氯乙烯热容
热熔标线涂料主要成分配方表

热熔标线涂料主要成分配方表
热熔标线涂料主要成分配方表:
一、基础物料:水性聚氨酯型乳液含量≥50%
二、添加剂:
1. 溶剂:溶剂类型及含量:水性苯乙烯/氨基乙醇/二甲苯/苯酚/三氯乙烯/芳烃/氯仿/丙酮等,含量不低于20%。
2. 稳定剂:防腐剂类型及含量:二硝基苯酚/四氯苯酚/钛酸酯/铜酸钾/硅酸镁/烟酸钠/碳酸钠等,含量不低于2%。
3. 调整剂:pH值调整剂类型及含量:硫酸/磷酸/氨基酸/有机碱等,含量不低于2%。
4. 着色剂:着色剂类型及含量:碱性、酸性着色剂,含量不低于2%。
5. 添加剂:添加剂类型及含量:高分子表面活性剂/抗微生物剂/脱脂剂/抗氧化剂/粘合剂/抗冻剂/固体分散剂等,含量不低于2%。
聚氯乙烯生产工艺

聚氯乙烯生产工艺聚氯乙烯(Polyvinyl Chloride,PVC)是一种重要的合成塑料,广泛应用于建筑、电子、医疗器械、包装等领域。
下面将介绍一种常用的聚氯乙烯生产工艺。
聚氯乙烯的生产主要包括聚合反应、开卷加热、引流、抽吸、压管、冷却、切割等步骤。
首先,将氯乙烯作为原料进行聚合反应。
通常使用自由基聚合反应,即通过加入引发剂来引发聚合反应,产生聚合物聚氯乙烯。
反应温度一般在40-70摄氏度之间。
在聚合反应完成后,将聚合物通过开卷加热机组进行加热处理。
加热的目的是将聚合物加热至可塑化温度,使其变得柔软易塑性。
然后,将加热后的聚合物转移到塑料瓦楞管挤出机组中。
在挤出机组中,将加热的聚合物通过挤出钢筒进行挤出,形成一定形状和尺寸的管道。
在管道形成过程中,需要通过抽吸机组将产生的气体排除,保证聚合物的成型质量。
挤出形成的聚氯乙烯管道需要进行压管处理,即使其形成规定的形状和尺寸。
通常使用专用的加卸模器来控制管道的成型。
在压管的过程中,需要通过冷却装置将聚氯乙烯管道进行冷却,使其保持稳定形状。
冷却后的聚氯乙烯管道通过切割机组进行切割,形成所需的长度。
通常使用旋转切割机来进行切割,保证切面平整。
最后,对切割成型的聚氯乙烯管道进行质量检查,确保其达到相关的标准要求。
对于一些特殊领域的聚氯乙烯产品,还需要进行进一步的后处理,如喷涂、印刷等操作。
总的来说,聚氯乙烯的生产工艺包括聚合反应、加热塑化、挤出压管、冷却切割等步骤。
这种工艺能够高效地生产出优质的聚氯乙烯产品,满足各个领域的需求。
随着科技的不断发展,聚氯乙烯的生产工艺也在不断进步,使其更加环保、高效。
氯乙烯 液体密度

氯乙烯液体密度
氯乙烯是一种无色液体,分子式为C2H3Cl,分子质量为62.49 g/mol。
该物质构型由单环成烯和三甲基氯组成,并且具有芳香性。
该物质温度一般在-21℃~56℃范围内,此范围内可形成两态混合液,而当温度低于-21℃时则会形成胶体,温度超过56℃时会分解并形成其他结合物。
由于氯乙烯具有芳香性,因此可以用于制造香料、橡胶和塑料等。
该物质也是一种重要的有机物质,多用于合成酯、烃类、醇类等化合物。
氯乙烯的液体密度大约为1.15–1.33 g/cm3,取决于它的温度,其中温度越低,具有越高的密度。
研究显示,当温度低于-21℃时,氯乙烯的液体密度会超过1.5 g/cm3,而当温度高于−21°C时,液体密度则变得更低。
