浅谈概率论论文
概率论文.doc

我眼中的概率论一.有关概率:1.概述概率论是研究随机现象数量规律的数学分支。
随机现象是相对于决定性现象而言的。
在一定条件下必然发生某一结果的现象称为决定性现象。
例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。
随机现象则是指在基本条件不变的情况下,一系列试验或观察会得到不同结果的现象。
每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。
例如,掷一硬币,可能出现正面或反面,在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。
随机现象的实现和对它的观察称为随机试验。
随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。
事件的概率则是衡量该事件发生的可能性的量度。
虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。
例如,连续多次掷一均匀的硬币,出现正面的频率随着投掷次数的增加逐渐趋向于1/2。
又如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且诸测量值大都落在此常数的附近,其分布状况呈现中间多,两头少及某程度的对称性。
大数定律及中心极限定理就是描述和论证这些规律的。
在实际生活中,人们往往还需要研究某一特定随机现象的演变情况随机过程。
例如,微小粒子在液体中受周围分子的随机碰撞而形成不规则的运动(即布朗运动),这就是随机过程。
随机过程的统计特性、计算与随机过程有关的某些事件的概率,特别是研究与随机过程样本轨道(即过程的一次实现)有关的问题,是现代概率论是一门研究事情发生的可能性的学问,但是最初概率论的起源与赌博问题有关。
16世纪,意大利的学者吉罗拉莫·卡尔达诺(Girolam o Cardano,1501——1576)开始研究掷骰子等赌博中的一些简单问题。
17世纪中叶,当时的法国宫廷贵族里盛行着掷骰子游戏,游戏规则是玩家连续掷 4 次骰子,如果其中没有 6 点出现,玩家赢,如果出现一次 6 点,则庄家(相当于现在的赌场)赢。
概率论文---古典概型浅析

浅析古典概型1018202班于春旭1101800214经过一学期的概率论与数理统计的学习,从最开始的随机事件与概率到多维随机变量,再到数理统计,参数估计。
对于概率的一些基本知识已经有所掌握。
那么回过头来,让我们去分析一下概率论中最为基础的也是最为贴近平时生活的一种概型,古典概型。
所谓古典概型是一种概率模型。
古典概率讨论的对象局限于随机试验所有可能结果为有限个等可能的情形,即基本空间由有限个元素或基本事件组成,其个数记为n,每个基本事件发生的可能性是相同的。
若事件A包含m个基本事件,则定义事件A发生的概率为p(A)=m/n,也就是事件A发生的概率等于事件A所包含的基本事件个数除以基本空间的基本事件的总个数,这是P.-S.拉普拉斯的古典概率定义,或称之为概率的古典定义。
历史上古典概率是由研究诸如掷骰子一类赌博游戏中的问题引起的。
计算古典概率,可以用穷举法列出所有基本事件,再数清一个事件所含的基本事件个数相除,即借助组合计算可以简化计算过程。
例如:掷一次硬币的实验(质地均匀的硬币),只可能出现正面或反面,由于硬币的对称性,总认为出现正面或反面的可能性是相同的;如掷一个质地均匀骰子的实验,可能出现的六个点数每个都是等可能的;又如对有限件外形相同的产品进行抽样检验,也属于这个模型。
