浅谈概率论在生活中的应用
概率论在生活中的实际运用

概率论在生活中的实际运用Last updated on the afternoon of January 3, 2021概率论在日常生活中的应用概率论是一门与现实生活紧密相连的学科,不过大多数人对这门学科的理解还是很平凡的:投一枚硬币,的概率正面朝上,的概率反面朝上,这就是概率论嘛。
学过概率论的人多以为这门课较为理论化,特别是像大数定律,极限定理等内容与现实脱节很大,专业性很强。
其实如果我们用概率论的方法对日常生活中的一些看起来比较平凡的内容做些分析,常常会得到深刻的结果。
概率,简单地说,就是一件事发生的可能性的大小。
比如:太阳每天都会东升西落,这件事发生的概率就是100%或者说是1,因为它肯定会发生;而太阳西升东落的概率就是0,因为它肯定不会发生。
但生活中的很多现象是既有可能发生,也有可能不发生的,比如某天会不会下雨、买东西买到次品等等,这类事件的概率就介于0和100%之间,或者说0和1之间。
大部分人认为一件事概率为0即为不可能事件,这是不对的。
比如甲乙玩一个游戏,甲随机写出一个大于0小于1的数,乙来猜。
1.乙一次猜中这个数2.乙每秒才一次,一直猜下去,“最终”猜中这个数。
这两件事发生的概率的概率都是0,但显然他们都有可能发生,甚至可以“直观”地讲2发生的可能性更大些。
这说明概率为0的事件也是有可能发生的。
不过在我看来,这样的可能性实在太小了,在实际操作中认为不可能也是有道理的,但不管怎么说,他们确实是可能事件。
在日常生活中无论是股市涨跌,还是发生某类事故,但凡捉摸不定、需要用“运气”来解释的事件,都可用概率模型进行定量分析。
不确定性既给人们带来许多麻烦,同时又常常是解决问题的一种有效手段甚至唯一手段。
走在街头,来来往往的车辆让人联想到概率;生产、生活更是离不开概率。
在令人心动的彩票摇奖中,概率也同样指导着我们的实践。
继股票之后,彩票也成了城乡居民经济生活中的一个热点。
据统计,全国100个人中就有3个彩民。
生活中的概率论

生活中的概率论
生活中处处充满了不确定性和变数,而概率论正是一门研究不确定性的数学分支。
在我们日常生活中,概率论也扮演着重要的角色,影响着我们的决策和行为。
首先,我们可以从日常生活中的抉择开始说起。
无论是选择买彩票还是投资股票,我们都需要考虑到不确定性和风险。
概率论可以帮助我们计算出每种选择的可能性,从而帮助我们做出更加明智的决策。
比如,当我们考虑是否要买彩票时,我们可以用概率论来计算中奖的可能性,从而决定是否值得投入资金。
其次,概率论也可以帮助我们理解生活中的偶然事件。
比如,当我们在街上走路时,突然下起了大雨,这种偶然事件就可以用概率论来解释。
我们可以计算出下雨的可能性,从而在未来的行程中做出相应的安排。
另外,概率论还可以帮助我们理解生活中的风险和机会。
在面对风险时,我们可以用概率论来评估风险的大小,从而采取相应的措施来降低风险。
而在面对机会时,我们也可以用概率论来评估机会的大小,从而更好地把握机会,取得成功。
总之,生活中的概率论无处不在,它可以帮助我们理解不确定性和变数,从而更加理性地面对生活中的抉择、偶然事件、风险和机会。
因此,了解和运用概率论对我们的生活至关重要。
概率在生活中的应用

概率在生活中的应用概率论在一定的社会条件下,通过人类的社会实践和生产活动发展起来,被广泛应用于各个领域,在国民经济的生产和生活中起着重要的作用。
正如英国逻辑学家和经济学家杰文斯(Jevons,1835-1882)所说:概率论是“生活真正的领路人,如果没有对概率的某种估计,我们就寸步难行,无所作为”。
在日常生活中,同样不难发现,周围的许多事物都和概率有着千丝万缕的联系,下面将说明概率统计在生活中的应用。
一、数学期望在求解最大利润问题中的应用如何获取最大利润不但成为商界追求的目标,同时也为越来越多的人所关注,许多数学模型也从概率角度利用期望求解最大利润问题,为问题的解决提供新的思路。
下面就是一道应用期望探讨利润的问题。
例1、五一期间,某鲜花店某种鲜花的进货价为每束2.5元,销售价为每束5元。
若在五一期间内没有售完,则在五一期间营业结束后以每束1.5元的价格处理。
据前5年的有关资料统计,五一期间这种鲜花的需求量为20束、30束、40束和50束的概率分别为0.20、0.35、0.30和0.15。
问该鲜花店今年春节前应进该鲜花为多少束为宜?分析售出一束鲜花能获得利润5-2.5=2.5元,处理一束鲜花将亏损1元。
由于量少不够卖,量多卖不完,即鲜花的需求量是随机变量。
因此,需通过计算在不同进货量时对应的利润期望值E和损失风险R的大小决定进货量。
