精品解析:2018年普通高校招生全国卷 一(A) 【衡水金卷】高三信息卷 (二)理科数学试题(解析版)

合集下载

【衡水金卷】2018年普通高校招生全国卷 I A 信息卷 高三文科数学(一)(full permission)

【衡水金卷】2018年普通高校招生全国卷 I  A  信息卷 高三文科数学(一)(full permission)

-1+ 3i2018 年普通高等学校招生全国统一考试模拟试题文数(一)第Ⅰ卷(共 60 分)一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合 A = {-1, 0, 2, 4} , B = {x ∈ N | -x 2+ 2x ≥ 0},则( )A . AB = {2}C . A B = {-1, 0, 2, 4}B . A B = {2, 4} D . A B = {-1, 0,1, 2, 4}2. 已知复数 z =4(其中i 为虚数单位),则 z 在复平面内对应的点在()A .第一象限B .第三象限C .直线 y = - 3x 上D .直线 y = 3x 上3. A 地的天气预报显示, A 地在今后的三天中,每一天有强浓雾的概率为30% ,现用随机模拟的方法估计这三天中至少有两天有强浓雾的概率:先利用计算器产生 0—9 之间整数值的随机数,并用 0,1,2,3,4,5,6 表示没有强浓雾,用 7,8,9 表示有强浓雾,再以每 3 个随机数作为一组,代表三天的天气情况,产生了如下 20 组随机数:则这三天中至少有两天有强浓雾的概率近似为( ) 1 271 A.B .C .D .4 5 105 4. 已知直线 2x - y -1 = 0 的倾斜角为α,则sin 2α- 2 cos 2α= () 26 412A .B . -C . -D . -5 5555.已知函数 f (x ) = x 2- (2a -1)x -1 (其中 a > 0 ,且 a ≠ 1)在区间( 1 , +∞) 上单调递增,则函数2g (x )1)A . (-∞, a )B . (0, a )C . (0, a ]D . (a , +∞)6. 已知抛物线C :y2= 2 px ( p > 0) 的焦点为 F ,准线为l ,过抛物线C 上的点 A (4, y ) 作 AA ⊥ l 于点 A ,1log a x -12622若∠A AF=2π,则p =()1 3A.6 B.12 C.24 D.48 7.一个几何体的三视图如图所示,则该几何体的表面积为()A.4+ 2 + 4 B.4 + 2淘宝:一鸣教辅+C.8 + 2 + 4 D.4+ 2 + 28.执行如图所示的程序框图,若输入的a = 240 ,b =176 ,则输出的a 值为()A.3 B.16 C.48 D.649.中国古代数学著作《算法统宗》中有这样一个“九儿问甲歌”问题:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,记这位公公的第n 个儿子的年龄为an ,则a3+a4+a5+a6+a7-a1-a9=()A.46 B.69 C.92 D.13810.国庆期间,小张、小王、小李、小赵四人中恰有一人到香港旅游.小张说:“小王、小李、小赵三人中5256⎪⎩⎨ n ⎬ 3有一人去了香港旅游”;小王说:“小李去了香港旅游”;小李说:“去香港旅游的是小张和小王中的一个人”;小赵说:“小王说的是对的”.若这四人中恰有两人说的是对的,则去香港旅游的是( )A .小张B .小王C .小李D .小赵11. ∆ABC 的内角 A ,B ,C 的对边分别是 a ,b ,c ,已知(a2+ b 2 - c 2 ) ⋅ (a cos B + b cos A ) = abc ,c = 2 ,则∆ABC 周长的取值范围为( ) A . (0, 6]B . (4, 6)C . (4, 6]D . (4,18]12. 已知函数 f (x ) =| x - m | -mln x (m > 0) ,若 f (x ) 恰有两个零点 x , x ( x < x ),则有( )2 A .1 < x < x < mB. m < x < x 1< m 22 1 212 1 2C .1 < x < m 2< xD .1 < x < m < x < m21212第Ⅱ卷(共 90 分)二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)13. 在∆ABC 中, AB = (2, -4) , BC = (1,λ) ,则∆ABC 是以 AB 为斜边的直角三角形的充要条件是λ= .⎧x - y ≤ 1, 14. 已知变量 x , y 满足约束条件⎨x + y ≥ 4, 若t ≥ 5x + 2 y 恒成立,则实数t 的最小值为.⎪ y ≤ 2, x 2 - y 2=> >15. 已知双曲线C :a 2b 21(a 0, b 0) 的左、右焦点分别为 F 1 , F 2 ,点 M 在双曲线C 上,点 I 为∆MF 1F 2的内心,且 S∆IMF 1 + S ∆IMF 2= 3S 2∆IF 1F 2 ,| M F 1 |= 2 | MF 2| ,则双曲线C 的离心率为 .16. 在正三棱锥 A - BCD 中,M ,N 分别是 AB ,BC 上的点,且 MN / / AC ,AM = 5MB ,MD ⊥ MN ,若侧棱 AB = 1,则正三棱锥 A - BCD 的外接球的表面积为.三、解答题 (本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列{a n } 的前n 项和为 S n ,对任意的正整数 n ,都有 2S n = 3a n + n - 2 成立.(1) 求证:数列⎧a - 1⎫ 为等比数列; 2 ⎩ ⎭n -1(2) 记b n = ,求数列{b n } 的前 n 项和T n .a n a n +1x3 18. 如图所示,已知四棱锥 P - ABCD 的底面 ABCD 为矩形,PA ⊥ 底面 ABCD ,且 PA = AB = λAD = 2(λ∈ R ), M , N 分别是 AB , PC 的中点.(1) 当λ为何值时,平面CMN ⊥ 平面 PCD ?并证明你的结论;(2) 当异面直线 PD 与 BC 所成角的正切值为 2 时,求三棱锥 D - MCN 的体积.19.2017 年 10 月,举世瞩目的中国共产党第十九次全国代表大会在北京顺利召开.某高中为此组织全校 2000 名学生进行了一次“十九大知识知多少”的问卷测试(满分:100 分),并从中抽取了 40 名学生的测试成绩, 得到了如图所示的频率分布直方图.(1) 求图中实数 a 的值及样本中 40 名学生测试成绩的平均数和中位数(同一组中的数据用该组区间的中点值作代表);(2)(i )利用分层抽样的方法从成绩低于 70 分的三组学生中抽取 7 人,再从这 7 人中随机抽取 2 人分析成绩不理想的原因,求前 2 组中至少有 1 人被抽到的概率;(2) 以频率估计概率,试估计该校这次测试成绩不低于 80 分的学生人数.20. 已知椭圆C :y a 2 2+ = 1(a > b > 0) 的一条切线方程为 y = 2x + 2 b 2 ,且离心率为 .2(1) 求椭圆C 的标准方程;2 22 cos2 α+3 1 1(2) 若直线l : y = kx + m 与椭圆C 交于 A , B 两个不同的点,与 y 轴交于点 M ,且 AM = 3MB ,求实数m 的取值范围.21. 已知函数 f (x ) = mx + 2 - e x( m ∈ R ),其中e 为自然对数的底数.(1) 讨论函数 f (x ) 的单调性;(2) 已知 m = 1, k 为整数,若对任意 x ∈(0, +∞) ,都有(k - x ) f '(x ) > -x -1 恒成立,求 k 的最大值.请考生在 22、23 两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修 4-4:坐标系与参数方程已知直线l 过点 P (1, 0) ,且倾斜角为α,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ= 4 cos θ.(1) 求圆C 的直角坐标方程及直线l 的参数方程;(2) 设直线l 与圆C 的两个交点分别为 A , B ,求证:+ = . | PA | | PB | 323. 选修 4-5:不等式选讲已知函数 f (x ) =| x + 2 | -2 | x - 4 | .(1) 解不等式 f (x ) ≤ x ;(2) 若不等式 f (x )+ | x + 2 |≤ k2- | k | 对任意的 x ∈ R 恒成立,求实数 k 的取值范围.淘宝:一鸣教辅淘宝:一鸣教辅淘宝:一鸣教辅淘宝:一鸣教辅。