此外,氯乙烯的比重约为0.9,遵守比重与温度的变化规律,其相应温度与比重之间呈现出一个稳定的关系。
另外,氯乙烯具有极低的熔点,约在-21℃,并且固体的梯度为1.491 g/cm3,即液体密度低于固体密度,有利于该物质的析出。
氯乙烯也是一种“细微的液体”,据估算其最小分子量约为1000 g / cm3,通过电子和核磁共振波谱实验可以确定其分子大小。
该物质也在材料学、化学与环境技术领域中有着广泛的应用。
由于氯乙烯是一种比较温和但仍有毒的液体,从健康与安全上考虑,在运输、存储氯乙烯时应慎重,使用过程中最好戴好防护用具,并且要做好周全的防护措施,以免造成污染和伤害。
氯乙烯合成工艺设计

氯乙烯合成工艺设计一、氯乙烯的性质与用途1. 常温常压下,氯乙烯(vinyl chloride,CH2=CHCl)是无色气体,具有微甜气味,微溶于水,溶于烃类,醇,醚,氯化溶剂和丙酮等有机溶剂中,氯乙烯沸点-13.9℃,易聚合,并能与乙烯、丙烯、醋酸乙烯酯,偏二氯乙烯、丙烯腊、丙烯酸酯等单体共聚,而制得各种性能的树脂,加工成管材、面膜、塑料地板、各种压塑制品、建筑材料、涂料和合成纤维等[1]。
氯乙烯的物理性质见下表[2]:2. 氯乙烯是易燃易爆物质,与空气混合能形成爆炸性混合物,高温或遇明火能引起燃烧或无抑制剂时可发生剧烈聚合。
在氯乙烯与空气的混合物中加入氮气或二氧化碳可使爆炸范围变窄,减少爆炸危险。
危险性类别:第2.1类易燃气体,禁忌物是强氧化剂,灭火方式是切断电源,灭火剂用雾状水、二氧化碳、泡沫,泄漏应急处理:迅速撤离泄露污染区人员至上风处并进行隔离,严格限制出入,切断火源,应急处理人员戴好正压式呼吸器,尽可能切断泄漏源[3]。
[2]3. 由于光和热可引发氯乙烯单体聚合,故存储时应避免日晒,常温下存储应加入阻聚剂(如对苯二酚)防止其自聚,一般以液体状态存储和运输[1]。
4. 氯乙烯在工业上的主要应用时生产聚氯乙烯树脂,故常称其为氯乙烯单体(VCM)所谓聚氯乙烯树脂是一类由氯乙烯单体衍生的均聚物和共聚物,其中氯乙烯占树脂组分质量的50%,因此VCM的生产质量和成本直接影响到聚氯乙烯树脂的质量和成本。
目前用于制造聚氯乙烯树脂的氯乙烯约占其产量的96%,VCM的需求量和产量在很大程度上取决于聚氯乙烯树脂的需求量。
聚氯乙烯为五大和成树脂之一,由于其价廉易得、应用广泛,因此需求量和产量逐年上升。
氯乙烯是离分子材料工业的重要单体,产量很大,还可用于合成1,1,2-三氯乙烷和1,1-二氯乙烯等。
故氯乙烯的生产在基本有机化学工业中占有重要的地位[7]。
二、氯乙烯生产工艺简介氯乙烯是1835年由法国人V.Regnault首先在实验室中制得,他用氢氧化钾的乙醇溶液处理二氯乙烷得到了氯乙烯。
数字1代表PET

数字1代表PET数字1代表PET,即聚对苯二甲酸乙二醇酯矿泉水瓶、碳酸饮料瓶都是用这种材质做成的。
董金狮指出,饮料瓶不能循环使用装热水,这种材料耐热至70℃,只适合装暖饮或冻饮,装高温液体或加热则易变形,有对人体有害的物质溶出。
科学家发现,这种塑料制品用了10个月后,可能释放出致癌物,对人体具有毒性。
