拉曼光谱原理

合集下载

红外光谱和拉曼光谱的原理

红外光谱和拉曼光谱的原理

红外光谱和拉曼光谱是常用的分析技术,可以用于研究物质的结构、组成和性质。

它们基于不同的原理,下面简要介绍一下它们的工作原理:
1.红外光谱(Infrared Spectroscopy):
红外光谱利用物质与红外辐射(波长范围通常为2.5-25微米)的相互作用来研究物质的分子结构和化学键的振动状态。

其原理基于分子吸收红外辐射时,物质中的原子核和化学键会被激发,产生特定的振动和转动。

当物质受到红外光源照射后,通过测量样品对不同波长红外光的吸收程度,可以得到红外光谱图。

红外光谱图上的峰值位置和强度提供了关于物质中的化学键种类、官能团和分子结构的信息。

2.拉曼光谱(Raman Spectroscopy):
拉曼光谱则利用物质与激光光源相互作用时,散射光中的微小频率偏移来分析物质的结构和振动信息。

当样品受到激光照射时,其中的分子会发生拉曼散射现象,即散射光中的部分光子与物质相互作用后发生能量的频移。

这种频移对应着分子的振动和转动模式。

通过测量样品散射出来的光的频率变化,可以获取拉曼光谱图。

拉曼光谱图上的峰值位置和强度提供了关于物质所含化学键、官能团和结构的信息。

3.总结:
红外光谱和拉曼光谱都是通过物质与不同光源的相互作用来研究其结构和性质。

红外光谱利用物质对红外辐射的吸收来分析物质的化学键振动,而拉曼光谱则是通过测量散射光的频率变化来分析物质的振动信息。

两种技术在分析样品成分、鉴定物质、研究反应机理等方面都有广泛的应用。

拉曼光谱仪原理及应用

拉曼光谱仪原理及应用

拉曼光谱仪原理及应用
拉曼光谱仪是一种用于分析物质的工具,它基于拉曼散射效应。

拉曼散射是指当光通过物质时,光子与物质分子发生相互作用,产生散射光时的现象。

拉曼光谱仪可以通过测量散射光的强度和频率来确定物质的结构和组成。

拉曼光谱仪的基本原理是使用一束单色激光照射到待测样品上,部分光子与样品内的分子相互作用后发生频率变化,即拉曼散射。

散射光中的频移与分子的振动能级差有关,因此可以得到物质的特征振动光谱。

为了提高测量的灵敏度和精度,拉曼光谱仪通常采用光栅或干涉仪作为色散元件,将散射光按频率分离成不同的波长。

通过光检测器和光谱仪等装置,可以得到关于频率和强度的光谱图像。

拉曼光谱仪有广泛的应用领域。

例如:
1. 物质组成分析:拉曼光谱可以提供物质的分子结构和组成信息,用于化学、生物医药等领域的物质鉴定和分析。

2. 药物研发:通过拉曼光谱仪可以对药物分子的结构进行表征,用于药物研发、质量控制和药物相互作用的研究。

3. 环境监测:拉曼光谱仪可以用于检测空气中的有害气体、污染物和化学物质,对环境污染进行监测和分析。

4. 生命科学研究:拉曼光谱技术可以用于生物分子的结构和功能研究,如蛋白质结构、DNA/RNA序列和细胞代谢等。

5. 材料分析:拉曼光谱可以用于分析材料的成分、相变和结构变化,对材料科学和工程中的材料研究和品质控制具有重要意义。

总的来说,拉曼光谱仪通过测量散射光的频率和强度,可以提供关于物质结构和组成的有用信息,广泛应用于许多科学领域和工业应用中。

拉曼光谱的原理

拉曼光谱的原理

1. 拉曼光谱的原理.喇曼效应喇曼效应起源于分子振动(和点阵振动)与转动,因此从喇曼光谱中可以得到分子(点阵振动能级)与转动能级结构的知识。

用虚的上能级概念可以说明了喇曼效应:设散射物分子原来处于基电子态,振动能级如图所示。

当受到入射光照射时,激发光与此分子的作用引起的极化可以看作为虚的吸收,表述为到虚态(Virtual state),虚能级上的电子立即跃迁到下能级而发光,即为散射光。