若进货量为20,则无论销售量是20、30、40和50时,利润均为(5-2.5)*20=50(元);若进货量为30时,利润为(5-2.5)*20-(2.5-1.5)。
10=40(元),当销量是30、40和50时,利润为(5-2.5)*30=75(元);同理,可计算进货量为40和50时的利润数。
因此,当进货量为20时,利润的期望值El=50*.(0 20+0.35+0.30+0.15)=50(元);当进货量为30时,利润的期望值为E2=40*0.20+75*(0.35+0.30+0.15)=68(元);当进货量为40时,利润的期望值E3=30*0.20+65*0.35+100*(0.30+0.15)=73.75(元);当进货量为50时,利润的期望值E4=20*0.20+55*0.35+90*0.30+125"0.15=69(元)。
概率论在生活中的应用举例

概率论在生活中的应用举例
概率论是一门统计学的分支,它研究了事件发生的可能性以及其结果的分布情况。
概率论在生活中有许多应用,下面是一些例子:
金融市场风险分析:投资者在进行投资决策时,可以使用概率论来分析市场风险,从而决定是否进行投资。
保险业:保险公司使用概率论来评估保险事故发生的概率,并使用这些信息来设计保险计划和计算保费。
医学研究:医学研究人员常常使用概率论来研究患病概率和疾病治愈概率,以及药物治疗的有效性和安全性。
电视节目播出时间安排:电视台会使用概率论来分析不同节目播出时间对收视率的影响,并安排节目播出时间以达到最佳效果。
游戏设计:游戏开发商会使用概率论来设计游戏的随机事件,例如转轮游戏中的转轮转动结果。
工厂生产过程控制:工厂管理人员可以使用概率论来分析生产过程中可能出现的故障概率,并采取预防措施来保证生产过程的顺畅进行。
这些只是概率论在生活中的应用的一小部分例子,实际上概率论在许多领域都有广泛的应用。
浅谈概率论与数理统计在生活中的应用

浅谈概率论与数理统计在生活中的应用浅谈概率论与数理统计在生活中的应用一、引言概率论与数理统计是数学的重要分支,它们在生活中扮演着至关重要的角色。
概率论研究的是随机现象的规律性,而数理统计则通过对已知数据进行推理和分析来得出结论。
这两个学科的知识可以帮助我们更好地理解生活中的各种现象,并能够提供科学的决策依据。
本文将从多个角度探讨概率论与数理统计在生活中的应用。
二、金融投资中的风险控制金融投资是人们追求财富增值的一种方式,而风险控制是成功投资的关键。
概率论与数理统计的方法可以帮助投资者在制定投资策略时更全面地考虑风险因素。
例如,通过分析历史股价数据,可以使用统计模型来预测未来股价的波动情况,从而做出相应的投资决策。
此外,概率论还可以帮助投资者评估不同投资组合的风险和回报,选择最优的投资标的。
三、医学诊断中的准确判断在医学诊断中,准确判断患者的病情和预测疾病发展趋势对患者的治疗和康复至关重要。
概率论与数理统计的方法可以提供科学的依据来辅助医生进行准确判断。
例如,在进行疾病筛查时,可以通过统计模型计算出患病的概率,进而指导医生进行深入的检查和诊断。
此外,根据大量病例数据的统计分析,可以找到某种疾病的高危因素,并在早期进行预防和干预。
四、市场调查与产品开发市场调查和产品开发是企业决策的重要环节。
概率论与数理统计的方法可以帮助企业分析市场需求、预测产品销售量,并评估产品的风险与效益。
例如,通过抽样调查与统计分析,可以了解消费者对某种产品的需求状况,进而指导企业进行产品定位和市场营销策略的制定。
此外,概率论与数理统计还可以帮助企业评估产品的质量与可靠性,确保产品符合市场需求。
五、社会决策与公共政策制定社会决策和公共政策制定时需要考虑到各种不确定因素和风险。
概率论与数理统计的方法可以为决策者提供客观、科学的参考。
例如,在社会福利政策制定中,可以通过模型推断分析不同政策方案对于受益人的影响,从而选择最优的政策方案。
概率论在实际生活中的应用

概率论在实际生活中的应用概率统计主要是对随机现象以及统计方面的学习和研究。
生活中很多事件的发生都有一定的随机性。
当我们开始留意这些随机现象时,你会发现,它出现在我们生活中的方方面面。
因此,学好这门学科,并将其应用到实践中必然会对我们产生巨大的帮助。