是概率论中最直观和最简单的模型;概率的许多运算规则,也首先是在这种模型下得到的。
一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征——有限性和等可能性,只有同时具备这两个特点的概型才是古典概型。
相较于其他概型,古典概型有以下特点:1、实验的样本空间只包括有限个元素;2、实验中每个基本事件发生的可能性相同。
求古典概型的概率的基本步骤:(1)算出所有基本事件的个数n;(2)求出事件A包含的所有基本事件数m;(3)代入公式P(A)=m/n,求出P(A)。
古典概率模型是在封闭系统内的模型,一旦系统内的某个事件的概率在其他概率确定前被确定,其他事件概率也会跟着发生改变。
概率论论文-用概率论知识解决实际问题 -

用概率论知识解决实际问题概率论是一门与生活联系紧密的学科, 它的起源与赌博有关,随着科学的发展,人们注意到社会科学与自然科学中许多随机现象与机会游戏之间十分相似,如人口统计、误差分析、产品检验、质量控制等,从而机会游戏起源的概率论被应用到这些领域中。
下面看两个用概率论解决实际问题的例子:一、合理配置维修工人问题 设有同类型仪器300台,他们的工作是相互独立的,且发生故障的概率均为0.01.一台仪器发生了故障,一个工人可以排除。
(1)问至少配置多少个维修工人,才能保证仪器发生故障但不能及时排除的概率小于0.01? 解:仪器发生故障不能及时排除事件用A 表示,设配置x 个维修工人,则A 等价于事件“同时发生故障的仪器数>x ”由于300台仪器在同一时间内是否正常工作可看成是300重的伯努利试验,成功(发生故障)的概率p=0.01,故(A P =)(3001300k x k P∑+==k k x k k C -+=∑3003001300)99.0()01.0(, 因为n 很大,p 很小,且λ=np=300×0.01=3,超几何分布可近似为泊松分布, )(A P ≈∑∑∞+=-+=-≈1330013!3!3x k k x k k k e k e 由次式应有∑∞+=-13!3x k k k e < 0.01 查表知∑∞=-83!3k k k e =0.01191 , ∑∞=-93!3k k k e =0.00380 于是x+1=9, x=8故只需配8个维修工人就可达到要求(2)若一个人包干20台仪器,求仪器发生故障而不能及时排除的概率。
解:设仪器发生故障而不能及时排除的事件为B,则B 等价于事件“在20台仪器中,同一时间发生故障的仪器数>1”。
由于20台仪器在同一时间内是否发生故障可看成是20重的伯努利试验,成功(发生故障)的概率p=0.01.故k k k k k C k PB P -==∑∑==202022020220)99.0()01.0()()( 01752.0!2.0!2.022.02022.0=≈≈∑∑∞=-=-k k k k k e k e本题中,我们可以看出,当一个人包干20台仪器的维修任务时,仪器发生故障而不能及时维修的概率大于0.01;而8个工人共同负责300台仪器的维修任务时(平均每人37.5台),仪器发生故障而不能及时排除的概率却小于0.01,故一个人单干不如8个工人合作好。
概率论总结论文

概率论与数理统计在生活中的应用摘要:随机现象无处不在,渗透于日常生活的方方面面和科学技术的各个领域,概率论就是通过研究随机现象及其规律从而指导人们从事物表象看到其本质的一门科学。