设仍回到初始的电子态,则有如图所示的三种情况。

因而散射光中既有与入射光频率相同的谱线,也有与入射光频率不同的谱线,前者称为瑞利线,后者称为喇曼线。

在喇曼线中,又把频率小于入射光频率的谱线称为斯托克斯线,而把频率大于入射光频率的谱线称为反斯托克斯线。

. 瑞利散射与拉曼散射当一束激发光的光子与作为散射中心的分子发生相互作用时,大部分光子仅是改变了方向,发生散射,而光的频率仍与激发光源一致,这种散射称为瑞利散射。

但也存在很微量的光子不仅改变了光的传播方向,而且也改变了光波的频率,这种散射称为拉曼散射。

其散射光的强度约占总散射光强度的10-6~10-10。

拉曼散射的产生原因是光子与分子之间发生了能量交换改变了光子的能量。

. 拉曼散射的产生光子和样品分子之间的作用可以从能级之间的跃迁来分析。

样品分子处于电子能级和振动能级的基态,入射光子的能量远大于振动能级跃迁所需要的能量,但又不足以将分子激发到电子能级激发态。

这样,样品分子吸收光子后到达一种准激发状态,又称为虚能态。

样品分子在准激发态时是不稳定的,它将回到电子能级的基态。

若分子回到电子能级基态中的振动能级基态,则光子的能量未发生改变,发生瑞利散射。

如果样品分子回到电子能级基态中的较高振动能级即某些振动激发态,则散射的光子能量小于入射光子的能量,其波长大于入射光。

这时散射光谱的瑞利散射谱线较低频率侧将出现一根拉曼散射光的谱线,称为Stokes 线。

如果样品分子在与入射光子作用前的瞬间不是处于电子能级基态的最低振动能级,而是处于电子能级基态中的某个振动能级激发态,则入射光光子作用使之跃迁到准激发态后,该分子退激回到电子能级基态的振动能级基态,这样散射光能量大于入射光子能量,其谱线位于瑞利谱线的高频侧,称为antiStokes线。