因此,饮料瓶等用完了就丢掉,不要再用来作为水杯,或者用来做储物容器盛装其他物品。
数字2代表HDPE,即高密度聚乙烯承装清洁用品、沐浴产品的塑料容器,目前超市和商场中使用的塑料袋多是此种材质制成,可耐110℃高温,标明食品用的塑料袋可用来盛装食品。
盛装清洁用品、沐浴产品的塑料容器可在小心清洁后重复使用,但这些容器通常不好清洗,残留原有的清洁用品,变成细菌的温床,清洁不彻底,最好不要循环使用。
数字3代表PVC,即聚氯乙烯常见雨衣、建材、塑料膜、塑料盒等。
可塑性优良,价钱便宜。
但只能耐81℃高温。
据介绍,这种材质的塑料制品易产生的有毒有害物质来自于两个方面,一是生产过程中没有被完全聚合的单分子氯乙烯,二是增塑剂中的有害物。
这两种物质在遇到高温和油脂时容易析出,有毒物随食物进入人体后,容易致癌。
目前,这种材料的容器已经比较少用于包装食品。
如果在使用,千万不要让它受热。
数字4代表LDPE,即低密度聚乙烯保鲜膜、塑料膜等都是这种材质。
耐热性不强,通常,合格的PE 保鲜膜在温度超过110℃时会出现热熔现象,会留下一些人体无法分解的塑料制剂。
并且,用保鲜膜包裹食物加热,食物中的油脂很容易将保鲜膜中的有害物质溶解出来。
因此,食物入微波炉,先要取下包裹着的保鲜膜。
数字5代表PP,即聚丙烯微波炉餐盒采用这种材质制成,耐130℃高温,透明度差,这是唯一可以放进微波炉的塑料盒,在小心清洁后可重复使用。
需要特别注意的是,一些微波炉餐盒,盒体以05号PP 制造,但盒盖却以06号PS(聚苯乙烯))制造,PS透明度好,但不耐高温,所以不能与盒体一并放进微波炉。
胶水的主要成分及常见的胶水配方

胶水的主要成分及常见的胶水配方胶水的主要成分1、丙烯酸酯胶a-氰基丙烯酸酯瞬干胶、厌氧胶、丙烯酸结构胶、乙基丙烯酸酯胶粘剂、环氧丙烯酸酯胶、其它丙烯酸酯胶。
2、复合型结构胶金属结构胶、聚合物结构胶、光敏密封结构胶、其它复合型结构胶。
3、热固性高分子胶环氧树脂胶、聚氨酯(PU)胶、氨基树脂胶、酚醛树脂胶、丙烯酸树脂胶、呋喃树脂胶、间笨二酚-甲醛树脂胶、二甲笨-甲醛树脂胶、不饱和聚酯胶、复合型树脂胶、聚酰亚胺胶、脲醛树脂胶、其它高分子胶。
4、密封胶粘剂室温硫化硅橡胶、环氧树脂密封胶、聚氨酯密封胶、不饱和聚酯类、丙烯酸酯类、密封腻子、氯丁橡胶类密封胶、弹性体密封胶、液体密封垫料、聚硫橡胶密封胶、其它密封胶。
5、热熔胶热熔胶条、胶粒、胶粉、EV A热熔胶、橡胶热熔胶、聚丙烯、聚酯、聚酰胺、聚胺酯热熔胶、苯乙烯类热熔胶、新型热熔胶、聚乙烯及乙烯共聚物热熔胶、其他热熔胶。
6、水基胶粘剂丙烯酸乳液、醋酸乙烯基乳液、聚乙烯醇缩醛胶、乳液胶、其它水基胶。
7、压敏胶(不干胶)胶粘带、无溶剂压敏胶、溶剂压敏胶、固化压敏胶、橡胶压敏胶、丙烯酸酯压敏胶、其它压敏胶。
8、溶剂型胶树脂溶液胶、橡胶溶液胶、其它溶剂胶。
9、无机胶粘剂热熔无机胶、自然干无机胶、化学反应无机胶、水硬无机胶、其它无机胶。
10、热塑性高分子胶粘剂固体高分子胶、溶液高分子胶、乳液高分子胶、单体高分子胶、其它热塑性高分子胶。
11、天然胶粘剂蛋白质胶、碳水化合物胶粘剂、其他天然胶。