关键词:概率;生活;应用The application of probability and statistics in real lifeAbstract:Probability theory is the study of random phenomena and statistical rule.In all aspects we can all see the application of probability statistics.Probability and,therefore,learn to study the probability and statistics is applied to practice will produce a great help to us. Keywords:Probability;Life;Application引言:概率论作为数学中的一门重要学科,在各个领域中都用着不同的应用。
本文将从不同的方面,举出一些实例,例如保险行业盈利亏本,彩票的中奖概率,经济决策中的投资,股票买卖,抽查产品次品率,以及在军事中的着弹点问题等方面,作出一些阐述。
一.概率统计在小概率事件中的应用小概率事件是指概率很小,但有有可能发生的事件。
一个事件必然发生的概率是1,一定不会发生的概率是0,那么小概率事件就是概率接近于0的事件。
多小的概率值是小概率呢?这个没有具体数值,具体情况,具体分析。
1.概率统计在保险业中的应用平时,我们也会经常看到或者听到各种保险的宣传和推销。
大多数人应该不知道保险公司是如何赚钱的,下面举一个例子来解答这个疑惑。
概率论在生活中的实际运用

概率论在生活中的实际运用概率论是数学的一个分支,研究随机事件的发生概率及其统计规律。
概率论的概念和方法在日常生活中有着广泛的应用,涉及到众多领域,包括统计学、经济学、物理学、生物学等。
下面将重点介绍概率论在生活中的实际运用。
首先,概率论在统计学中有着重要的应用。
统计学是研究收集、整理、分析数据,并从数据中得出结论的科学。
概率论为统计学提供了强大的工具,用于描述和分析不确定性。
在进行调查和抽样时,我们可以利用概率论中的抽样方法来获得可靠的数据样本。
概率论也可用于判断统计推断的可靠程度,例如在假设检验中确定一个结果是否显著。
统计推断的可靠性与概率密切相关,概率论让统计学家能够量化不确定性,并制定适当的决策。
其次,概率论在金融学领域也有广泛应用。
金融市场中存在着很多不确定性和风险,概率论为金融学家提供了衡量风险的工具。
股票市场的涨跌、商品价格的波动、货币兑换的汇率等都是随机事件,而概率论可以用来预测和计算这些事件发生的概率。
投资者可以利用概率论帮助他们作出更明智的投资决策,合理分配资金,降低投资风险。
概率论也在游戏和赌博中有着重要的应用。
赌博是一个充满不确定性的活动,而概率论可以用来计算赌博的胜率和期望收益。
赌徒通过了解赌局的概率分布和赔率,可以做出更明智的决策。
例如,他们可以计算在不同的赌局中的期望收益,并在概率较高的情况下选择参与赌局。
概率论也可以用来分析各种不同的游戏策略,寻找最优的策略。
此外,概率论在保险和风险管理中也有广泛应用。
保险公司通过概率统计来确定保险费的收取方式,计算不同风险事件发生的概率和赔偿金额,从而给出合理的保险费率。
概率论也可以帮助保险公司评估风险,制定风险管理策略。
例如,概率论可以用于预测自然灾害发生的概率,从而确定相应的保险政策。
概率论还广泛应用于医学和生物学研究中。
在医学诊断中,概率论可以帮助医生评估疾病患者的概率,制定治疗方案和预测疗效。
在生物学研究中,概率论可以用于描述和分析基因突变、遗传变异等随机事件,为生物学家提供理论指导和实验设计。
概率论与数理统计在生活中的应用(1)

概率论与数理统计在生活中的应用(1)
概率论与数理统计在生活中的应用
概率论和数理统计是数学中的重要分支。
随着科技、生产力、资源等
各方面的发展,概率论和数理统计已经渗透到了我们的生活中。
1. 保险业
概率论和数理统计在保险业中有着重要的应用。
在保险业中,保险公
司主要通过概率论和数理统计来评估和管理风险。
通过大数据分析和
概率论的统计分析,保险公司可以确定产品定价、理赔、赔偿比例等
重要策略,从而保证自身的利益和风险防范。
2. 股票交易
股票市场是一个充满风险和不确定性的领域。
而概率论在股票交易中
扮演着重要的角色。
投资者通常通过概率分析来评估个股的发展趋势、风险和投资收益率,从而制定出相应的股票投资策略。
3. 金融保障
概率论和数理统计在金融领域的应用十分广泛。
在金融保障领域中,
银行、证券公司和投资机构等机构经常使用概率和统计分析方法,来
评价和管理理财产品和组合,以寻求更高的收益率和更少的风险。
4. 生活中的风险管理
在生活中,我们都会面对各种各样的风险。
概率论的应用可以帮助我
们理性的预估和管理这些风险。
例如,在购房时,我们可以通过概率分析来确定房价的涨跌趋势,从而制定出最合适的购房策略;在购买保险时,我们可以通过概率分析来确定个人的风险水平,选择最适合自己的保险产品。