拉曼光谱的基本原理和应用

拉曼光谱的基本原理和应用

拉曼光谱的基本原理和应用拉曼光谱是物理学中的一种光谱分析技术,由印度物理学家拉曼于1928年首次发明并应用于物质分析领域,被誉为光谱分析技术中的“黄金标准”。

它是一种非破坏性的、非接触的分析方法,通过记录分子或晶格振动产生的光散射谱,来确定样品的化学成分和分子结构等信息。

本文将对拉曼光谱的基本原理和应用进行介绍。

1. 基本原理拉曼散射现象,是指当激发光通过物质后,和物质分子(原子)作用,从而使部分光子散射并改变波长和能量的现象。

其中有经典理论和量子理论两种解释方式。

经典理论认为,当入射光作用于分子时,分子会处于一种较稳定的振动状态(低频振动状态),此时来自光的能量被吸收到分子内部,并在其振动中被存储。

当入射光继续辐照分子时,它将对分子中的电荷作用,使分子从初始振动状态转移到不同的振动状态,从而引起辐射吸收和耗散。

这个过程中,散射出来的光子波长与入射光子波长略有不同,这种现象被称为拉曼散射。

量子理论则通过分子内部电子能级的变化来解释拉曼散射。

当光子入射到分子中时,分子内部的电子受到激发,从一个能量级跃迁到另一个高能级状态。

接着,这些高能态电子再从高能级态回到低能级态时,向周围外沿部分辐射自身的能量,并使辐射光的波长发生变化,形成了拉曼散射光谱。

无论是通过经典理论还是通过量子理论来解释拉曼散射,其实质都是把激发光子的能量转换成分子振动的能量,从而实现对分子结构和物质成分的分析。

2. 应用(1)化学分析拉曼光谱在化学分析领域中得到了广泛应用。

它可以快速、准确地确定化合物的成分和结构,对于分析固态、液态、气态样品均可适用。

例如,在制药领域中,分析拉曼光谱可以帮助研究人员了解样品的物质成分和结构,从而更好地控制生产过程和最终成品的质量。

(2)生化学分析拉曼光谱技术在生命科学、医学、环境保护、食品安全等领域也有广泛应用。

通过对生物分子的拉曼光谱进行分析,可以帮助我们研究生物分子的组成、形态、稳定性、相互作用等信息。

4 拉曼光谱

4 拉曼光谱

水不能作为溶剂
不能用玻璃容器测定
需要研磨制成 KBr 压片
二、拉曼光谱的应用
由拉曼光谱可以获得有机化合物的各种结构信息: 1)同种分子的非极性键S-S,C=C,N=N,CC产生强拉曼
谱带, 随单键双键三键谱带强度增加。
2)红外光谱中,由C N,C=S,S-H伸缩振动产生的谱带一 般较弱或强度可变,而在拉曼光谱中则是强谱带。 3)环状化合物的对称振动常常是最强的拉曼谱带。
红外光谱与拉曼光谱互为姊妹谱,可以相互补充
① 相似之处:
都能提供分子振动频率的信息,对于一个给定的化学键,
其红外吸收频率与拉曼位移相等,均代表第一振动能级 的能量。
② 不同之处:

红外光谱的入射光及检测光都是红外光,而拉曼光谱的 入射光和散射光大多是可见光。

拉曼效应为散射过程,拉曼光谱为散射光谱;红外光谱 对应的是与某一吸收频率能量相等的(红外)光子被分 子吸收,因而红外光谱是吸收光谱。
I I //
I∥和I⊥——分别代表与激光电矢量 平行和垂直的谱线的强度
I I //


3 4
的谱带称为偏振谱带,表示分子有较高的对称振动模式。


3 的谱带称为退偏振谱带,表示分子对称振动模式较低。 4
结晶紫有醌式(a)和离子型(b)两种结构:
(a)式中三个苯环处于同一平面,(b)式中三个苯环因位阻关系不处在同 一平面,彼此稍许错开,形成类似螺旋桨状。 测定结晶紫水溶液(5x10-4 M)的拉曼谱,214cm-1(结晶紫分子中心碳原 子的呼吸振动)的退偏振比值接近零,可见分子的对称性很高,说明在 该实验条件下结晶紫分子为离子型结构。
拉曼光谱与红外光谱分析方法比较拉曼光谱红外光谱光谱范围404000cm1光谱范围4004000cm1水可作为溶剂水不能作为溶剂样品可盛于玻璃瓶毛细管等容器中直接测定不能用玻璃容器测定固体样品可直接测定需要研磨制成kbr压片二拉曼光谱的应用由拉曼光谱可以获得有机化合物的各种结构信息