生活中买彩票显示了小概率事件发生的几率之小,抽签与体育比赛赛制的选择用概率体现了公平与不公平,用概率来指导决策,减少错误与失败等等,显示了概率在人们日常生活中越来越重要。
数理统计在人们的生活中也不断的发挥重要的作用,如果没有统计学,人们在收集资料和进行各项的大型的数据收集工作是非常困难的,通过对统计方法的研究,使得我们处理各种数据更加简便,所以统计也是一门很实用的科学,应该受到大家的重视。
关键字:概率、保险、彩票、统计、数据、应用概率论与数理统计是研究随机现象统计规律的一门数学学科,是对随机现象的统计规律进行演绎和归纳的科学。
随着社会的不断发展,概率论与数理统计的知识越来越重要,运用抽样数据进行推断已经成为现代社会一种普遍适用并且强有力的思考方式。
目前,概率论与数理统计的很多原理方法已被越来越多地应用到交通、经济、医学、气象等各种与人们生活息息相关的领域。
本文将就概率论与数理统计的方法与思想,在日常生活中的应用展开一些讨论,,推导出某些表面上并非直观的结论,从中可以看出概率方法与数理统计的思想在解决问题中的高效性、简捷性和实用性。
一、彩票问题“下一个赢家就是你!”这句响亮的具有极大蛊惑性的话是大英帝国彩票的广告词。
买一张大英帝国彩票的诱惑有多大呢?只要你花上1英镑,就有可能获得2200万英镑!一点小小的投资竟然可能得到天文数字般的奖金,这没办法不让人动心,很多人都会想:也许真如广告所说,下一个赢家就是我呢!因此,自从1994年9月开始发行到现在,英国已有超过90%的成年人购买过这种彩票,并且也真的有数以百计的人成为百万富翁。
如今在世界各地都流行着类似的游戏,在我国各省各市也发行了各种福利彩票、体育彩票,各地充满诱惑的广告满天飞,而报纸、电视上关于中大奖的幸运儿的报道也热闹非凡,因此吸引了不计其数的人踊跃购买。
大学概率论论文

微积分在概率论与数理统计中的应用摘要: 大二概率论课程结课了,在这门课上我学到了一些关于概率论和数理统计的许多知识。
这些知识既可以对我的专业方面有很大的指导作用、强化了我相关的数理逻辑能力。
课后,在兴趣的激励下,我从课本、习题以及相关网络资源中找到了更多关于概率论与数理统计的知识。
现通过这篇论文对我学习过程中的体会,并结合以往的数学知识(重点在微积分部分)关键词:概率论与数理统计 其他数学知识 微积分概率论与数理统计是研究随机现象统计规律的一门数学学科,已在包括控制、通信、生物、物理、力学、金融、社会科学、以及其他工程技术科学等诸多领域中获得了广泛的应用。
学习和掌握概率论与数理统计的基本理论和基本方法并将应用于科学研究的和工程实际中,是社会发展对高素质人才培养提出的必然要求。
----概率论与数理统计(前言) 一般认为, 概率论源于赌博问题, 创立于 1654年7 月29 日 。
考古证实骰子古而有之, 那么为何直到17 世纪概率论才诞生? 历史表明概率论的诞生和发展需要先进的数学技术和理性的思考。
众所周知, 概率论的大厦是建筑在微积分的地基之上的, 如在函数关系的对应下, 随机事件先是被简化为集合, 继之被简化为实数, 随着样本空间被简化为数集, 概率相应地由集函数约化为实函数. 以函数的观点衡量分布函数F(x),F(x)的性质是十分良好的: 单调有界、 可积、 几乎处处连续、 几乎处处可导. 因之, 微积分中有关函数的种种思想方法可以通畅无阻地进入概率论领域. 随机变量的数字特征、 概率密度与分布函数的关系、 连续型随机变量的计算等, 显然借鉴或搬运了微积分的现有成果. 又如概率论中运用微积分的基础 ) ) ) 极限论的地方也非常多, 诸如分布函数的性质、大数定律、 中心极限定理等. 