and protected from nuclease digestion by DNaseΙ
8.3 The E. coli σ70 promoter
1. Overview of promoter (1) definition: A DNA sequence to which RNA polymerase binds to initiate transcription.
promoter
terminator
promoter
Start site
terminator
(~ -1) upstream sequence
+1
Downstream sequence (+1 ~)
The start site Is a purine in 90% of all gene G is more common at position +1 than A There are usually a C and T on either side of the start nucleotide (i.e. CGT or CAT)
3. Transcription unit
A region of DNA bounded by a promoter and a terminator that is transcribed as a single unit; may include more than one gene.
promoter Transcribed region terminator
8.2 E. coli RNA polymerase
1. Activity of RNA polymerase (1) Requires no primer for polymerization (2) 5’ → 3’synthesis (3) Require Mg2+ for RNA synthesis activity (4) RNA synthesis rate: 40 nt per second at 37oC (5) lacks 3’ → 5’exonuclease activity, and the error rate of nucleotides incorporation is 10-4 to 10-5.
ω
α
Initiation only
σ
β’
Both initiation & elongation
(1) αsubunit
Two identical subunits in the core enzyme Encoded by the rpoA gene Required for assembly of the core enzyme Plays a role in promoter recognition. plays a role in the interaction of RNA polymerase with some regulatory factors
factor in promoter recognition
Different factors
Many prokaryotes contain multiple σ
factors to recognize different promoters. The most common σ factor in E. coli is σ70.
2. Composition of E. coli RNA polymerase
The complete enzyme, consisting of the core enzyme plus the σ factor, is called the holoenzyme. Core enzyme
β α
(3) Sigma factor
σis encoded by the rpoD gene. Binding of the σ factor converts the core RNA pol into the holoenzyme. Function: promoter recognition σ factor is not required for transcription elongation and after initiation (RNA chain is 8-9 nt) it is released from the RNA pol . Sigma factor can be reused by different core polymerase.
β’ subunit 2+ ions and may participate in Binds two Zn the catalytic function of the polymerase β’ subunit may be responsible for binding to the template DNA .
相关文档
最新文档