拉曼光谱法的基本原理

拉曼光谱法的基本原理

拉曼光谱法的基本原理
拉曼光谱法是一种基于拉曼散射的光谱分析技术,用于研究分子的振动和转动能级。

其基本原理是当光照射到物质上时,会发生散射现象,其中一部分散射光的波长会发生变化,这种现象被称为拉曼散射。

拉曼散射的强度与物质的分子振动和转动能级有关,因此可以通过分析拉曼光谱来确定物质的分子结构和组成。

拉曼光谱通常包括一个或多个拉曼峰,每个峰对应于物质的一个特定的振动或转动模式。

拉曼光谱法的优点包括无需对样品进行预处理、可以在大气环境下进行测量、可以分析固体、液体和气体等各种形态的物质。

它在材料科学、化学、生物学、医学等领域都有广泛的应用,例如分析材料的结构、鉴定未知物质、监测反应过程等。

总的来说,拉曼光谱法是一种非常有用的光谱分析技术,它可以提供关于物质分子结构和组成的重要信息,对于研究和应用具有重要的意义。

拉曼光谱的原理和应用

拉曼光谱的原理和应用1. 拉曼光谱的原理拉曼光谱是一种用来分析物质结构和成分的无损分析技术,基于物质与激发光发生散射,从而产生频率偏移的原理。

其原理主要包括以下几个方面:1.1 原子和分子的散射光谱拉曼光谱的原理基于分子和原子能级之间的相互作用。

在激光照射下,物质中的分子或原子将散射光以不同频率的方式返回。

这种散射光的频率与分子或原子的能级差有关。

1.2 可视化分子/晶格的振动模式拉曼光谱可以提供关于分子或晶格振动模式的信息。

当分子或晶格发生振动时,它们会在散射光中引起频率的变化。

通过测量这些频率的变化,可以推断出分子或晶格的结构和性质。

1.3 拉曼散射的选择规则拉曼散射具有一些特殊的选择规则。

根据这些规则,只有那些在对称群的表示中具有非零矩阵元的振动模式才能产生明显的拉曼散射。

1.4 拉曼光谱的特点拉曼光谱具有以下几个特点:•非破坏性:拉曼光谱是一种非破坏性的分析技术,可以对样品进行实时、在线的观测和分析,不会对样品造成永久性损坏。

•高分辨率:拉曼光谱具有很高的分辨率,可以区分出非常接近的波数峰,从而提供详细的结构信息。

•快速性:拉曼光谱分析速度快,只需几秒钟就可以得到样品的光谱信息。

2. 拉曼光谱的应用拉曼光谱是一种非常重要的光谱分析技术,被广泛应用于物质科学、生物医学、环境监测等领域。

以下列举了一些拉曼光谱的常见应用:2.1 化学物质分析拉曼光谱可以用于化学物质的定性和定量分析。

通过比对样品的光谱图与已知物质的光谱数据库,可以确定样品的成分和结构。

这对于药物研究、环境污染物分析等具有重要意义。

2.2 药物研究拉曼光谱在药物研究中被广泛应用。

通过测量药物的拉曼光谱,可以了解药物的成分、结构和稳定性,进一步优化药物的合成和制备过程。

2.3 生物医学应用拉曼光谱在生物医学领域具有重要的应用价值。

通过测量生物组织或体液的拉曼光谱,可以诊断疾病、检测肿瘤、鉴定细菌等。

由于拉曼光谱是非破坏性的,因此可以实时监测药物的疗效。

拉曼光谱原理与应用

拉曼光谱原理与应用光谱分析是一种通过测量物质与光的相互作用来研究物质性质的方法。

在光谱分析中,拉曼光谱因其独特的原理和广泛的应用而备受关注。

本文将全面介绍拉曼光谱的原理、仪器设备以及在不同领域中的应用。

一、拉曼光谱的原理拉曼光谱是指当光线与物质作用时,光的频率发生改变并散射的现象。

这种频率改变称为拉曼散射,其产生的原因是分子或晶体结构的振动或旋转。

具体来说,光与物质发生相互作用时,部分光子与物质的分子或晶格发生能量交换,使得被散射的光子频率发生改变。

而这种频率变化所携带的信息,可以用来研究物质的组成、结构以及状态。

二、拉曼光谱的仪器设备为了获得高质量的拉曼光谱数据,需要使用一些专门的仪器设备。

典型的拉曼光谱仪通常包括以下几个部分:1. 激光器:激光器是产生高强度和单色性光线的关键组成部分。

常用的激光器有氩离子激光器、固体激光器和半导体激光器等。

激光的选择应根据样品的特性和研究的目的来确定。

2. 光学系统:光学系统通常由透镜、准直器、滤光片等组成。

其主要功能是对光进行聚焦、准直和滤波,以保证光在样品表面的合适条件下进行相互作用。

3. 光谱仪:光谱仪是将散射光分离成不同频率的设备。

常用的光谱仪包括单色仪、衍射光栅、光电倍增管等。

光谱仪的性能决定了拉曼光谱信号的质量和分辨率。

三、拉曼光谱的应用拉曼光谱广泛应用于各个领域,如物理化学、材料科学、生物医学等,具有非常重要的意义。

1. 物理化学应用:拉曼光谱可以用于分析物质的结构和组成。

通过测量样品的拉曼光谱,可以获得有关物质分子振动状态的信息,帮助研究人员了解分子之间的相互作用和化学键的性质。

此外,拉曼光谱还可以用于表面增强拉曼光谱(SERS)的分析,提高灵敏度和检测限。

2. 材料科学应用:拉曼光谱在材料科学领域中具有广泛应用。

通过对材料的拉曼光谱分析,可以获得有关材料晶格振动和晶格结构的信息,揭示材料的物理特性和相变行为。

同时,拉曼光谱还可以用于研究材料的缺陷和应力状态,为材料设计和改进提供重要参考。

拉曼光谱仪原理

拉曼光谱仪原理
拉曼光谱仪是一种通过拉曼散射现象对样品进行光谱分析的仪器。

其工作原理基于拉曼散射现象,即当激发光通过样品时,一部分光子与样品中的分子相互作用,而发生频率发生轻微改变的散射。

拉曼光谱仪通过测量散射光的频率偏移,即拉曼位移,来分析样品的分子结构和化学成分。

拉曼光谱仪主要由光源、样品装置、光学系统、光谱探测器和数据处理部分组成。