2018年普通高校招生全国卷 一(A) 【衡水金卷】高三信息卷 (二)理科数学试题(解析版)

2018年普通高校招生全国卷 一(A) 【衡水金卷】高三信息卷 (二)理科数学试题(解析版)

2018年普通高等学校招生全国统一考试模拟试题理数(二)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知为虚数单位,复数 ()为纯虚数,则的值为A. -2B.C. 2D.【答案】C【解析】因为为纯虚数,所以所以a=2.故选C.2. 已知集合,,则()A. B. C. D.【答案】B【解析】由得0<x<8,所以A={x|0<x<8},由得x>5或x<-1,所以B={x| x>5或x<-1},所以={x|-1≤x≤5},所以=.故选B.3. 已知是各项均为正数的等比数列的前项和,,,则()A. 31B. 63C. 16D. 127【答案】A【解析】设公比为q(q>0),因为,所以即所以故选A.4. 设向量,,,若,则与的夹角为()A. B. C. D.【答案】D【解析】因为b||c,所以所以与的夹角的余弦值为所以夹角为.故选D.5. 大约2000多年前,古希腊数学家最先开始研究圆锥曲线,并获得了大量的成果,古希腊数学家阿波罗尼斯采用平面切割圆锥的方法来研究这几种曲线,用垂直于锥轴的平面去截圆锥,得到的是圆;把平面再渐渐倾斜得到椭圆.若用周长为24的矩形截某圆锥得到椭圆,且与矩形的四边相切.设椭圆在平面直角坐标系中的方程为,测得的离心率为,则椭圆的方程为()A. B. C. D.【答案】A【解析】由题得4a+4b=24,即a+b=6 (1),由得a=2b(2),由(1)(2)解得a=4,b=2.所以椭圆T的方程为,故选A.6. 已知某服装厂生产某种品牌的衣服,销售量 (单位:百件)关于每件衣服的利润 (单位:元)的函数解析式为, 则当该服装厂所获效益最大时,A. 20B. 60C. 80D. 40【答案】C【解析】设该服装厂所获效益为f(x)(单位:元),则当0<x≤20时,在区间(0,20]上单调递增,所以当x=20时,f(x)有最大值120000.当20<x≤180时,则令当20<x<80时,单调递增,当80≤x≤180时,单调递减,所以当x=80时,f(x)有最大值240000.故选C.7. 已知满足不等式组则的最小值为()A. 2B.C.D. 1【答案】D【解析】不等式组对应的可行域如图所示,因为所以z表示可行域内一点到直线x+y-1=0距离的倍,由可行域可知点A(2,0)到直线x+y-1=0的距离最短,故故选D.点睛:本题的关键是找到的几何意义,要找到的几何意义,必须变形,所以z表示可行域内一点到直线x+y-1=0距离的倍.突破了这一点,后面的解答就迎刃而解了.8. 已知函数,的值域为,则实数的取值范围是()A. B. C. D.【答案】B【解析】由题得由g(t)的图像,可知当时,f(x)的值域为,所以故选B.9. 已知的展开式中常数项为-42,则()A. 10B. 8C. 12D. 11【答案】B【解析】设的展开式中的第r+1项为项为当n为偶数时,令n-2r=0,得令n-2r=-2,得故原式展开式中常数项为代入下面的选项检验得n=8,显然当n为奇数时,不存在常数项,故可得n=8. 故选B.10. 某几何体的三视图如图所示,则该几何体的表面积为()A. B. C. D.【答案】C【解析】由三视图可知该几何体是一个圆柱切去两个弓形柱和半个球所得的几何体,圆柱的底面半径为2,高为6,弓形弦到圆心的距离为2-1=1,故弓形弦所对的圆心角为,弓形柱的高为2,所以几何体的表面积为故选C.11. 已知(1)的左、右焦点分别为,,点是双曲线右支上一点,且,过点作的垂线交轴于点,且,若的中点在的延长线上,则双曲线的离心率是()A. B. C. D.【答案】C【解析】因为点E为PA的中点,且,所以M为的重心,所以为的中点,又可得故故选C.点睛:本题主要是分析,本题的条件比较多,能够对已知条件综合分析得到简洁的结论是解题的关键. 本题通过点E为PA的中点且,推理出M为的重心,这是关键,后面找关于离心率e的方程难度就不大了.12. 已知函数,且对任意实数,均有,若方程有且只有4个实根,则实数的取值范围()A. B. C. D.【答案】A【解析】依题意,函数f(x)的图像关于直线x=-3对称,所以f(-6)=f(0)=0,f(-4)=f(-2)=0,于是。