总之, 微积分的思想方法渗透到了概率论的各个方面, 换言之, 没有微积分的推动, 就没有概率论的公理化与系统化, 概率论就难以形成一门独立的学科. 微积分与概率论的亲缘关系, 决定了概率论的确定论的特征. 但是作为微积分的一门后继课程, 概率论并非按微积分中的思维方法发展下去,而是另辟蹊径, 其发展路径与微积分大相径庭, 最终成为了随机数学的典型代表, 具备了与微积分相当的地位. 更因其非线性、 反因果的非理性特征, 显得比经典的微积分更具有时代精神. 而作为确定性数学典型代表的微积分对概率论的发展具有很大作用, 因此讨论微积分在概率论中的地位, 探究概率论与微积分的联系及方法的相互应用作用巨大。
概率论结课论文

概率论学习带给我的启示进过这么久对概率论的学习,在基础知识的积累之上,在高等数学工具的应用之下,我对这门课程有了更为深入的认识。
一、概率论定义的变迁与意义概率论是研究随机现象数量规律的数学分支。
和数理统计一起,是研究随机现象及其规律的一门数学学科。
传统概率(拉普拉斯概率)的定义是由法国数学家拉普拉斯(Laplace)提出的。
如果一个随机试验所包含的单位事件是有限的,且每个单位事件发生的可能性均相等,则这个随机试验叫做拉普拉斯试验。
传统概率在实践中被广泛应用于确定事件的概率值,其理论根据是:如果没有足够的论据来证明一个事件的概率大于另一个事件的概率,那么可以认为这两个事件的概率值相等。
如果仔细观察这个定义会发现拉普拉斯用概率解释了概率,定义中用了"相同的可能性"一词,其实指的就是"相同的概率"。
这个定义也并没有说出,到底什么是概率,以及如何用数字来确定概率。
因此,如何定义概率,如何把概率论建立在严格的逻辑基础上,是概率理论发展的困难所在,对这一问题的探索一直持续了3个世纪。
20世纪初完成的勒贝格测度与积分理论及随后发展的抽象测度和积分理论,为概率公理体系的建立奠定了基础。
在这种背景下,苏联数学家柯尔莫哥洛夫1933年在他的《概率论基础》一书中第一次给出了概率的测度论的定义和一套严密的公理体系。
他的公理化方法成为现代概率论的基础,使概率论成为严谨的数学分支,对概率论的迅速发展起了积极的作用。
概率的公理化定义:设随机实验E的样本空间为Ω。
若按照某种方法,对E的每一事件A赋于一个实数P(A),且满足以下公理:1°非负性:P(A)≥0;2°规范性:P(Ω)=1;3°可列(完全)可加性:对于两两互不相容的可列无穷多个事件A1,A2,A3,A4……有P(A1∪A2∪……∪An∪……)=P(A1)+P(A2)+……P(An)+……,则称实数P(A)为事件A的概率。
论文题目:概率论在生活中的
文献研究: 文献研究:通过 研究方法: 在中国期刊网查 阅有关资料, 阅有关资料,在 图书馆及网上查 阅相关资料, 阅相关资料,为 本文的研究提供 理论支持和方法 指导。 指导。
概率论的定义
概率论
概率论的起源于发展 概率论在生活中的应用
主 要 内 容
小概率事件的定义 小概率原理
小概率事件
日常生活 中小概率 事件举例
彩票 医学 商业 个人生活 工厂生产 灾难预测 其它方面Leabharlann 小概率事件: 小概率事件:
看似不起眼的小概率事件, 看似不起眼的小概率事件,往往 会对生活造成很大的影响,我们 会对生活造成很大的影响, 要努力学好它, 要努力学好它,把它更好地应用 于实际生活。 于实际生活。尽量避免看似不起 眼的小概率事件带来的不便。 眼的小概率事件带来的不便。
应用: 应用:
把理论应用于实际, 把理论应用于实际,让知识更好的 指导生活, 指导生活,学以致用才是学习的目 标。
选题目的:
概率论与我们的生活是密切联系, 概率论与我们的生活是密切联系, 概率论来源于生活, 概率论来源于生活,同时有服务 于生活,尤其是小概率原理。 于生活,尤其是小概率原理。小 概率原理是概率论中一个虽简单 但却颇有实用意义的原理, 但却颇有实用意义的原理,充分 的理解并掌握小概率事件原理, 的理解并掌握小概率事件原理, 尽量避免不起眼的不利小概率事 件给生活带来的不便。 件给生活带来的不便。同时初步 理解学以致用的过程。 理解学以致用的过程。
论文题目: 论文题目:概率论在生活 中的应用— 中的应用 以小概率事件为
例
关键词 创新点 研究方法
主要内容 选题目的 结论
关键词: 关键词:
关键词
概率论: 概率论:
概率论论文
泊松分布及泊松分布排队论什么是泊松分布泊松分布是一种统计与概率学中最常见的离散型概率分布,由法国数学家西莫恩·德尼·泊松于1838年提出,近些年来,随着自然科学的不断发展,泊松分布的重要性日益彰显.在泊松随机变量概念的基础上,加以推广便得到了泊松过程的概念.泊松过程属于早期的和简单的点过程理论研究.但泊松分布的相关概念在自然科学中却有着不可替代的位置.泊松过程可以拟合现实生活中很大一部分的实际问题,比如保险理赔问题和排队论问题.排队论的基本思想是丹麦电话工程师A.K.埃尔郎在解决自动电话问题时开始形成发展的一个随机服务系统理论.通过对服务对象及服务时间的统计研究,得出数量指标(等待时间,排队长度等)的统计规律,然后根据这些规律来改进服务系统的结构或重新组织被服务对象使得服务系统既能满足服务对象的需要,又能使机构的费用最经济或某些指标最优.本文将要介绍的现实中的排队服务问题,此外,泊松分布在诸如管理科学、交通运输、生物学、物理学、医学等很多涉及排队论问题的领域有着大量成功运用的实例。
排队论的基本理论排队论是研究系统随机聚散现象和随机服务系统工作过程的数学理论和方法,又叫随机服务系统理论,为运筹学的一个分支。
又称服务系统,是排队系统模型的基本组成部分。
由于排队可以归属为一种随机现象,因此在研究有关排队现象的时候,主要采取概率论的相关知识作为其主要的工具.泊松分布作为概率论中最常见的分布在有关排队论问题中的应用非常广泛.我们把排队论所要研究的对象(要求服务的人或事物)称为顾客,把为顾客服务的人或事物称作服务机构,将顾客排队等待的整个过程称作服务系统或排队系统。
排队系统包括三个组成部分:输入过程、排队规则和服务机构。
排队论的分类果按照排队系统三个组成部分的特征的各种可能情形来分类,则排队系统可分成无穷多种类型。
因此只能按主要特征进行分类。
一般是以相继顾客到达系统的间隔时间分布、服务时间的分布和服务台数目为分类标志。
生活中的概率论文
概率的认识过程摘要:概率论渗透到现代生活的方方面面。
正如19世纪法国著名数学家拉普拉斯所说:“对于生活中的大部分,最重要的问题实际上只是概率问题。
你可以说几乎我们所掌握的所有知识都是不确定的,只有一小部分我们能确定地了解。
甚至数学科学本身,归纳法、类推法和发现真理的首要手段都是建立在概率论的基础之上。
因此,整个人类知识系统是与这一理论相联系的……”引言:1.婴儿出生时的男女比例一般人或许认为:生男生女的可能性是相等的,因而推测出男婴和女婴的出生数的比应当是1:1,可事实并非如此.1.1 艾滋病的传染概率有多大艾滋病病毒是一种十分脆弱的病毒,它对热和干燥十分敏感。
在干燥的环境中,艾滋病毒10分钟死亡,在60摄氏度的环境中30分钟灭活。
如果一支刚接触病人身体带有血液的注射器,马上刺入正常人体内,其感染的概率小于0.3%。