光源发出单色或紧凑的激发光,通常使用激光器产生的单色光源。

样品装置将样品放置在光路中,保持样品与光线的高度对准,并可实现样品的旋转、移动等操作。

光学系统包括光路的调节装置,如光栅、滤光片等,用于调节光的光谱范围和分辨率。

当激发光通过样品时,部分光子与样品中的分子发生相互作用,发生拉曼散射。

散射光经过光学系统后,进入光谱探测器进行检测。

光谱探测器可以是单通道探测器或多通道探测器,用于测量不同频率的散射光强度。

数据处理部分接收探测器输出的信号,并进行信号处理和数据分析,得到样品的拉曼光谱图。

拉曼光谱仪广泛应用于材料科学、化学、生物学等领域的研究和分析。

它可以提供样品的分子结构和成分信息,具有非破坏性、无需样品处理、高灵敏度等优点。

通过对样品的拉曼光谱分析,可以实现物质的快速鉴定、质量控制、研究反应动力学等应用。

Raman(拉曼)光谱原理和图解

指纹性振动谱
Information obtained from Raman spectroscopy
characteristic Raman frequencies
拉曼频率的确认
拉曼光谱的信息
composition of material
物质的组成
e.g. MoS2, MoO3
changes in frequency of Raman peak
200
0 15000 14800 14600 14400 14200 14000
Wavenum ber (cm -1)
光栅转动重复性实验
高重复性、高稳定性
.05 0 -.05 0 50 100 150 200 250 Minutes 300 350 400 450
光栅转动重复性实验
Arbitrary Y
同步连续扫描技术专利技术
同步连续扫描专利技术 特别注意
连续扫描的光谱收集方式应该是能常规使用,即有实用性,才有意义。 Renishaw公司的拉曼系统的连续扫描功能是在实验中最常用的光谱收 集方式。因有专利保护,现其它厂家无法使用。
如果有其它也称之为“连续扫描”光谱收集方式,但须用巨量时间,则 无实用意义。
14220 cm-1 14430 cm-1
Frequency cm-1
14885 cm-1 14971 cm-1
This error plot show that during normal working day all the errors track and the typical errors are less than 0.05 cm-1
数字化显微共焦系统专利技术 共焦应用 - 石英内的气、液包裹体
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

拉曼光谱、红外光谱、XPS的原理及应用拉曼光谱的原理及应用拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。

这些技术是:CCD 检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。

这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。

(一)含义光照射到物质上发生弹性散射与非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的与短的成分, 统称为拉曼效应当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。

在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。

由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。

因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。

目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征(二)拉曼散射光谱具有以下明显的特征:a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只与样品的振动转动能级有关;b. 在以波数为变量的拉曼光谱图上,斯托克斯线与反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。

c. 一般情况下,斯托克斯线比反斯托克斯线的强度大。

这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。

(三)拉曼光谱技术的优越性提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、与光纤测量。

此外1 由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品与化学化合物的理想工具。

2 拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。

相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器与检测器3 拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。