【全国百强校word】【衡水金卷】2018年普通高校招生全国卷 I A 信息卷(五) 高三文数试题

【全国百强校word】【衡水金卷】2018年普通高校招生全国卷 I  A 信息卷(五) 高三文数试题

2018年普通高等学校招生全国统一考试模拟试题文数(五)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U 为实数集R ,集合{|ln(32)}A x y x ==-,{|(1)(3)0}B y y y =--≤,则图中阴影部分所表示的集合为( )A .3(,1),2⎡⎫-∞+∞⎪⎢⎣⎭ B .31,2⎡⎫⎪⎢⎣⎭C .[3,)+∞D .3,[3,)2⎛⎫-∞+∞ ⎪⎝⎭ 2.已知复数z 满足3(1)(34)(2)z ai i ai =++-++(i 为虚数单位),若zi为纯虚数,则实数a 的值为( ) A .45 B .2 C .54- D .12- 3.已知命题p :x R ∀∈,210x x -+>,命题q :0x R ∃∈,002sin 2cos 3x x +=.则下列命题为真命题的是( )A .p q ∧B .()()p q ⌝∧⌝C .()p q ∧⌝D . ()p q ⌝∧4.已知函数()cos 22f x x π⎛⎫=- ⎪⎝⎭,21()1g x x =+,则下列结论中不正确是( ) A .()g x 的值域为(]0,1 B .()f x 的单调递减区间为3,()44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C .()()f x g x ⋅为偶函数D .()f x 的最小正周期为π5.若实数x ,y 满足113x y x y ≥⎧⎪≥⎨⎪+≤⎩,则21y z x -=的取值范围是( )A .2,43⎡⎤⎢⎥⎣⎦B .1,23⎡⎤⎢⎥⎣⎦C .1,32⎡⎤⎢⎥⎣⎦D .13,42⎡⎤⎢⎥⎣⎦6.某教育局为了解“跑团”每月跑步的平均里程,收集并整理了2017年1月至2017年11月期间“跑团”每月跑步的平均里程(单位:公里)的数据,绘制了下面的折线图.根据折线图,下列结论正确的是( )A .月跑步平均里程的中位数为6月份对应的里程数B .月跑步平均里程逐月增加C .月跑步平均里程高峰期大致在8、9月D .1月至5月的月跑步平均里程相对于6月至11月,波动性更小,变化比较平稳 7.执行如图所示的程序框图,则输出的结果为( )A .25B .26C .24D .238.过点(3,4)P 作圆224x y +=的两条切线,切点分别为A ,B ,则AB =( )A .53-B .52-C .2215 D .42159.已知等差数列{}n a 的前n 项和为n T ,34a =,627T =,数列{}n b 满足1123n b b b b +=++n b +⋅⋅⋅+,121b b ==,设n n n c a b =+,则数列{}n c 的前11项和为( )A .1062B .2124C .1101D .1100 10.已知某几何体的三视图如图所示,则该几何体的体积为( )A .104π+B .68π+C .108π+D .64π+11.已知动点(,)M x y 满足22(1)21x y x -+=+-,设点M 的轨迹为曲线E ,A ,B 为曲线E 上两动点,N 为AB 的中点,点N 到y 轴的距离为2,则弦AB 的最大值为( ) A .6 B .4 C .5 D .5412.如图所示的四棱锥P ABCD -中,底面ABCD 与侧面PAD 垂直,且四边形ABCD 为正方形,AD PD PA ==,点E 为边AB 的中点,点F 在边BP 上,且14BF BP =,过C ,E ,F 三点的截面与平面PAD 的交线为l ,则异面直线PB 与l 所成的角为( )A .6π B .4π C .3π D .2π 第Ⅱ卷二、填空题:本题共4小题,每小题5分.13.在ABC ∆中,中线AM ,BN 交于点O ,若OM AB AN λμ=+,则λμ+= . 14.在区间[]1,1-上随机取两个数x ,y ,则事件“21y x ≥-”发生的概率为 .15.已知双曲线22221(0,0)x y a b a b-=>>的渐近线方程为y bx =±,A ,B 为双曲线的左,右顶点,M 为双曲线上异于A ,B 的任意一点,且0MC AB ⋅=,0BN AM ⋅=,MC 与BN 交于点G ,若点G 在双曲线上,则双曲线的离心率为 .16.已知函数()f x ,任取两个不相等的正数1x ,2x ,总有1212[()()]()0f x f x x x -->,对于任意的0x >,总有[()ln ]1f f x x -=,若2()'()()g x f x f x m m =+-+有两个不同的零点,则正实数m 的取值范围为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.在锐角ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且25sin 2sin 224B C A π+⎛⎫+-=- ⎪⎝⎭. (1)求角A ;(2)若3a =,求ABC ∆周长的取值范围.18.在四棱锥P ABCD -中,四边形ABCD 为平行四边形,22BC AB ==,BD BA ⊥,2PA PB PD ===,M 为PD 的中点.(1)求证://PB 平面AMC ; (2)求点A 到平面PBC 的距离.19.全国大学生机器人大赛是由共青团中央,全国学联,深圳市人民政府联合主办的赛事,是中国最具影响力的机器人项目,是全球独创的机器人竞技平台.全国大学生机器人大赛比拼的是参赛选手们的能力,坚持和态度,展现的是个人实力以及整个团队的力量.2015赛季共吸引全国240余支机器人战队踊跃报名,这些参赛战队来自全国六大赛区,150余所高等院校,其中不乏北京大学,清华大学,上海交大,中国科大,西安交大等众多国内顶尖高校,经过严格筛选,最终由111支机器人战队参与到2015年全国大学生机器人大赛的激烈角逐之中,某大学共有“机器人”兴趣团队1000个,大一、大二、大三、大四分别有100,200,300,400个,为挑选优秀团队,现用分层抽样的方法,从以上团队中抽取20个团队. (1)应从大三抽取多少个团队?(2)将20个团队分为甲、乙两组,每组10个团队,进行理论和实践操作考试(共150分),甲、乙两组的分数如下:甲:125,141,140,137,122,114,119,139,121,142 乙:127,116,144,127,144,116,140,140,116,140 从甲、乙两组中选一组强化训练,备战机器人大赛.(i )从统计学数据看,若选择甲组,理由是什么?若选择乙组,理由是什么?(ii )从乙组中不低于140分的团队中任取两个团队,求至少有一个团队为144分的概率.20.已知椭圆22221(0)x y a b a b+=>>的长轴与短轴之和为6,椭圆上任一点到两焦点1F ,2F 的距离之和为4.(1)求椭圆的标准方程;(2)若直线AB :y x m =+与椭圆交于A ,B 两点,C ,D 在椭圆上,且C ,D 两点关于直线AB 对称,问:是否存在实数m ,使2AB CD =,若存在,求出m 的值;若不存在,请说明理由. 21.已知函数2()(31)xf x x x e -=++,其中e 为自然对数的底数. (1)求函数()f x 的单调区间;(2)求证:0x >时,261()(33ln )f x x x x x e e⎡⎤-⋅-++≥⎢⎥⎣⎦. 请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为cos 2sin x t y t αα=⎧⎨=+⎩(t 为参数,α为直线的倾斜角,且2πα≠),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为4cos ρθ=. (1)若直线l 经过圆C 的圆心,求直线l 的倾斜角; (2)若直线l 与圆C 交于A ,B 两点,且3546ππα≤≤,点(0,2)P ,求PA PB +的取值范围. 23.选修4-5:不等式选讲已知函数()2F x x m x =-++的图象的对称轴为1x =. (1)求不等式()2F x x ≥+的解集;(2)若函数()f x 的最小值为M ,正数a ,b 满足a b M +=,求证:12924a b +≥.文数(五)一、选择题1-5: ABCCC 6-10: DADCA 11、12:AD二、填空题13.12 14. 48π- 15. 2 16. (2,)+∞ 三、解答题17.解:(1)∵25sin 2sin 224B C A π+⎛⎫+-=- ⎪⎝⎭, ∴1cos()5cos 224B C A -+-=-,∴21cos 52cos 124A A +--=-, 整理,得28cos 2cos 10A A --=,∴1cos 4A =-或1cos 2A =, ∵02A π<<,∴1cos 2A =,即3A π=.(2)设ABC ∆的外接圆半径为r , 则322sin 32a r A===,∴1r =. ∴2(sin sin )b c r B C +=+22sin sin 3B B π⎡⎤⎛⎫=+-⎪⎢⎥⎝⎭⎣⎦23sin 6B π⎛⎫=+ ⎪⎝⎭,由题意022032B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,∴62B ππ<<,∴2363B πππ<+<, ∴3sin ,162B π⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦, ∴(3,23b c ⎤+∈⎦,∴ABC ∆周长的取值范围是(33,33⎤+⎦.18.解:(1)连接BD 交AC 于点O , 则O 为BD 的中点,连接MO .在PBD ∆中,//MO PB ,∵PB ⊄平面AMC ,MO ⊂平面AMC , ∴//PB 平面AMC .(2)取AD 的中点N ,连接PN ,BN ,NC . ∵PA PD =,∴PN AD ⊥, 又∵AB BD ⊥,∴BN AN =, ∴PAN PBN ∆≅∆, ∴90PNB PNA ∠=∠=, ∴PN NB ⊥,∴PN ⊥平面ABD . ∵2BC =,1AB =,AB BD ⊥,∴2AD =,1BN =,3BD =,∴3PN =,∴13P ABC ABC V S PN -∆=⋅11311233222=⨯⨯⨯⨯⨯=. 在NDC ∆中,1ND =,1CD =,120NDC ∠=, 由余弦定理,得222cos120NC ND DC ND DC =+-⋅⋅3=.∴226PC PN NC =+=,∴PBC ∆的面积为22161562222⎛⎫⨯⨯-= ⎪ ⎪⎝⎭, 设点A 到平面PBC 的距离为h .∵12P ABC A PBC V V --==, ∴1151322h ⨯⨯=,∴155h =. 即点A 到平面PBC 的距离为155. 19.解:(1)由题知,大三团队个数占总团队数的3003100010=, 则用分层抽样的方法,应从大三中抽取320610⨯=个. (2)(i )甲组数据的平均数130x =甲,乙组数据的平均数131x =乙,甲组数据的方差2104.2s =甲,乙组数据的方差2128.8s =乙,选甲队理由:甲、乙两队平均数相差不大,且22s s <甲乙,甲组成绩波动小. 选乙队理由:x x <甲乙,且乙队中不低于140分的团队多,在竞技比赛中,高分团队获胜的概率大. (ii )不低于140分的团队共5个,其中140分的团队有3个,分别为a ,b ,c ,144分的团队有2个,分别为E ,F ,则任取两个的情况有(,)a b ,(,)a c ,(,)a E ,(,)a F ,(,)b c ,(,)b E ,(,)b F ,(,)c E ,(,)c F ,(,)E F ,共10个,其中两个团队都是140分的情况有(,)a b ,(,)a c ,(,)b c ,共3个. 故所求概率3711010P =-=. 20.解:(1)由题意,24a =,226a b +=, ∴2a =,1b =.∴椭圆的标准方程为2214x y +=. (2)∵C ,D 关于直线AB 对称, 设直线CD 的方程为y x t =-+,联立2214y x t x y =-+⎧⎪⎨+=⎪⎩,消去y ,得2258440x tx t -+-=,226445(44)0t t ∆=-⨯⨯->,解得25t <,设C ,D 两点的坐标分别为11(,)C x y ,22(,)D x y ,则1285t x x +=,212445t x x -=,设CD 的中点为00(,)M x y ,∴1200042515x x t x y x t t +⎧==⎪⎪⎨⎪=-+=⎪⎩, ∴4,55t t M ⎛⎫⎪⎝⎭, 又点M 也在直线y x m =+上,则455t t m =+,∴53t m =-, ∵25t <,∴295m <.则12112CD x x =+-=⋅21212()4x x x x +-2801625t -=⋅.同理2801625m AB -=⋅.∵2AB CD =,∴222AB CD =,∴2225t m -=,∴2459415m =<, ∴存在实数m 使2AB CD =,此时m 的值为320541±. 21.解:(1)2'()(2331)xf x x x x e -=+---(1)(2)x x x e -=--+,∴在区间(,2)-∞-内,'()0f x <; 在区间(2,1)-内,'()0f x >;在区间(1,)+∞内,'()0f x <,故()f x 的单调递增区间为(2,1)-,单调递减区间为(,2)-∞-,(1,)+∞.(2)令6()()g x f x e =-,由(1)可知()g x 在区间(0,1)内单调递减,在区间(1,)+∞内单调递增,651()g(1)g x e e e ≥=-=.(*)令2()33ln h x x x x x =-++,则'()22ln h x x x =-+,设()'()s x h x =,则1'()20s x x =+>,故'()0h x =仅有一解为1x =,在区间(0,1)内,'()0h x <,在区间(1,)+∞内,'()0h x >,∴()(1)1h x h ≥=.(**)由(*)(**)式相乘,得1()()g x h x e ⋅≥, 即26()(33ln )f x x x x x e ⎡⎤-⋅-++⎢⎥⎣⎦1e ≥(当1x =时,取等号).22.解:(1)由题知,直线l 经过定点(0,2),圆C 的直角坐标方程为22(2)4x y -+=,圆心为(2,0),∴直线l 的斜率为1k =-,故直线l 的倾斜角为34π.(2)将cos 2sin x t y t αα=⎧⎨=+⎩(t 为参数)代入22(2)4x y -+=,得24(sin cos )40t t αα+-+=,当3546ππα≤≤时,216(sin cos )160αα∆=-->,设A ,B 两点对应的参数分别为1t ,2t , 则124(sin cos )t t αα+=--,124t t ⋅=, ∴1212()PA PB t t t t +=+=-+4(sin cos )42sin 4πααα⎛⎫=-=- ⎪⎝⎭, ∵72412πππα≤-≤, ∴62sin 144πα+⎛⎫≤-≤ ⎪⎝⎭, ∴23242PA PB +≤+≤, 故PA PB +的取值范围为[232,42]+.23.解:(1)∵函数()f x 的对称轴为1x =, ∴0m =, ∴()2f x x x =+-22,02,0222,2x x x x x -+≤⎧⎪=<<⎨⎪-≥⎩,由()2f x x ≥+,得0222x x x ≤⎧⎨-+≥+⎩或0222x x <<⎧⎨≥+⎩或2222x x x ≥⎧⎨-≥+⎩.解得0x ≤或4x ≥,故不等式()2F x x ≥+的解集为(,0][4,)-∞+∞.(2)由绝对值不等式的性质, 可知2(2)2x x x x -+≥--=,∴min ()2f x M ==,∴2a b +=, ∴1214222a b a b +=+114(22)422a b a b ⎛⎫=++ ⎪⎝⎭12814422b a a b ⎛⎫=+++ ⎪⎝⎭19(54)44≥⨯+=(当且仅当23a =,43b=时取等号).即129 24a b+≥.。