12、橡胶粘合剂硅橡胶粘合剂、氯丁橡胶粘合剂、丁腈橡胶粘合剂、改性天然橡胶粘合剂、氯磺化聚乙烯粘合剂、聚硫橡胶粘合剂羧基橡胶粘合剂、聚异丁烯、丁基橡胶粘合剂、其它橡胶粘合剂。
13、耐高温胶有机硅胶、无机胶、高温模具树脂胶、金属高温粘合剂、其它耐高温胶。
14、聚合物胶粘剂丁腈聚合物胶、聚硫橡胶粘合剂、聚氯乙烯胶粘剂、聚丁二烯胶、过氯乙烯胶粘剂、其它聚合物胶。
15、修补剂金属修补剂、高温修补剂、紧急修补剂、耐磨修补剂、耐腐蚀修补剂、塑胶修补剂、其它修补剂。
氯乙烯悬浮聚合反应机理
5.3.1-氯乙烯悬浮聚合反应机理氯乙烯悬浮聚合属于自由基的加聚连锁反应,反应的活性中心是自由基,其反应机理包括:链引发、链增长、链转移、链终止等基元反应链引发反应链引发链引发反应是形成单体自由基活性种的反应。
用引发剂引发时,将由下列两步组成。
引发剂分解,形成初级自由基。
初级自由基与单体加成,形成单体自由基。
引发剂分解为吸热反应,反应的活化能较高,约为100~170kJ/mol反应速率较慢,分解速率常数一般为10-4~10-6/s引发剂分解反应-----控制总的链引发反应速率初级自由基与氯乙烯单体加成,生成氯乙烯单体自由基打开烯类单体的π键、生成σ键的过程,是放热反应反应活化能较低,约20~34kJ/mol反应速率常数很大,是非常快的反应。
链增长反应链增长在链引发阶段形成的单体自由基,仍具有活性,能打开第二个烯类分子的π键,形成新的自由基。
新自由基的活性并不衰减,继续和其他单体分子结合成单元更多的链自由基。
链增长反应是放热反应,烯类单体聚合热约为55~95kJ/mol链增长反应活化能低,约20~34kJ/mol,增长速率极高,在0.01至几秒钟内就可以使聚合度达到数千,甚至上万。
单体自由基一经形成以后,立刻与其他单体分子加成,增长成活性链,而后终止成大分子。
因此,聚合体系内往往由单体和聚合物两部分组成,不存在聚合度递增的一系列中间产物。
在链增长反应中,结构单元的结合存在“头-尾”、“头-头”、“尾-尾”三种形式链转移反应链转移反应为:在自由基聚合过程中,链自由基有可能从单体、溶剂、引发剂或大分子上夺取一个原子(氢或氯)而终止,使这些失去原子的分子成为新的自由基,可能继续新的链增长。
链终止反应自由基活性高,有相互作用而终止的倾向。
链终止反应有偶合终止和歧化终止两种方式。
链终止方式与单体种类和聚合条件有关。
两链自由基的独电子相互结合成共价键的终止反应,称作偶合终止。
某链自由基夺取另一自由基的氢原子或其他原子的终止反应,称作歧化终止。
氯乙烯聚合和聚氯乙烯改性论文
氯乙烯聚合和聚氯乙烯改性分析摘要:氯乙烯的聚合分为悬浮聚合、微悬浮聚合及乳液聚合,以悬浮聚合为主,一般来说共聚物是具有不同的化学组成分布和不通的分子量分布的一种高分子聚合物。
高分子作为改性剂(聚合物改性剂)是共混物的一种应用,共混物是共和聚混物的简称。
pvc 改性有聚合改性、共混改性和复合改性,聚氯乙烯改性后可以生产更多产品,更好的满足人民的生活需求。
关键词:氯乙烯聚氯乙烯悬浮聚合乳液聚合微悬浮聚合聚合改性共混改性聚氯乙烯(pvc)是五大通用塑料之一,其相关的制品从硬到软,应用很广泛。