总之,概率论与数理统计的应用与我们生活息息相关,这一领域的发展将不断为我们的生活带来便利和保障,促使我们从更客观和理性的角度看待和管理各种风险。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单位代码:分类号: X X 大学题目: 浅谈概率论在生活中的应用专业名称: 数学与应用数学学生:学生学号:指导教师:毕业时间:浅谈概率论在生活中的应用摘要:随机现象存在于我们日常生活的方方面面和科学技术的各个领域,概率论与数理统计是一门十分重要的大学数学基础课,也是唯一一门研究随机现象规律的学科,它指导人们从事物表象看到其本质.它的实际应用背景很广,包括自然科学、社会科学、工程技术、经济、管理、军事和工农业生产等领域.经过不断的发展,学科本身的理论和方法日趋成熟,近年来,概率统计知识也越来越多的渗透到诸如物理学、遗传学、信息论等学科当中.另外,在社会生活中,就连面试、赌博、彩票、体育和天气等等也都会涉及到概率学知识.可以说,概率统计是当今数学中最活跃,应用最广泛的学科之一.本文通过对现实生活中的部分现象分析探讨了概率知识在日常生活中的广泛应用.关键词:随机现象;概率;日常生活;应用分析Discuss the application in life probabilityAbstract: Random phenomenon exists in every aspect of our everyday lives and scientific technology each domain, probability and mathematical statistics is an important basic course in college mathematics, and is the only the study of random phenomenon regular course, its guiding people from representation see its nature. Its actual application background is very wide, including natural science, social science, engineering, economics, management, military and industrial and agricultural production, etc. Through continuous development, the theory and method of subject itself becomes mature, in recent years, the probability and statistics knowledge also more and more penetrated into such as physics, genetics, information subjects such as the midst. In addition, in social life, even interview, gambling, lottery tickets, sports and weather, etc are also involves probability learn knowledge. Can say, probability and statistics is the most active in mathematics, the most widely used in the fields of. This article through to in real life part phenomenon discussed probability knowledge in daily life the widely application. Keywords:random phenomenon; probability; daily life; application analysis目录引言 (1)1 概率在博彩领域中的应用 (1)1.1概率与赌博问题............................................................ 错误!未定义书签。
1.2彩票中奖问题 .............................................................. 错误!未定义书签。