【全国百强校】2018年衡水金卷信息卷 全国卷 I A 理科数学模拟(一)试题(原卷版)

【全国百强校】2018年衡水金卷信息卷 全国卷 I A 理科数学模拟(一)试题(原卷版)

2018年衡水金卷信息卷全国卷 I A模拟试题(一)理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则()A. B.C. D.2. 已知复数满足(其中为虚数单位),则其共轭复数在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知等差数列中,,则()A. B. C. D. 04. 执行如图所示的程序框图,若输出的值为0,则判断框中可以填入的条件是()......A. B. C. D.5. 已知双曲线的一条渐近线与双曲线的—条渐近线垂直,则双曲线的离心率为()A. B. C. 或 D. 或6. 已知函数在上可导,且,则()A. 1B.C.D.7. 《九章算术》勾股章有一问题:今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽,问索长几何?其意思是:现有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索退行,在离木柱根部8尺处时绳索用尽.现从该绳索上任取一点,该点取自木柱上绳索的概率为()A. B. C. D.8. 已知函数,将的图象上的所有点的横坐标缩短到原来的倍,再把所得图象向下平移1个单位,得到函数的图象,若,则的值可能为()A. B. C. D.9. 已知函数则当时,的展开式中系数绝对值最大的项是()A. 第2项B. 第3项C. 第4项D. 第5项10. 从一个几何体中挖去一部分后所得组合体的三视图如图所示,则该组合体的体积为()A. B. C. D.11. 已知椭圆的左、右焦点分别为,点在椭圆上,点在的内部,且满足,及,若恒有成立,则椭圆的离心率的取值范围为()A. B. C. D.12. 定义在上的函数若满足:,且,则称函数为“指向的完美对称函数”.已知是“1指向2的完美对称函数”,且当时,.若函数在区间上恰有5个零点,则实数的取值范围为()A. B. C. D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知中,,且,则__________.14. 已知函数在上单调递减,,若是的必要不充分条件,则实数的取值范围为__________.15. 已知在关于的不等式组,(其中)所表示的平面区域内,存在点,满足,则实数的取值范围是__________.16. 数列中,(2,且),且,记数列的前项和为,若对任意的恒成立,则实数的最大值为__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知的内角的对边分别为,若向量,且.(1)求角的值;(2)已知的外接圆半径为,求周长的取值范围.18. 如图,在三棱柱中,平面平面,,分别为棱的中点.(1)求证:;(2)求平面与平面所成的锐二面角的余弦值.19. 2018年元旦期间,某运动服装专卖店举办了一次有奖促销活动,消费每超过400元均可参加1次抽奖活动,抽奖方案有两种,顾客只能选择其中的一种.方案一:顾客转动十二等分且质地均匀的圆形转盘(如图),转盘停止转动时指针指向哪个扇形区域,则顾客可直接获得该区域对应面额(单位:元)的现金优惠,且允许顾客转动3次.方案二:顾客转动十二等分且质地均匀的圆形转盘(如图〕,转盘停止转动时指针若指向阴影部分,则未中奖,若指向白色区域,则顾客可直接获得40元现金,且允许顾客转动3次.(1)若两位顾客均获得1次抽奖机会,且都选择抽奖方案一,试求这两位顾客均获得180元现金优惠的概率;(2)若某顾客恰好获得1次抽奖机会.①试分别计算他选择两种抽奖方案最终获得现金奖励的数学期望;②从概率的角度比较①中该顾客选择哪一种抽奖方案更合算?20. 已知抛物线的顶点为坐标原点,焦点在轴的正半轴上,过焦点作斜率为的直线交抛物线于两点,且,其中为坐标原点.(1)求抛物线的方程;(2)设点,直线分别交准线于点,问:在轴的正半轴上是否存在定点,使,若存在,求出定点的坐标,若不存在,试说明理由.21. 已知函数.(1)讨论函数的单调性;(2)当时,不等式恒成立,试求实数的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在平面直角坐标系中,圆的参数方程为(为参数).以原点为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程是.(1)求直线的直角坐标方程与圆的普通方程;(2)点为直线上的一动点,过点作直线与圆相切于点,求四边形的面积的最小值. 23. 选修4-5:不等式选讲已知函数,不等式的解集为.(1)求集合;(2)证明:对于任意的,恒成立•。