四十多年来,我国聚氯乙烯工业的发展是参展国外工艺的基础上,广泛进行工业设备既工艺的革新,现今的生产能力已经超过百万吨了,成了我国产量最大的塑料品种之一。
随着市场需求的不断增大,为了提高聚氯乙烯的性能,到20世纪20年代末,在该领域中出现了两大方面的突破:一种就是增塑,是在1933年发明添加增塑剂,另一种就是聚合,对聚氯乙烯起到改性作用,以期在生产加工的过程中能起到最有效的作用。
一、氯乙烯聚合1.悬浮聚合氯乙烯-醋酸乙烯共聚物简写(vc/vac)。
氯乙烯-醋酸乙烯共聚物主要有三大用途,一个是用于塑料地砖,一个是用于密文唱片,再一个就是在涂料中的应用。
氯乙烯-醋酸乙烯共聚物(vc/vac)的悬浮聚合方法,基本上是和pvc悬浮聚合的方式有着共通的效果,只不过就是多了一种单体。
一般说来,在共聚物中,vac的成分含量越高,共聚物的分子量反而就会越低,制造过程也就越困难。
其中,制造过程中的困难主要表现在两个方面:第一,就是聚合过程中悬浮液的稳定性比较难控制好,再一个就是聚合终止时,未反应单体的回收工作比较难以有效地实施。
与此同时,在悬浮聚合的技术标准,以及聚合反应所需的设备方面也需要特别的注意,例如,工具温度有可能高于均聚温度,聚合釜应受较高压力,具备良好的传热能力,所以,就必须高度重视悬浮体系的稳定性问题,包括分散剂系统、搅拌系统。
氯乙烯生产方式生产原理
氯乙烯生产方式生产原理氯乙烯(C2H3Cl)是一种重要的有机化工原料,广泛应用于塑料、橡胶等行业。
氯乙烯的生产方式主要有氯乙烯法和乙烯氯化法两种。
一、氯乙烯法氯乙烯法是最早采用的生产氯乙烯的方法。
主要步骤如下:1.乙炔生成将乙炔与输送的氯进行反应,生成氯乙炔。
乙炔在乙炔生成炉中由底部喷嘴向上喷射,与天然气或石油气混合并点燃,通过反应管中的催化剂催化反应生成乙炔。
2.氯乙炔生成将生成的乙炔与氯气进行反应,生成氯乙炔。
反应温度一般为180-250℃,反应采用催化剂如二氧化铜、碳化钙等。
3.氯乙炔分解将氯乙炔进行高温分解,生成氯乙烯和氢氯化物。
分解反应温度在400-500℃之间,采用一系列的水冷器进行冷却。
4.分离纯化将氯乙烯和氢氯化物通过冷凝器进行冷凝,然后采用分离塔将混合物进行分离,得到纯净的氯乙烯产品。
二、乙烯氯化法乙烯氯化法是一种近年来逐渐发展起来的氯乙烯生产方法。
主要步骤如下:1.乙烯氯化将乙烯与氯气在催化剂存在下进行氯化反应,生成氯乙烯。
常用的催化剂有氯化铝、硫酸六铵等,反应温度一般控制在200-300℃之间。
2.硫酸处理将氯乙烯与浓硫酸进行接触,将其中的杂质如水、氯化氢等去除。
3.纯化通过蒸馏、萃取等方式将氯乙烯进行纯化,得到高纯度的氯乙烯产品。
氯乙烯的生产原理可以简单概括为以下几点:1.氯乙烯本质上是由碳、氢和氯组成的有机化合物。
生产氯乙烯的基础是乙烯与氯气进行反应。
在乙烯分子上添加氯分子可以通过断裂乙烯的碳碳双键,并与氯原子形成新的碳氯化学键。
2.生产氯乙烯的方法主要分为氯乙烯法和乙烯氯化法两种。
氯乙烯法主要是通过乙烯与氯气在适当催化剂存在下的反应生成氯乙炔,然后将氯乙炔进行高温分解得到氯乙烯;乙烯氯化法则是通过乙烯与氯气在催化剂存在下直接进行反应得到氯乙烯。