1.2.1 哪种血型的人更容易奖? ....................................... 错误!未定义书签。
1.2.2 叫什么名字更容易奖? (2)1.2.3 什么更容易奖? ..................................................... 错误!未定义书签。
2 概率在工作、学习中的应用 ................................................. 错误!未定义书签。
2.1面试通过的概率 (2)2.2选择题瞎猜问题 .......................................................... 错误!未定义书签。
3 概率在体育学中的应用........................................................ 错误!未定义书签。
3.1概率在乒乓球比赛中的应用 (5)3.2足球点球大战的方案.................................................... 错误!未定义书签。
3.3棒球界“三成击球员”的安打概率............................... 错误!未定义书签。
4 概率在猜拳游戏中的应用 .................................................... 错误!未定义书签。
4.1猜拳必胜的方法 ........................................................... 错误!未定义书签。
4.1.1 规定起始拳 .......................................................... 错误!未定义书签。
4.1.2 不规定起始拳 ...................................................... 错误!未定义书签。
4.2猜拳多少回合可以决出胜负? ........................................ 错误!未定义书签。
5 生日概率问题 (6)6 降水概率问题...................................................................... 错误!未定义书签。
7 用概率的方法证明谚语........................................................ 错误!未定义书签。
7.1三个臭皮匠抵个诸亮 .................................................... 错误!未定义书签。
7.2一根筷子容易折一把筷子坚如铁................................. 错误!未定义书签。
7.3吃剩下的东西有福气.................................................... 错误!未定义书签。
结束语 (7)参考文献 (8)辞 (8)引言概率论与数理统计是研究随机现象统计规律的一门学科,简单地说,就是一件事发生的可能性的大小.这门学科在社会生产和生活中起着非常重要的作用,概率统计几乎遍及所有的科学技术领域,工农业生产国民经济及日常生活各个方面,,比如:,在研究最大经济利润中寻求最佳生产方案,在检验生产产品合格率,在面试通过方面,在公交站台的侯车时间,打时间长短分配,在各种比赛赛制问题上,在生日概率问题上,以下通过具体的例子讨论概率论在生活中的应用。
1 概率在最大经济利润中寻求最佳生产方案中的应用如何获得最大利润是永远追求的目标,随机函数期望的应用为此问题的解决提供了思路,例如;某公司要销售一批货物,根据历史经验,这批货物的市场需求量为x(单位;吨),服从(30,50)上的均匀分布,每售出一吨该货物,公司可获利15千元,如积压1吨,则公司就会亏损5千元,问该公司应该组织多少货源可获利最大?分析;该问题的解决需建立利润与需求量的函数,然后求利润的期望关于货源的函数,最后利用求极值的方法得到答案。