在化学结构分析中,独立的拉曼区间的强度可以与功能集团的数量相关。

4 因为激光束的直径在它的聚焦部位通常只有0.2-2毫米,常规拉曼光谱只需要少量的样品就可以得到。

这是拉曼光谱相对常规红外光谱一个很大的优势。

而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。

5 共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。

(四)几种重要的拉曼光谱分析技术1、单道检测的拉曼光谱分析技术2、以CCD为代表的多通道探测器用于拉曼光谱的检测仪的分析技术3、采用傅立叶变换技术的FT-Raman光谱分析技术4、共振拉曼光谱分析技术5、表面增强拉曼效应分析技术(五) 拉曼频移,拉曼光谱与分子极化率的关系1、拉曼频移:散射光频与激发光频之差,取决于分子振动能级的改变,所以它是特征的,与入射光的波长无关,适应于分子结构的分析2、拉曼光谱与分子极化率的关系分子在静电场E中,极化感应偶极矩P为静电场E与极化率的乘积诱导偶极矩与外电场的强度之比为分子的极化率分子中两原子距离最大时,极化率也最大拉曼散射强度与极化率成正比例(六)应用激光光源的拉曼光谱法应用激光具有单色性好、方向性强、亮度高、相干性好等特性,与表面增强拉曼效应相结合,便产生了表面增强拉曼光谱。

其灵敏度比常规拉曼光谱可提高104~107倍,加之活性载体表面选择吸附分子对荧光发射的抑制,使分析的信噪比大大提高。

已应用于生物、药物及环境分析中痕量物质的检测。

共振拉曼光谱是建立在共振拉曼效应基础上的另一种激光拉曼光谱法。

共振拉曼效应产生于激发光频率与待测分子的某个电子吸收峰接近或重合时,这一分子的某个或几个特征拉曼谱带强度可达到正常拉曼谱带的104~106倍,有利于低浓度与微量样品的检测。

已用于无机、有机、生物大分子、离子乃至活体组成的测定与研究。

激光拉曼光谱与傅里叶变换红外光谱相配合,已成为分子结构研究的主要手段1、共振拉曼光谱的特点:(1)、基频的强度可以达到瑞利线的强度。

(2)、泛频与合频的强度有时大于或等于基频的强度。

(3)、通过改变激发频率,使之仅与样品中某一物质发生共振,从而选择性的研究某一物质。

(4)、与普通拉曼相比,其散射时间短,一般为10-12~10-5S。

2、共振拉曼光谱的缺点:需要连续可调的激光器,以满足不同样品在不同区域的吸收。

(七)电化学原位拉曼光谱法电化学原位拉曼光谱法, 是利用物质分子对入射光所产生的频率发生较大变化的散射现象, 将单色入射光(包括圆偏振光与线偏振光) 激发受电极电位调制的电极表面, 通过测定散射回来的拉曼光谱信号(频率、强度与偏振性能的变化)与电极电位或电流强度等的变化关系。

一般物质分子的拉曼光谱很微弱, 为了获得增强的信号, 可采用电极表面粗化的办法, 可以得到强度高104-107倍的表面增强拉曼散射(Surface Enahanced Raman Scattering, SERS) 光谱, 当具有共振拉曼效应的分子吸附在粗化的电极表面时, 得到的是表面增强共振拉曼散射(SERRS)光谱, 其强度又能增强102-103。

电化学原位拉曼光谱法的测量装置主要包括拉曼光谱仪与原位电化学拉曼池两个部分。

拉曼光谱仪由激光源、收集系统、分光系统与检测系统构成, 光源一般采用能量集中、功率密度高的激光, 收集系统由透镜组构成, 分光系统采用光栅或陷波滤光片结合光栅以滤除瑞利散射与杂散光以及分光检测系统采用光电倍增管检测器、半导体阵检测器或多通道的电荷藕合器件。

原位电化学拉曼池一般具有工作电极、辅助电极与参比电极以及通气装置。

为了避免腐蚀性溶液与气体侵蚀仪器, 拉曼池必须配备光学窗口的密封体系。

在实验条件允许的情况下, 为了尽量避免溶液信号的干扰, 应采用薄层溶液(电极与窗口间距为0.1~1mm) , 这对于显微拉曼系统很重要, 光学窗片或溶液层太厚会导致显微系统的光路改变, 使表面拉曼信号的收集效率降低。