3.生产氯乙烯时需要控制反应条件。
反应温度的选择取决于催化剂的种类和反应动力学,一般在200-500℃之间。
反应过程中需要注意控制反应速率和选择适当的反应时间,避免不完全反应和副反应的发生。
最常用的胶水配方
最常用的是801胶水801建筑胶水配方原料重量%聚乙烯醇10.26水84.93甲醛 3.74~4.21尿素适量盐酸0.74~10.53氢氧化钠中和用量生产工艺:将水加入反应锅中,升温至70℃,然后徐徐加入聚乙烯醇,并升温至90~95℃,使聚乙烯醇完全溶解。
将聚乙烯醇溶液冷却至80~85℃,滴加盐酸,再搅拌20分钟,加入甲醛进行缩合,大约需要60分钟左右。
降温并调节pH值后,加入尿素进行氨基化处理,经取样检验合格后,把pH调至中性,降温40~50℃,出料。
产品应符合下列标准:外观:微黄或无色透明液体固体份:11~12%游离甲醛含量:≤1%pH值:7~8比重:1.05901胶水基本配方:组分聚乙烯醇水甲醛尿素盐酸用量(重量比) 100 800 35-40 适量7-10二、生产工艺1、将水加及1000立升的反应釜内,加热到70℃,开动搅拌机,然后徐徐加入聚乙烯醇并升温至90-95℃,使聚乙烯醇完全溶解。
2、让聚乙烯醇溶液冷却至80-85℃,在继续搅拌下,以细流方式加入盐酸,搅拌20分钟,再加入甲醛进行缩合反应,时间控制在60分钟左右。
3、降低温度并调节pH值后,用尿素进行氨基化处理,经抽样检验合格后,把pH值调至中性,然后降温至45-50℃出料,即为901建筑胶水。
801,15L一桶的大约75左右901,18L一桶的大约140左右制做903建筑胶材料及方法所用材料基本配方如下:1、707水溶性树脂15Kg;2、松香4~6Kg;3、重质碳酸钙(325目)100Kg;此外,在刮墙时还需要用到涂料固化剂,其基本配方为:硼砂3%、明矾0.5%、水96.5%。
502胶水的配方配方1]乙烯-醋酸乙烯共聚体100 香豆酮-茚树脂25 合成石蜡树脂7滑石粉20 2,6-二叔丁基对甲酚 1此配方为通用型品种,软化温度72-80°C ,脆化温度在-40°C 以下,可在-40-60°C内长期使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 1 -
氯乙烯热容
氯乙烯是一种工业上广泛使用的有机化合物,它具有良好的化学
稳定性和热稳定性,且易于加工成各种形状。氯乙烯的热容是一个重
要的物理参数,它可以反映氯乙烯在加热过程中吸收或释放的热量。
研究氯乙烯的热容可以帮助我们更好地理解其加热行为和热力学性
质,为工业应用提供基础性的数据支持。
氯乙烯的热容随温度变化而变化,一般来说,在较低的温度下热
容较小,在较高的温度下热容较大。当温度趋近于氯乙烯的熔点时,
热容会出现峰值,这是由于氯乙烯分子在熔化过程中吸收了大量的热
量造成的。此外,热容还受氯乙烯分子内部结构、热力学状态等因素
的影响,因此需要在不同的条件下进行研究和测量。
为了准确测量氯乙烯的热容,研究人员通常采用差示扫描量热法
等高精度的实验方法。通过测量氯乙烯的热容,我们可以更好地了解
其热力学性质和加热行为,为工业应用提供可靠的理论支持。