2018年普通高校招生全国卷一(衡水金卷)高三高考信息卷(五)语文试题(解析版)

2018年普通高校招生全国卷一(衡水金卷)高三高考信息卷(五)语文试题(解析版)

【衡水金卷】2018年普通高校招生全国卷I信息卷高三语文(五)一、现代文阅读论述类文本阅读阅读下面的文字,完成下列小题。

实体经济是国民经济的命脉和基础,世界主要经济体都把发展实体经济放在了国家战略高度上来对待。

“脱实向虚”在投资市场上的重要表现,就是资本过于追求短期利润,而忽略了长期可持续发展,过于注重财务指标而忽略了企业或投资者应该承担的环境与社会责任。

资产管理行业应积极践行金融为实体经济服务的投资原则,倡导、引导和推动企业与经济社会共同实现可持续发展,深入推进供给侧结构性改革,缓解当前经济发展中的突出问题,提高金融服务实体经济的效率。

因此,也有一个重新认识什么是“实体经济”的问题。

基于互联网时代的新特点和当前供给侧结构性改革的背景,我们提出“新实体经济”这一概念。

什么是“新实体经济”?简言之就是有效满足客户真实需求、科技含量高、容纳现代人才就业、生态环保可持续的新型经济形态。

“新实体经济”不是对实体经济从结构层面的重新定义,而是指传统实体经济在新时代背景下的改革发展方向,所以两者并不对立,是一种递进关系。

我们一直在说“振兴实体经济”,只有能够转型、升级的传统实体经济才存在振兴的意义,老旧而无进步潜力的实体经济并不值得去振兴;其次,我们应厘清并扩展实体经济的范畴。

过去一提到实体经济,就想到工厂冒烟或者中国制造。

但事实上有更广阔的角度看待实体,比如说现代农业,怎样让农产品跟农业的工业化加工、现代化流通以及客户定制化的服务结合起来,从这个角度来说现代农业是新实体经济,也都应该划入“新实体经济”的范畴,而不是用实体这个老概念,把这些新产业对立起来。

发展新实体经济,必须有强大的金融和资本市场支持,这本身也是资产管理、财富管理的重要方向。

金融和资本市场需要给予科技创新企业更多的支持,包括提供风险投资、信用融资、较高估值的退出机制。

过去对于互联网、生命科学、人工智能、新能源如此,未来对认知科技更是积极支持。

【全国省级联考】【衡水金卷 信息卷】2018年普通高校招生全国统考 衡水金卷 全国卷I 高三文科综合

【全国省级联考】【衡水金卷 信息卷】2018年普通高校招生全国统考 衡水金卷 全国卷I 高三文科综合

2018年普通高校招生全国统考衡水金卷全国卷I 高三文科综合(三)政治试题一、选择题(在下列符合题意的四个选项中,有一项是符合题目要求的。

共35题,每小题4分,满分140分)1. 诗与远方的美好,不仅取决于个人修养,还是各种文明之力集中的作用。

某地顺势而为,精准发力,以文明合力驱动旅游升级,在2018年元旦期间,吸引了大量游客。

下列选项能正确表达这一经济行为的是A. ①一③B. ①一④C. ②一③D. ②一④【答案】A【解析】某地顺势而为,精准发力,以文明合力驱动旅游升级,在2018年元旦期间,吸引了大量游客。

材料表明需求量增加,价格上涨,能正确表达这一经济行为的是①一③,A项符合题意;BCD项均与题意不符;正确选项为A。

2. 手机、钥匙、钱包是原来人们出门必备的“三大件”,“三大件”在身,出行才有底气。

但不过一两年的光景,钱包渐成时代“遗老”,逐步从这份名单里隐去,反倒是移动支付异军突起,在手机上敲一敲,柜台前扫一扫,成为流行的消费姿态。

这种支付方式的变化①使纸币的供应量逐渐减少②使居民消费更加方便快捷③会减少信用卡的使用数量④改变了货币的本质和职能A. ①②B. ①④C. ②③D. ③④【答案】C【解析】支付方式的变化使居民消费更加方便快捷,同时会减少信用卡的使用数量,②③项符合题意;移动支付会减少现金的使用,但不能使纸币的供应量逐渐减少,①项说法错误;移动支付仅仅是支付方式的改变,货币的本质和职能并不发生改变,④项说法错误;正确选项为C。

【点睛】与传统的支付方式相比较,移动支付能减少现金的使用,能够简化收款手续,可以方便购物消费,因而受到欢迎;移动支付能减少现金的使用量,但不能减少货币的发行量。

3. 据财政部统计,2017年1~11月全国一般公共预算收入累计161748亿元,同比增长8.4%;全国一般公共预算支出179560亿元,同比增长7. 8%,社会保障、医疗卫生、科技教育的支出比重增加。

2018高考全国卷1试题附含答案解析

2018年普通高等学校招生全国统一考试(全国Ⅰ卷)文综历史试题(晋冀鲁豫湘鄂赣徽闽粤10省使用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分100分。

第Ⅰ卷(选择题共48分)本卷共12小题,每小题4分,共48分。

在每小题给出的四个选项中,只有一个项是最符合题目要求的。

24.《墨子》中有关于“圆”“直线”“正方形”“倍”的定义,对杠杆原理、声音传播、小孔成像等也有论述,还有机械制造方面的记载。

这反映出,《墨子》A.汇集了诸子百家的思想精华B.形成了完整的科学体系C.包含了劳动人民智慧的结晶D.体现了贵族阶层的旨趣25.据学者研究,唐朝“安史之乱”后百余年间的藩镇基本情况如表2所示。