电极表面粗化的最常用方法是电化学氧化- 还原循环(Oxidation-Reduction Cycle,ORC)法, 一般可进行原位或非原位ORC处理。

目前采用电化学原位拉曼光谱法测定的研究进展主要有: 一是通过表面增强处理把测检体系拓宽到过渡金属与半导体电极。

虽然电化学原位拉曼光谱是现场检测较灵敏的方法, 但仅能有银、铜、金三种电极在可见光区能给出较强的SERS。

许多学者试图在具有重要应用背景的过渡金属电极与半导体电极上实现表面增强拉曼散射。

二是通过分析研究电极表面吸附物种的结构、取向及对象的SERS 光谱与电化学参数的关系,对电化学吸附现象作分子水平上的描述。

三是通过改变调制电位的频率, 可以得到在两个电位下变化的“时间分辨谱”, 以分析体系的SERS 谱峰与电位的关系, 解决了由于电极表面的SERS 活性位随电位而变化而带来的问题。

(八)拉曼信号的选择入射激光的功率,样品池厚度与光学系统的参数也对拉曼信号强度有很大的影响,故多选用能产生较强拉曼信号并且其拉曼峰不与待测拉曼峰重叠的基质或外加物质的分子作内标加以校正。

其内标的选择原则与定量分析方法与其他光谱分析方法基本相同。

斯托克斯线能量减少,波长变长反斯托克斯线能量增加,波长变短(九)拉曼光谱的应用方向拉曼光谱分析技术是以拉曼效应为基础建立起来的分子结构表征技术,其信号来源与分子的振动与转动。