蚊虫叮咬不会传染艾滋病就是因为这个原因。
1.1.1幸运七星及足彩中奖概率体彩“幸运七星”则属于数字型玩法,即从0000000~9999999共1000万个号码中任选一个七位数号码组成,每个号码均从0~9共10个数字中开出,“幸运七星”头奖的理论中奖概率为1/10000000。
目前最受彩民欢迎的足彩实际上也是一种数字组合型玩法,不过计算方法相对比较简单,13场比赛均选“3、1、0”可组合出3的13次方1594323注单式号码,一等奖的中奖概率为1/1594323,换句话说,每销售320万元的足彩,平均就可能诞生一个一等奖。
而如果将足彩竞猜的场次增加到14场,足彩的头奖中奖概率则降低为1/4782969,难度增加了3倍。
一、什么是小概率事件? (3)二、基本的概率计算方法 (3)三、有意义和无意义的小概率事件 (4)四、小概率事件和不可能事件的分辨 (5)五、我们是不是该相信小概率事件? (6)六、参考文献 (6)一、什么是小概率事件?小概率事件,字面意义就是发生的可能性极小的事件。
比如,北京地区出现日全食;山西洪洞发生里氏5级地震,新疆吐鲁番地区下了一场暴雨,小行星撞地球等等。
主观概率论小论文总结
主观概率论小论文总结我觉得这主观概率论啊,挺有意思的一事儿。
就像咱平常过日子,你觉得一件事儿会咋样发展,那心里头其实就有个大概的概率。
我记得有一回啊,我跟村里的老栓聊天。
老栓这人啊,脸皱巴巴的,像那老核桃似的,眼睛眯着,总是一副看透世事的模样。
他跟我讲,“刘啊,你说这天儿下雨的概率有多大?”我就琢磨着,看看那天啊,有点阴沉沉的,云就像那黑棉花一样堆在天上。
我说,“我觉着啊,这下雨的概率咋也得有个六成。
”老栓就摇摇头,“你这不对,我看啊,顶多三成。
”我俩就这么争起来了。
这主观概率论啊,每个人都不一样。
就像我们看同一件事儿,因为各自的经历、想法啥的不同,得出的概率就不一样。
我有个远房表弟,在城里上班呢。
有次我去城里看他,那城里高楼大厦的,人多得像蚂蚁似的。
表弟跟我说他想升职,问我他升职的概率有多大。
我看着他那年轻又充满期待的脸,眼睛亮晶晶的,头发梳得一丝不苟。
我心里想啊,这城里竞争那么大,我说:“表弟啊,我看你这升职的概率啊,也就四成。
”表弟一听就不乐意了,“哥,你咋这么看低我呢,我觉得咋也得有七成。
”在这主观概率论里啊,没有个绝对的对错。
有时候就是一种感觉,一种基于自己对这个世界的认知的感觉。
我又想起我小时候,和小伙伴们在麦地里玩。
那麦浪啊,金黄金黄的,风一吹,沙沙作响,就像大海的浪涛似的。
我们就猜啊,那田边的老树上的鸟窝会不会掉下来。
有的小伙伴说肯定会掉,有的说不会。
大家都觉得自己的想法对,争得面红耳赤的。
现在想想啊,那时候我们心里对于鸟窝掉下来的概率的判断,不就是最原始的主观概率论嘛。
有时候这主观概率论还能影响人的情绪呢。
就像我之前猜下雨概率那事儿,如果真下雨了,老栓就会特别得意,“你看,我就说吧,你这读书读傻了,连这下雨的概率都看不准。
”那脸上的褶子都笑得更深了。
要是没下雨呢,我就会打趣他,“老栓啊,你看你这老眼昏花的,这雨都被你吓跑咯。
”然后我们就哈哈笑起来。
这主观概率论就像生活里的一个小调料,让生活变得更有滋味儿了呢。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
. - . 可修编. 浅谈概率论