表2 “安史之乱”后百余年间唐朝藩镇基本情况表由此可知,这一时期的藩镇A.控制了朝廷财政收入B.彼此之间攻伐不已C.注重维护中央的权威D.延续了唐朝的统治26.北宋前中期,在今四川井研县一带山谷中,密布着成百上千个采用新制盐技术的竹篱井,井主所雇工匠大多来自“他州别县”,以“佣身赁力”为主,受雇期间,若对工作条件或待遇不满意,辄另谋高就。

这反映出当时A.民营手工业得到发展B.手工业者社会地位高C.雇佣劳动已经普及D.盐业专卖制度解体27.图6中的动物是郑和下西洋时外国使臣随船向明政府贡献的奇珍异兽,明朝君臣认为,这就是中国传说的“麒麟”,明成祖遂赐外国使臣。

这表明当时A.对外交流促使中国传统绘画出现新的类型B.朝廷用中国文化对朝贡贸易贡品加以解读C.海禁政策的解除促进了对外文化交流D.外来物品的传入推动了传统观念更新28.甲午战争期间,日本制定舆论宣传策略,把中国和日本分别包装成野蛮与文明的代表,并运用公关手段让欧美舆论倒向日方。

一些西方媒体甚至宣称,清政府战败“将意味着数百万人从愚蒙、专制和独裁中得到解放”。

对此,清政府却无所作为,这反映了A.欧美舆论宣传左右了战争进程B.日本力图变更中国的君主政体C.清朝政府昏庸不谙熟近代外交D.西方媒体鼓动中国的民主革命29.五四运动后,出现了社会主义是否合适中国国情的争论,有人反对走俄国式的道路,认为救中国只有一条路,就是“增加畜力”,发展实业;还有人主张“采用劳农主义的直接行动,达到社会革命的目的”。

2018年河北省【衡水金卷】普通高等学校招生全国统一考试模拟试题(信息卷)(一)文综(图片版)

参考答案及解析1.C【解析】由材料第一句“大约5000多万年前英国北爱尔兰东部火山活动非常活跃”可以推断,组成“巨人之路”的石柱是火山喷出的岩浆遇到冰冷的海水迅速冷却收缩凝固形成。

2. D【解析】由上题分析可知,构成“巨人之路”的岩石是一种喷出岩。

3. B【解析】喷出岩尤其是玄武岩往往具有气孔构造;沉积岩具有层理构造;变质岩具有片理构造和板状构造。

4.A【解析】从图中可知,南迦巴瓦峰北坡山麓海拔偏低,这是南迦巴瓦峰北坡自然带谱多的主要原因;从材料中可知,南迦巴瓦峰相对珠穆朗玛峰纬度偏高,但北坡濒临雅鲁藏布江谷地,来自印度洋的水汽源源不断地顺着雅鲁藏布江谷地进人北坡地区,使这里的降水多于珠穆朗玛峰北坡。

海拔、位置决定南迦巴瓦峰北坡的水热状况较好,气候的垂直分异显著,自然带谱丰富。

5. C【解析】结合上题的分析可知.南迦巴瓦峰南坡珠稚朗玛峰南坡的降水都比较丰畜,但南迦巴瓦峰坡较珠穆朗玛峰南坡纬度偏高,因此气温更低.自然雪线高度也就更低。

6.A【解析】解答此题,关健是理解“自然博物馆“的涵义。

.自然博物馆“应该是自然环境的独特和多样.只有A选项包含多样的意思。

7.B【解析】从两幅图的对比可以看出.与2000年相比,2015年该城市小麦种植区(耕地)和森林区(林地)减少,而城区(城镇建设用地)面积扩大。

8. C【解析】该城市拼地和林地减少,建设用地增加,使城市地面硬化,加之城市用水量不断增长易使城市地下水水位下降;城市绿地的减少和建设用地的增加会增强城市的热岛效应;城市雾霾更多是生产、生活和汽车尾气造成,与城市用地类型关系不大;蚊蝇害虫肆虐是多种因素造成的,与城市土地利用类型与构成的变化没有直接关系。

9.D 【解析】解决城市生态环境问题的有效措施应该是“治本”之策.那就是增加城市绿地.合理布局城市绿地,保护生物多样性,涵养水源.保持水土.实现生态良性循环。

10.A【解析】能源化工工业是耗水量很大的行业,根据经纬度判断愉林市位于陕西省北部的黄土高原,这里气候比较干燥.生态环境脆弱。

衡水金卷】2018年普通高校招生全国卷 I信息卷高三语文(五)word含答案

衡水金卷】2018年普通高校招生全国卷I信息卷高三语文(五)word含答案衡水金卷】2018年普通高校招生全国卷I信息卷高三语文(五)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、现代文阅读(35分)一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1-3题。

实体经济是国民经济的命脉和基础,世界主要经济体都把发展实体经济放在了国家战略高度上来对待。

资产管理行业应积极践行金融为实体经济服务的投资原则,倡导、引导和推动企业与经济社会共同实现可持续发展,深入推进供给侧结构性改革,缓解当前经济发展中的突出问题,提高金融服务实体经济的效率。

因此,也有一个重新认识什么是“实体经济”的问题。

基于互联网时代的新特点和当前供给侧结构性改革的背景,我们提出“新实体经济”这一概念。

改写:实体经济是国民经济的命脉和基础,各大经济体都将其作为国家战略的重要部分。

资产管理行业应积极践行金融为实体经济服务的投资原则,推动企业与经济社会实现可持续发展,深入推进供给侧结构性改革,提高金融服务实体经济的效率。

在互联网时代的新特点和当前供给侧结构性改革的背景下,我们提出了“新实体经济”这一概念。

什么是“新实体经济”?简言之就是有效满足客户真实需求、科技含量高、容纳现代人才就业、生态环保可持续的新型经济形态。

发展新实体经济,必须有强大的金融和资本市场支持,这本身也是资产管理、财富管理的重要方向。

金融和资本市场需要给予科技创新企业更多的支持,包括提供风险投资、信用融资、较高估值的退出机制。

改写:什么是“新实体经济”?简单来说,它是一种有效满足客户真实需求、科技含量高、容纳现代人才就业、生态环保可持续的新型经济形态。

发展新实体经济需要强大的金融和资本市场支持,这也是资产管理、财富管理的重要方向。

金融和资本市场需要为科技创新企业提供更多的支持,包括风险投资、信用融资和高估值的退出机制。

2018年河北省【衡水金卷】普通高校招生全国卷 I A 信息卷 高三理科综合(一)生物试题(解析版)

2018年普通高校招生全国卷 IA 信息卷高三理科综合(一)生物试题―、选择题1. 下列关于生物体内化合物的叙述,正确的是A. 呼吸酶的形成与内质网有关B. 染色体和ATP中都含有C、H、0、N、PC. 糖类只由C、H、0组成,只能为生物体提供能量D. 若要检测分裂期是否进行转录过程,可标记胸腺嘧啶脱氧核苷酸【答案】B【解析】呼吸酶属于胞内蛋白,形成与内质网无关,A项错误;染色体的主要成分是DNA和蛋白质,ATP 含有核糖、含氮碱基和磷酸,二者都含有C、H、0、N、P,B项正确;纤维素属于多糖,作为细胞的结构多糖,不能为生物体提供能量,C项错误;胸腺嘧啶脱氧核苷酸参与DNA合成,若要检测分裂期是否进行转录过程,可标记尿嘧啶核苷酸,D项错误。