拉曼光谱的分析方向有:定性分析:不同的物质具有不同的特征光谱,因此可以通过光谱进行定性分析。

结构分析:对光谱谱带的分析,又是进行物质结构分析的基础。

定量分析:根据物质对光谱的吸光度的特点,可以对物质的量有很好的分析能力。

(十)拉曼光谱用于分析的优点与缺点1、拉曼光谱用于分析的优点拉曼光谱的分析方法不需要对样品进行前处理,也没有样品的制备过程,避免了一些误差的产生,并且在分析过程中操作简便,测定时间短,灵敏度高等优点2、拉曼光谱用于分析的不足(1)拉曼散射面积(2)不同振动峰重叠与拉曼散射强度容易受光学系统参数等因素的影响(3)荧光现象对傅立叶变换拉曼光谱分析的干扰(4)在进行傅立叶变换光谱分析时,常出现曲线的非线性的问题(5)任何一物质的引入都会对被测体体系带来某种程度的污染,这等于引入了一些误差的可能性,会对分析的结果产生一定的影响(十一)新进展及发展前景十多年来,虽然已经有一些关于在高真空体系、大气下、以及固/液体系(电化学体系)中研究单晶金属体系表面拉曼光谱的报道[89~91],但直至近年光滑单晶电极体系的SERS 研究才取得了重要进展.Bryant等记录了以单分子层吸附在光滑Pt电极表面的噻吩拉曼谱[89],Furtak等使用具有Kretchmann光学构型的ATR电解池并利用表面等离子体增强效应,获得了吸附物种在平滑的Ag(111)单晶面上的弱SERS信号[90].由于拉曼光谱系统的检测灵敏度的限制,所获得的表面信号极弱,无法进行较为详细的研究.Otto小组与Futamata小组分别成功地采用Otto光学构造的ATR电解池,利用表面等离子激元增强方法获得了光滑单晶电极上相对较强的表面Raman信号[92~94].前者发现不同的Cu单晶电极表面的增强因子有所不同,有较高指数或台阶的晶面的信号明显增强[92].Futamata 等甚至可在Pt与Ni金属的单晶表面上观察到SERS信号, 计算表明其表面增强因子为1~2个数量级[93].目前可用于单晶表面电极体系的SERS研究还局限于Raman散射截面很大的极少数分子,尚需进一步改进与寻找实验方法,以拓宽可研究的分子体系.若能成功地将各种单晶表面电极的SERS信号与经过不同粗糙方式处理的电极表面信号进行系统地比较与研究, 不但对定量研究SERS机理与区分不同增强机制的贡献大有益处, 而且将有利于提出正确与可靠的拉曼光谱的表面选择定律.随着纳米科学技术的迅速发展, 各类制备不同纳米颗粒以及二维有序纳米图案的技术与方法将日益成熟, 人们可以比较方便地在理论的指导下,寻找在过渡金属上产生强SERS效应的最佳实验条件.这些突破无疑将为拉曼光谱技术广泛应用于各种过渡金属电极与单晶电极体系的研究开创新局面.总之,通过摸索合适的表面处理方法并采用新一代高灵敏度的拉曼谱仪, 可将拉曼光谱研究拓展至一系列重要的过渡金属与半导体体系, 进而将该技术发展成为一个适用性广、研究能力强的表面(界面)谱学工具,同时推动有关表面(界面)谱学理论的发展.各种相关的检测与研究方法也很可能得到较迅速的发展与提高.在提高检测灵敏度的基础上,人们已不满足于仅仅检测电极表面物种, 而是注重通过提高其检测分辨率(包括谱带分辨、时间分辨与空间分辨)来研究电化学界面结构与表面分子的细节与动态过程.今后的主要研究内容可能从稳态的界面结构与表面吸附逐渐扩展至其反应的动态过程,并深入至分子内部的各基团, 揭示分子水平上的化学反应(吸附)动力学规律, 研究表面物种间以及同电解质离子或溶剂分子间的弱相互作用等.例如将电化学暂态技术(时间-电流法、超高速循环伏安法)同时间分辨光谱技术结合, 开展时间分辨为ms或μs级的研究[95].采用SERS同电化学暂态技术结合进行的时间分辨实验可检测鉴别电化学反应的产物及中间物[96], 新一代的增强型电荷耦合列阵检测器(ICCD)与新一代的拉曼谱仪(如: 富立叶变换拉曼仪与哈德玛变换仪)的推出, 都将为时间分辨拉曼光谱在电化学的研究提供新手段.最近, 我们利用电化学本身的优势, 提出的电位平均表面增强拉曼散射he(Potential Averaged SERS, PASERS)新方法[17], 通过在Ag与Pt微电极上采集在不同调制电位频率下的PASERS谱, 并进行解谱, 可在不具备从事时间分辨研究条件的仪器上进行时间分辨为μs级的电化学时间分辨拉曼光谱研究.拉曼光谱研究的另一发展方向是采用激光拉曼光谱微区显微技术[97]开展空间分辨研究并进而开展电极表面微区结构与行为的研究.Fujishima等人利用共焦显微拉曼系统与SERS技术发展了表面增强拉曼成像技术,并研究了SERS活性银表面吸附物以及自组装膜的SERI图象[98,99].该技术与具有三维空间分辨的共焦显微Raman光谱方法在研究导电高聚物、L-B膜与自组装膜电极以及电极钝化膜与微区腐蚀等方面将发挥其重要作用[98~100].突破光学衍射极限的、空间分辨值达数十纳米的近场光学Raman显微技术则很可能异军突起[101].为多方位获得详细信息,达到取长补短的目的,开展Raman 光谱与其他先进技术联用的研究势在必行.光导纤维技术可在联用耦合方面发挥关键作用[102,103],如将表面Raman光谱技术与扫描探针显微技术进行实时联用[104].针对性的联用技术可望较全面地研究复杂体系并准确地解释疑难的实验现象,为各种理论模型与表面选则定律提供实验数据, 促进谱学电化学的有关理论与表面量子化学理论的发展.可以预见, 在不久的将来,随着表面检测技术的快速发展,SERS及其应用于电化学的研究将进入一个新的阶段.红外光谱的原理及应用(一)红外吸收光谱的定义及产生分子的振动能量比转动能量大,当发生振动能级跃迁时,不可避免地伴随有转动能级的跃迁,所以无法测量纯粹的振动光谱,而只能得到分子的振动-转动光谱,这种光谱称为红外吸收光谱红外吸收光谱也是一种分子吸收光谱。

相关文档
最新文档