【摘 要】:概率论与数理统计课程是工科大学的一门应用性很强的必修基础课程。通过近一个学期的学习,我对概率论也有了一些粗浅的认识,本文将从概率论的历史和发展讲起,接着对二项分布、泊松分布和正态分布之间的关系进行一个简单的论述,然后将概率论的一些概念与以往学过的概念进行类比,最后对概率论在工科数学分析中的几个巧用进行说明,并附加了几个实例。 【关键词】:二项分布;泊松分布;正态分布;类比;级数;广义积分
1 概率论的起源和发展 概率论不仅是当代科学的重要数学基础之一,而且还是当代社会和人类日常生活最必需的知识之一。正如十九世纪法国著名数学家拉普拉斯所说:“对于生活中的大部分, 最重要的问题实际上只是概率问题。你可以说几乎我们所掌握的所有知识都是不确定的, 只有一小部分我们能确定地了解。甚至数学科学本身, 归纳法、类推法和发现真理的首要手段都是建立在概率论的基础之上的。因此,整个的人类知识系统是与这一理论相联系的。”然而, 饶有趣味的是, 这门被拉普拉斯称为“人类知识的最重要的一部分”的数学却直接地起源于一种相当独特的人类行为的探索: 人们对于机会性游戏的研究思考。所谓机会性游戏就是靠运气取胜一些游戏, 如赌博等。这种游戏不是哪一个民族的单独发明, 它几乎出现在世界各地的许多地方, 如埃及、印度、中国等。著名的希腊历史学家希罗多德在他的巨著《历史》中写道: 早在公元前1500年, 埃及人为了忘却饥饿的困扰, 经常聚集在一起掷骰子和紫云英,这是一种叫做“猎犬与胡狼”的游戏, 照一定规则,. - . 可修编. 根据掷出各种不同的紫云英而移动筹码。大约从公元前1200年起, 人们把纯天然的骨骼(如脚上的距骨) 改进成了立方体的骰子。[1] 二十世纪以来, 概率论逐渐渗入到自然科学、社会科学、以及人们的日常生活等几乎无所不在的领域中去.无论在研究领域, 还是教育领域, 它愈来愈成为一门当今最重要的学科之一。于是, 对于概率论历史的研究也日益引起科学史学家们的重视。在概率论发展历史上, 十八、十九世纪之交法国最伟大的科学家之一拉普拉斯具有特殊的地位, 1812年拉普拉斯首次出版的《分析概率论》标志着概率论历史上的一个重要阶段--古典概率论的成熟。概率论发展到1901年, 中心极限定理终于被严格的证明了, 以后数学家正利用这一定理第一次科学地解释了为什么实际中遇到的许多随机变量近似服从以正态分布。到了20世纪的30年代, 人们开始研究随机过程, 著名的马尔可夫过程的理论在1931年才被奠定其地位。到了近代, 出现了理论概率及应用概率的分支, 及将概率论应用到不同筹, 从而产生了不同学科。因此, 现代概率论已经成为一个非常庞大的数学分支。
2二项分布、泊松分布和正态分布之间的关系 2.1 二项分布、泊松分布之间的关系 定理1 泊松定理:在n重伯努利试验中,事件A在每次试验中发生的概率为pn,它与试验次数有关,如果nlim0nnp,则对任意给定的k, 有
lim(1)!kkknknnnnCppek k=0,1,2…
泊松定理的证明见文献(课本)。由该定理知,当二项分布B(n,p)的参数n很大,p很小,而λ=np大小适中时,二项分布可用参数为np的泊松分布来近似, 即 . - . 可修编. (1)!kkknknCppek 这就是二项分布的泊松逼近。当然应尽可能地大, 否则近似效果往往不佳。 二项分布的泊松近似常常被应用于研究稀有事件即每次试验中事件出现的概率p很小, 当伯努利试验的次数n很大时,事件发生的频数的分布。实际表明, 在一般情况下, 当p<0.1时, 这种近似是很好的, 甚至n不必很大都可以。 2.2 二项分布和正态分布之间的关系 定理2 设在n重伯努利试验中,成功的次数为Yn,而在每次试验中成功的概率为p(0221
lim()()2txnnYnppxedtxnpq
.