2. 如图表示一个连续分裂细胞的分裂间期和分裂期的线段图。

下列有关说法错误的是A. b和c表示一个细胞周期,b时期细胞有适度生长B. 抑制DNA复制,细胞会停留在b或d阶段C. 进行分裂的细胞不一定都有细胞周期D. 基因突变主要发生在b、d时期,是由于其持续时间相对较长【答案】D【解析】一个细胞周期包括时间较长的分裂间期和时间较短的分裂期,b代表分裂间期,此时完成DNA复制和有关蛋白质的合成,细胞有适度生长,c代表分裂期,A项正确;抑制DNA复制,细胞会停留在分裂间期b或d阶段,B项正确;连续分裂的细胞才有细胞周期,进行分裂的细胞不一定都有细胞周期,C项正确;基因突变主要发生在分裂间期b或d阶段,此时DNA复制,容易发生查错,D项错误。

【点睛】判断一个完整的细胞周期的方法(1)“先长后短”:一个细胞周期一定要先经过一个长的间期,再经过一个短的分裂期。

(2)“终点到终点”:从完成时开始,到完成时结束,为一个细胞周期。

(3)“先复制后分裂”:一个细胞周期一定要先完成DNA的复制,才能完成细胞的分裂。

3. 如图1为适宜温度下小球藻光合速率与光照强度的关系;图2表示将小球藻放在密闭容器内,在一定温度条件下容器内C02浓度的变化情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年普通高等学校招生全国统一考试模拟试题理数(二)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知为虚数单位,复数 ()为纯虚数,则的值为A. -2B.C. 2D.【答案】C【解析】因为为纯虚数,所以所以a=2.故选C.2. 已知集合,,则()A. B. C. D.【答案】B【解析】由得0<x<8,所以A={x|0<x<8},由得x>5或x<-1,所以B={x| x>5或x<-1},所以={x|-1≤x≤5},所以=.故选B.3. 已知是各项均为正数的等比数列的前项和,,,则()A. 31B. 63C. 16D. 127【答案】A【解析】设公比为q(q>0),因为,所以即所以故选A.4. 设向量,,,若,则与的夹角为()A. B. C. D.【答案】D【解析】因为b||c,所以所以与的夹角的余弦值为所以夹角为.故选D.5. 大约2000多年前,古希腊数学家最先开始研究圆锥曲线,并获得了大量的成果,古希腊数学家阿波罗尼斯采用平面切割圆锥的方法来研究这几种曲线,用垂直于锥轴的平面去截圆锥,得到的是圆;把平面再渐渐倾斜得到椭圆.若用周长为24的矩形截某圆锥得到椭圆,且与矩形的四边相切.设椭圆在平面直角坐标系中的方程为,测得的离心率为,则椭圆的方程为()A. B. C. D.【答案】A【解析】由题得4a+4b=24,即a+b=6 (1),由得a=2b(2),由(1)(2)解得a=4,b=2.所以椭圆T的方程为,故选A.6. 已知某服装厂生产某种品牌的衣服,销售量 (单位:百件)关于每件衣服的利润 (单位:元)的函数解析式为, 则当该服装厂所获效益最大时,A. 20B. 60C. 80D. 40【答案】C【解析】设该服装厂所获效益为f(x)(单位:元),则当0<x≤20时,在区间(0,20]上单调递增,所以当x=20时,f(x)有最大值120000.当20<x≤180时,则令当20<x<80时,单调递增,当80≤x≤180时,单调递减,所以当x=80时,f(x)有最大值240000.故选C.7. 已知满足不等式组则的最小值为()A. 2B.C.D. 1【答案】D【解析】不等式组对应的可行域如图所示,因为所以z表示可行域内一点到直线x+y-1=0距离的倍,由可行域可知点A(2,0)到直线x+y-1=0的距离最短,故故选D.点睛:本题的关键是找到的几何意义,要找到的几何意义,必须变形,所以z表示可行域内一点到直线x+y-1=0距离的倍.突破了这一点,后面的解答就迎刃而解了.8. 已知函数,的值域为,则实数的取值范围是()A. B. C. D.【答案】B【解析】由题得由g(t)的图像,可知当时,f(x)的值域为,所以故选B.9. 已知的展开式中常数项为-42,则()A. 10B. 8C. 12D. 11【答案】B【解析】设的展开式中的第r+1项为项为当n为偶数时,令n-2r=0,得令n-2r=-2,得故原式展开式中常数项为代入下面的选项检验得n=8,显然当n为奇数时,不存在常数项,故可得n=8. 故选B.10. 某几何体的三视图如图所示,则该几何体的表面积为()A. B. C. D.【答案】C【解析】由三视图可知该几何体是一个圆柱切去两个弓形柱和半个球所得的几何体,圆柱的底面半径为2,高为6,弓形弦到圆心的距离为2-1=1,故弓形弦所对的圆心角为,弓形柱的高为2,所以几何体的表面积为故选C.11. 已知 (1)的左、右焦点分别为,,点是双曲线右支上一点,且,过点作的垂线交轴于点,且,若的中点在的延长线上,则双曲线的离心率是( )A.B.C.D.【答案】C【解析】因为点E 为PA 的中点,且,所以M 为的重心,所以为的中点,又可得故故选C.点睛:本题主要是分析,本题的条件比较多,能够对已知条件综合分析得到简洁的结论是解题的关键. 本题通过点E 为PA 的中点且,推理出M 为的重心,这是关键,后面找关于离心率e 的方程难度就不大了. 12. 已知函数,且对任意实数,均有,若方程有且只有4个实根,则实数的取值范围( )A.B.C.D.【答案】A【解析】依题意,函数f(x)的图像关于直线x=-3对称,所以f(-6)=f(0)=0,f(-4)=f(-2)=0,于是此时,因为方程f(x)=a有四个根,且f(x)的图像关于直线x=-3对称,即函数y=f(x)-a的图像在区间有两个零点,所以g(t)-a的图像在区间上有两个零点,所以由g(t)的图像,可知-16<a<9.故选A.点睛:本题解题用到了数学转化的思想,首先把方程f(x)=a有四个根,且f(x)的图像关于直线x=-3对称,转化成函数y=f(x)-a的图像在区间有两个零点,再转化成函数g(t)-a的图像在区间上有两个零点.转化的思想是高中数学里最普遍的数学思想,在高中数学里最常见,特别是遇到较复杂的问题,更应想到转化,把复杂的问题转化得简单,把不熟悉的数学问题转化成熟悉的数学问题,大家在今后的学习中要理解掌握和灵活运用.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知圆心角为的扇形的圆心为,在其弧上任取一点,则使和同时大于的概率为__________.【答案】【解析】由几何概型的定义和几何概型的公式可知使和能同时大于50°的概率为故填.14. 已知直线,和平面,,且,,则“,”是“”的__________条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”【答案】必要不充分【解析】由不一定推出由得由得所以“,”是“”的必要不充分条件.故填必要不充分.15. 执行如图所示的程序框图,若输出的,则正整数__________.【答案】2016【解析】第一次循环:s=1,1>T?,否,s=1,k=3,i=2;第二次循环,s=2,2>T?,否,s=4,k=5,i=3;第三次循环,s=3,3>T?,否,s=9,k=7,i=4;最后一次循环,是,输出2017.故T=2016,故填2016.16. 已知数列满足,,是,的等差中项,若为单调递增数列,则实数的取值范围为__________.【答案】【解析】由题可知=+,即-=,所以设则所以当n为奇数时,当n为偶数时,所以,由数列为单调递增数列,得.当n为奇数时,;所以当n>1时,易知当n为偶数时,,即综上,实数的取值范围为.故填点睛:本题的关键是得到后,能设换元得到这主要是对数列的性质的认识,从这里看出数列的奇数项成等差数列,偶数项成等差数列.