解;设公司组织货物a吨,则有3050≤a,又记y为a吨货物的条件下的≤利润函数、即、y=g(X).由题设条件有、当x≥a时、此a吨货物全部售出共获利15a.当x<a时、则售出x吨货物(获利15x)、且还有(a-x)吨积压、所以总利润为15x-5(a-x)由此得Y=g(x)={)3(15)5030(520≤≤-x a x a x 从而得E(y)=⎰+∞∞-g(x)p(x)dx=dx x g ⎰503020001)(=dx a x a ⎰-3020001)520(+⎰503020001dx =)300900(2000122-+-a a 由上述计算表面E(y)是a 的二次函数、用通常求极值的方法可以得a=45吨时能获得利润的最大值。
.2概率在检验生产产品合格率方面的应用概率在生产产品合格率、产品的废品率方面应用也比较广泛,例如;在一批产品中80%的合格品,验收这批产品时规定,先从中任取一个,若是合格的就放回去,然后再取一个若仍为合格品,则接受这批产品,否则拒收。
求(1)验收第一个产品为合格品且第二个产品为次品的概率?(2)这批产品被拒收的概率?解;设事件A i =第i 个产品合格(i=1.2.…)又A 1.A 2相互独立(1) p(A 1.2A )=0.80×(1-0.80)=0.80×0.20)=.16(2) P(A 12A ⋃)=p(21A A )=1-P(A 1A 2)=1-0.80=0.363概率在公交站台候车时间应用在公交站台候车时间长短乘客很关注,例如公共汽车站每隔5分钟有一辆汽车通过,乘客到达汽车站的任一时刻是等可能的,求乘客候车时间不超过3分钟的概率解;以x 表示乘客候车时间、则X 为随机变量、令F(x)=⎰≤≤51050其他x则f(x)为密度函数事实上(1)f(x)≥1(2)1)05(515151)(5050=-===⎰⎰⎰+∞∞-dx dx dx x f ∴f(x)为密度函数故乘客候车时间不超过3分钟的可以表示为03≤≤X故所求的概率为p(≤0X 3≤)=6.0535151)(303030====⎰⎰⎰dx dx dx x f 所以乘客候车时间不超过3分钟的概率为0.694概率在公共亭顾客打时间方面的应用在公共亭顾客打时间分配,打几次所用时间的概率如何去解决例如某公共亭、顾客打一次所用时间x 分钟服从参数λ(λ>0)指数分布,且打一次平均所用的时间为5分钟,求(1)任打一次所用时间在5-10分钟的概率?(2)任打三次中至少有一次所用时间为5-10分钟的概率解;由=)(x f ﹛)0()0(0 x x e x λλ-≤51=λ P(A)=P(x x e dx e dx x f x 515110510551)()105(---===≤≤⎰⎰|105=2325.011122≈-=-e e e e P(B)=1-[1-P(A) ]3=1-[1-211e e +]3-21e 5481.0≈由此可以求出问题的结论概率在面试通过方面的应用刚从学校毕业即将步入社会的年轻人都希望找一份合适的工-作.可是,目前的经济情况一直不景气,找个工作都很难,很多公司的面试通过率也很低,年轻人该怎么办呢?其实,年轻的朋友不必灰心丧气.从概率学的角度讲,只要坚持不懈地努力,成功的概率就会不断提高.一件成功概率为50%的事情.只要我们反复做5次,就可以把成功概率提高至97%.如果5家公司的面试率都是50%,那么我们去这5家公司面试时至少可以通过一家公司面试的概率也为97%.将每家公司面试不合格的概率相乘,就可以得出去5家公司面试都不合格的概率,即50.5=0.03(约3%)用1减去都不合格的概率,得出的便是至少可以通过一家公司面试的概率:1- 0.03=0.97(97%)同样,如果面试的通过率都为30%,面试5家,至少可以通过1家面试的概率为83%.如果面试的通过率仅为10%,连续面试10家,至少可以通过1家面试的概率为65%.如果连续面试20家,至少通过1家面试的概率则高达88%.此外,如果几家公司的面试通过率各不相同,分别是10%、20%、30%、40%和50%,那么参加这几家公司的面试后,至少能通过1家面试的概率该如何计算呢?即使各个公司的面试通过率各不相同,同样可以利用前面的方法进行计算.首先将各个公司面试的不合格的概率相乘,就可以得到去任何一家公司面试都不合格的概率,再用1减去这一概率,便得到至少能通过一家公司面试的概率.因此1-(0.9×0.8×0.7×0.6×0.5)=约0.85也就是说,至少通过1家公司面试的概率为85%..3.1 概率在乒乓球比赛中的应用大家打球中经常会遇到半机会球,这样的球许多业余爱好者通常会全力冲之,不是你死就是我亡,力求一板解决战斗,而职业运动员通常只会用七八成力而寻求连续攻击,显然后者的处理球方式更为合理.以下用高等数学中的概率知识加以解释: 问题:对半机会球一板打中和多板连续打中的得分概率比较假设前提:1、进攻方和其对手均不变,即双方攻防技术水平确定不变2、方法一:一板死的打法,如打中,则对方回击失误(即我方得分)概率为90%,如被对方防回,则进攻方失分,没有第三板可言.3、方法二:连续攻打法(只讨论攻两板的情况,攻多板可类推),如第一板打中,对方回击失误概率为80%,如被对方防回,由于没有全力发力,因此假设连续的第二板攻击打中并且仍能使对方回击失误概率保持在80%.