定理2就是概率论中著名的棣莫弗一拉普拉斯中心极限定理, 它的证明见文献[2]。该定理表明, 当充分大时, 二项分布可用正态分布来近似, 即二项分布的正态逼近。 2.3 泊松分布与正态分布之间的关系 由定理1和定理2可知二项分布既可以用泊松分布近似,也可以用正态分布近似。显然, 泊松分布和正态分布在一定条件下也具有近似关系, 下面的定理说明泊松分布的正态逼近。 定理3 对任意的a221lim!2tkbake
edxk 其中 a
,b
。
定理3的证明见文献[3] 如前文所述, 二项分布的泊松近似和正态近似各自适用的条件是不同的。当p很小时, 即使n不是很大, 用泊松分布近似二项分布, 已经相当吻合。但是在这. - . 可修编. 种情形下, 用正态分布去近似二项分布, 却会产生较大的误差。直观上也可以想象得到, p很小, n又不大, 则λ=np一定不会很大。由定理3可知, 正态分布就不能很好地近似泊松分布, 因而也就不能近似被泊松分布十分逼近的二项分布。 在n充分大, p既不接近于0也不接近于1时实际上最好满足(0.1≤p≤0.9)用正态分布去近似二项分布, 效果就较好。
3 类比法在概率论中的运用 3.1事件和集合的类比 事件是概率论的一个基本概念,事件的关系与运算可以和集合的关系与运算作类比学习。如在事件中,AB表示A出现则B一定出现,在集合中,AB
表示A是B的子集。 需要注意的是,事件的相等和集合的相等有不一样的性质,即由两个集合相等可以得出它们含有完全相同的元素,而两个事件相等则并不意味着它们是同一个事件。这种不同点要加以区分,以免混淆。此外,事件运算的性质和集合运算的性质, 如:交换律,结合律,分配律,对偶律等,也可以类比学习。
3.2某些数字特征与有关向量的概念的类比 3.2.1方差与向量长度平方的类比 随机变量X的方差定义如下: D(X)=E[X-E(X)]2,其中E(X)表示X的数学期望。 方差可以和向量长度的平方类比,设α为n维向量,α=(x1,x2,…,xn),则|α|2=(2222
123nxxxx…+)。 . - . 可修编. 3.2.2 协方差,相关系数和向量的积,夹角余弦的类比 随机变量X,Y的协方差定义如下: cov(X,Y)=E[X-E(X)][Y-E(Y)]=E(XY)-E(X)E(Y)。 特别地,cov(X,X)=E[X-E(X)]2=D(X) 协方差可以和向量积作类比。设α,β为向量,用α·β表示它们的积,则有α·α= |α|2。
4 概率论方法的几点应用 4.1 数列求极限 数学分析中的数列极限问题的证明和计算有的比较烦琐, 若用概率论的方法去解决, 可达到事半功倍的效果。
例1 求 n5lim!nn 解设X服从λ= 5 的泊松分布, 即 55()!npxnen
则5k151!nen, 所以 515!nken 由级数收敛的必要性可知: n5lim!nn=0 实际上,这种形式的极限求值均可构造λ=a的泊松分布来求值, 再用级数收敛的必要性去判断即可。 . - . 可修编. 4.2 级数求和
例2 求12nn311n 解:构造随机变量服从P=23的几何分布 即)(nP=23311n 则 DEE22=3
434
9
又因为 2E=12nn32311n=3212nn311n
所以12nn311n=29 4.3 求广义积分 例3 求022ex 解:因为被积函数是偶函数 所以 原式=12ex22dx 由正态分布的性质得:dxxe2221=1 所以
e
x
22
dx=2
又 ex22dx=2
0
2
2
ex
dx
所以 022exdx=22 . - . 可修编. 推广:对形如
0
)(dxxf这样的积分问题我们可以利用正态分布的密度函数可以
解决,实际求解的时候,我们可以把它推广到一般的情形
x
dttf)(,解法如下:
比如F(x)=dtutxe22)(212 解:设 dt
tdttxexx2221)()(
令
utv
则有 dvdt
所以F(x)=dtutxe22)(212=)(2122uxdvvuxe 当给出具体ux,,值,我们通过查表就可算出结果。 例4求dxxxexx)322()322(2 解:直接计算是很麻烦的。现在利用随机变量的数学期望与方差公式以及密度函数的性质进行计算。
因为 )21(
)1(2222232xxx
所以 eeexxx)21()1(22222)32(
从而可以利用正态分布随机变量~)2
1
,1(N求积分。
dxxxexx)322()322(2 =dxxxexe)1()322(222 =)322(22xExe