突破这一点,后面就迎刃而解了.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在中,分别为内角的对边,向量,,(1)求;(2)若外接圆的直径为,且,求的面积.【答案】(1) (2)【解析】试题分析:(1)第(1)问,利用正弦定理和向量的数量积化简得到,再解这个三角方程即可得到B的值.(2)第(2)问,利用三角恒等变换化简得到,再分类讨论求出a,c的值,最后求三角形的面积.试题解析:(1)因为,所以.由正弦定理,得,又,即.因为,所以,所以,即.(2)由(1)和正弦定理,得.因为,所以,,即.当时,,由正弦定理,得,,所以.当时,有,即,由余弦定理,得,所以,,所以综上,的面积为.18. 在如图所示的多面体中,平面平面,四边形为边长为2的菱形,为直角梯形,四边形为平行四边形,且,,.(1)若,分别为,的中点,求证:平面;(2)若,与平面所成角的正弦值为,求二面角的余弦值.【答案】(1)见解析(2)【解析】试题分析:(1)第(1)问,转化成证明平面 ,再转化成证明和.(2)第(2)问,先利用几何法找到与平面所成角,再根据与平面所成角的正弦值为求出再建立空间直角坐标系,求出二面角的余弦值.试题解析:(1)连接,因为四边形为菱形,所以.因为平面平面,平面平面,平面,,所以平面.又平面,所以.因为,所以.因为,所以平面.因为分别为,的中点,所以,所以平面(2)设,由(1)得平面.由,,得,.过点作,与的延长线交于点,取的中点,连接,,如图所示,又,所以为等边三角形,所以,又平面平面,平面平面,平面,故平面.因为为平行四边形,所以,所以平面.又因为,所以平面.因为,所以平面平面.由(1),得平面,所以平面,所以.因为,所以平面,所以是与平面所成角.因为,,所以平面,平面,因为,所以平面平面.所以,,解得.在梯形中,易证,分别以,,的正方向为轴,轴,轴的正方向建立空间直角坐标系.则,,,,,,由,及,得,所以,,. 设平面的一个法向量为,由得令,得m=(3,1,2) 设平面的一个法向量为,由得令,得. 所以又因为二面角是钝角,所以二面角的余弦值是.19. 某企业从某种型号的产品中抽取了件对该产品的某项指标的数值进行检测,将其整理成如图所示的频率分布直方图,已知数值在100~110的产品有2l件.(1)求和的值;(2)规定产品的级别如下表:已知一件级产品的利润分别为10,20,40元,以频率估计概率,现质检部门从该批产品中随机抽取两件,两件产品的利润之和为,求的分布列和数学期望;(3)为了了解该型号产品的销售状况,对该公司最近六个月内的市场占有率进行了统计,并绘制了相应的折线图,由折线图可以看出,可用线性回归模型拟合月度市场卢有率(%)与月份代码之间的关系.求关于的线性回归方程,并预测2017年4月份(即时)的市场占有率.(参考公式:回归直线方程为,其中,【答案】(1) (2)见解析(3)2017年4月份的市场占有率预计为【解析】试题分析:(1)第(1)问,根据频率公式求N,利用频率分布直方图的矩形的面积和为1求a. (2)第(2)问,先写出X的值,再列出分布列和求X的数学期望. (3)第(3)问,先利用最小二乘法求关于的线性回归方程,再预测2017年4月份(即时)的市场占有率.试题解析:(1)数值在100~110内的频率为,所以.又因为,所以.(2)由频率分布直方图,可知抽取的一件产品为,,等级的概率分别为,,,且的取值为20,30,40,50,60,80,则,,,,,,所以的分布列为所以.(3)由折线图中所给的数据计算,可得,,所以,所以,故月度市场占有率与月份序号之间的线性回归方程为.当时,.所以2017年4月份的市场占有率预计为.20. 已知抛物线(),直线与抛物线交于 (点在点的左侧)两点,且. (1)求抛物线在两点处的切线方程;(2)若直线与抛物线交于两点,且的中点在线段上,的垂直平分线交轴于点,求面积的最大值.【答案】(1) (2)【解析】试题分析:(1)第(1)问,先求出抛物线的方程得到,再求导求出切线斜率,最后求出抛物线在两点处的切线方程.(2)第(2)问,先利用弦长公式求出,再利用点到直线的距离求三角形的高,最后写出面积的表达式,再换元利用导数求它的最大值.试题解析:(1)由,令,得,所以,解得,,由,得,故所以在点的切线方程为,即,同理可得在点的切线方程为.(2)由题意得直线的斜率存在且不为0,故设,,,由与联立,得,,所以,,故.又,所以,所以,由,得且.因为的中点为,所以的垂直平分线方程为,令,得,即,所以点到直线的距离,所以.令,则,则,故.设,则,结合,令,得;令,得,所以当,即时,.点睛:本题有两个特点.一是计算量大,字母参数多,计算比较复杂,所以计算要认真仔细,需要有耐心. 二是综合性比较强,求切线的方程用到了导数的几何意义,后面求出后,换元得到一个新的函数,又利用了导数来研究函数的单调性.所以要求导数的知识熟练.21. 已知函数,,为自然对数的底数.(1)若函数在点处的切线为,求的值;(2)当时,若在区间上有两个零点,,试判断,,的大小关系.【答案】(1) (2)【解析】试题分析:(1)第(1)问,直接利用导数的几何意义求出的值. (2)第(2)问,先研究函数g(x)在的单调性得到它的两个零点的范围,,,再作差比较和的大小,最后利用函数的图像和性质比较和的大小.学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...试题解析:(1)由题意,知,.因为,所以,即.又因为,所以.(2)由题意,知.因为,,由,得或.当时,,所以在区间上单调递增;当时,,所以在区间上单调递减;所以的极小值为.因为,且在区间上单调递减,所以.又因为,,所以存在,使得,所以存在,使得,且,所以,即.当时,,.令,,则,设,则在区间上恒成立,所以在区间上单调递增,所以,所以在区间上恒成立,即在区间上单调递增,故,所以当时,.又因为,在区间上单调递增,所以所以.点睛:本题的难点在比较和的大小. 本题利用了函数的图像和性质进行分析,分析出,得到时,.而,在区间上单调递增,所以,这个地方要结合图像理解清楚.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程以平面直角坐标系的原点为极点,轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线的参数方程为 (为参数),曲线的参数方程为(为参数),曲线的极坐标方程为.(1)求曲线和的公共点的极坐标;(2)若为曲线上的一个动点,求到直线的距离的最大值.【答案】(1) ,,, (2)【解析】试题分析:(1)第(1)问,先把曲线化成直角坐标方程,再解方程组得到两曲线交点的坐标,再把交点直角坐标化成极坐标. (2)第(2)问,利用参数方程设点,再求出到直线的距离,最后利用三角函数求它的最大值.试题解析:(1)因为曲线的参数方程为,(为参数)所以曲线的直角坐标方程为.因为,所以曲线的直角坐标方程为.两方程联立得或或或所以其极坐标分别为,,,.(2)直线的普通方程为.设点,则点到l的距离,当,即,时,.23. 选修4-5:不等式选讲已知函数.(1)解不等式:;(2)若函数的最小值为,且,试求的最小值.【答案】(1) (2)4【解析】试题分析:(1)第(1)问,直接利用零点分段讨论法解不等式. (2)第(2)问,先由题得到,再利用基本不等式求的最小值.试题解析:(1)可得当时,,即,所以无解;当时,,得,可得;当时,,得,可得.∴不等式的解集为.(2)根据函数, 可知当时,函数取得最小值,可知,,∴.∴,当且仅当时,取得最小值为4.。

相关文档
最新文档