比较:上述两种方法的总体得分概率P方法一:P =90%+(1-90%)×0=90%方法二:P =80%+(1-80%)×80%=96%可以依次类推:连续第三板的P =80%+(1-80%)×80%+(1-80%)×(1-80%)×80%=99.2% ……连续第n 板的P =80%+(1-80%)×80%+……(()1180%n --×80%=……实际上这是一个等比数列求和,当n 趋向于无穷大时,该等比数列和为1,即此时得分率为100%,正好与事实验证.结论:最凶的未必是最好的,半机会的情况下,连续的杀伤力更大.5 生日概率问题小时侯看《少年科学》,记得一个问题,就是在一群人中,你很有可能找到相同生日的人.而且你找到生日相同的人的可能性超过找不到生日相同的人的可能性,对这群人数的数字要求,可能并不像你想象中的那样高.一个班有五十个人,我赌班上肯定有生日相同的一对同学.《少年科学》讲,胜算非常大.一直记不清人数达到多少时,有生日相同的人的可能性会超过百分之五十.终于看到答案:23人.我们来看一个经典的生日概率问题.以1年365天计(不考虑闰年因素),你如果肯定在某人群中至少要有两人生日相同,那么需要多少人?大家不难得到结果,366人,只要人数超过365人,必然会有人生日相同.但如果一个班有50个人,他们中间有人生日相同的概率是多少?你可能想,大概20%~30%,错,有97%的可能!它的计算方式是这样的:a、50个人可能的生日组合是365×365×365×……×365(共50个)个;b、50个人生日都不重复的组合是365×364×363×……×316(共50个)个;c、50个人生日有重复的概率是1-b a .这里,50个人生日全不相同的概率是ba=0.03,因此50个人生日有重复的概率是1-0.03=0.97,即97%.根据概率公式计算,只要有23人在一起,其中两人生日相同的概率就达到51%!但是,如果换一个角度,要求你遇到的人中至少有一人和你生日相同的概率大于50%,你最少要遇到253人才成.结束语虽然在现实生活中我们不能准确预测未来或一些尚未发生的事件,但概率论的应用有利于更好地处理各种不确定因素.概率论渗透到生活的方方面面,从而为我们的日常生活带来方便. 有人设想,不久的将来,新闻报道中每一条消息旁都会注明“真实概率”,电视节目的预告中,每个节目旁都会写上“可视度概率”.另外,还有西瓜成熟概率、火车正点概率、药方疗效概率、广告可靠概率等等.又由于概率是等可能性的表现,从某种意义上说是与平等的体现,因此,社会生活中的很多竞争机制都能用概率来解释其公平合理性.总之,我们在生活和工作中,无论做什么事都要脚踏实地,对生活中的某些偶然事件要理性的分析、对待.由于随机现象在现实世界量存在,概率必将越来越显示出它巨大的威力.参考文献⑴盛骤、式千、承毅,概率论与数理统计教程,高等教育,2000.8[1] 程依明.概率论与数理统计教程[M].:高等教育,2004:1-4.[2] 宗舒.概率论与数理统计教程[M].:高等教育出版[7] 罗浩源.生活的数学[M].:远东,2001.[8] 长波.生活中的概率问题举例[J].师大学学报,2007,25(4):531-533.[9] 玉红.浅谈概率在生活中的应用[J].经济研究导刊,2010,(18):203-205辞走的最快的总是时间,来不及感叹,大学生活已近尾声,四年多的努力与付出,随着本次论文的完成,将要划下完美的句号.本论文设计在盈老师的悉心指导和严格要求下业已完成,从课题选择到具体的写作过程,论文初稿与定稿无不凝聚着老师的心血和汗水.在我的毕业设计期间,盈老师为我提供了种种专业知识上的指导和一些富于创造性的建议,老师一丝不苟的作风,严谨的态度使我深受感动,没有这样的帮助和关怀和熏,我不会这么顺利的完成毕业设计.在此向老师表示深深的感和崇高的敬意!在临近毕业之际,我还要借此机会向在这四年中给予我诸多教诲和帮助的各位老师表示由衷的意,感他们四年来的辛勤栽培.不积跬步何以至千里,各位任课老师认真负责,在他们的悉心帮助和支持下,我能够很好的掌握和运用专业知识,并在设计中得以体现,顺利完成毕业论文.同时,在论文写作过程中,我还参考了有关的书籍和论文,在这里一并向有关的作者表示意.我还要感同组的各位同学以及我的各位室友,在毕业设计的这段时间里,你们给了我很多的启发,提出了很多宝贵的意见,对于你们帮助和支持,在此我表示深深地感!。