2020年同济大学线性代数第六版第一章《行列式》同步练习与解析
工程数学线性代数第六版 第一章

第1章 行 列 式行列式是线性代数中常用的工具.本章主要介绍n阶行列式的定义、性质及其计算方法.§1 二阶与三阶行列式一、二元线性方程组与二阶行列式用消元法解二元线性方程组为消去未知数x2,以a22与a12分别乘上列两方程的两端,然后两个方程相减,得(a11a22-a12a21)x1=b1a22-a12b2;类似地,消去x1,得(a11a22-a12a21)x2=a11b2-b1a21.当a11a22-a12a21≠0时,求得方程组(1)的解为(2)式中的分子、分母都是四个数分两对相乘再相减而得,其中分母a11a22-a12a21是由方程组(1)的四个系数确定的,把这四个数按它们在方程组(1) 中的位置,排成二行二列(横排称行、竖排称列)的数表a a(3)a a,表达式a11a22-a12a21称为数表(3)所确定的二阶行列式,并记作数a i j(i=1,2;j=1,2)称为行列式(4)的元 素或元.元素a i j的第一个下标i 称为行标,表明该元素位于第i行;第二个下标j称为列标表明该元素位于第j列.位于第i行第j列的元素称为行列式(4)的(i,j)元.上述二阶行列式的定义,可用对角线法则来记忆.参看图1. 1,把a11到a22的实连线称为主对角线,a12到a21的虚连线称为副对角线,于是二阶行列式便是主对角线上的两元素之积减去副对角线上两元素之积所得的差.利用二阶行列式的概念, (2)式中x1,x2的分子也可写成图1. 1二阶行列式,即若记那么(2)式可写成注意这里的分母D是由方程组(1)的系数所确定的二阶行列式(称系数行列式),x1的分子D1是用常数项b1,b2替换D中第1列的元素a11,a21所得的二阶行列式,x2的分子D2是用常数项b1,b2替换D中第2列的元素a12,a22所得的二阶行列式.例1求解二元线性方程组解 由于因此二、三阶行列式定义1设有9个数排成3行3列的数表a a aa21a22a23(5)a a a,记(6)式称为数表(5)所确定的三阶行列式.上述定义表明三阶行列式含6项,每项均为不同行不同列的三个元素的乘积再冠以正负号,其规律遵循图1.2所示的对角线法则:图中有三条实线看做是平行于主对角线的连线,三条虚线看做是平行于副对角线的连线,实线上三元素的乘积冠正号,虚线上三元素的乘积冠负号.图1.2例2计算三阶行列式解 按对角线法则,有D=1×2×(-2)+2×1×(-3)+(-4)×(-2)×4-1×1×4-2×(-2)×(-2)-(-4)×2×(-3)=-4-6+32-4-8-24=-14.例3求解方程解 方程左端的三阶行列式D = 3x +4x+18-9x-2x-12 =x-5x+6,由x2-5x+6=0解得x=2或x=3.对角线法则只适用于二阶与三阶行列式,为研究四阶及更高阶行列式,下而先介绍有关全排列的知识,然后引出n阶行列式的概念.§2全排列和对换一、排列及其逆序数把n个不同的元素排成一列,叫做这n个元素的全排列(也简称排列).n个不同元素的所有排列的种数,通常用Pn表示,可计算如下:从n个元素中任取一个放在第一个位置上,有n种取法;从剩下的n-1个元素中任取一个放在第二个位置上,有n-1种取法;这样继续下去,直到最后只剩下一个元素放在第n个位置上,只有1种取法.于是P n=n·(n-1)·…·3·2·1=n!.例如用1,2,3三个数字作排列,排列总数P3=3·2·1=6,它们是123,231,312,132,213,321.对于n个不同的元素,先规定各元素之间有一个标准次序(例如n个不同的自然数,可规定由小到大为标准次序),于是在这n个元素的任一排列中,当某一对元素的先后次序与标准次序不同时,就说它构成1个逆序.一个排列中所有逆序的总数叫做这个排列的逆序数.逆序数为奇数的排列叫做奇排列,逆序数为偶数的排列叫做偶排列.下面来讨论计算排列的逆序数的方法.不失一般性,不妨设n个元素为1至n这n个自然数,并规定由小到大为标准次序.设p1p2…p n为这n个自然数的一个排列,考虑元素p i(i=1,2,…,n),如果比p i大的且排在p i前面的元素有t i个,就说p i这个元素的逆序数是t i.全体元素的逆序数之总和即是这个排列的逆序数.例4求排列32514的逆序数.解 在排列32514中:3排在首位,逆序数t1 =0;2的前面比2大的数有一个(3),故逆序数t2=1;5是最大数,逆序数t3=0;1的前面比1大的数有三个(3、2、5),故逆序数t4=3;4的前面比4大的数有一个(5),故逆序数t5=1,于是这个排列的逆序数为二、对换在排列中,将任意两个元素对调,其余的元素不动,这种作出新排列的手续叫做对换.将相邻两个元素对换,叫做相邻对换.定理1一个排列中的任意两个元素对换,排列改变奇偶性.证 仍不妨设元素为从1开始的自然数(从小到大为标准次序).先证相邻对换的情形.设排列为a1…a l abb1…b m;对换a与b,变为a1…a l bab1…b m.显然,a1,…,a1;b1,…,b m这些元素的逆序数经过对换并不改变,而a,b两元素的逆序数改变为:当a<b时,经对换后a的逆序数增加1而b的逆序数不变;当a>b时,经对换后a的逆序数不变而b的逆序数减少1.所以排列a1…a l abb1…b m与排列a1…a l bab1…b m的奇偶性不同.再证一般对换的情形.设排列为a1…a l ab1…b m b c1…c n,把它作m次相邻对换,变成a1…a l ab b1…b m c1…c n,再作m+1次相邻对换,变成a1…a l bb1…b m ac1…c n.总之,经2m+1次相邻对换,排列a1…a l ab1…b m bc1…c n变成排列a1…a l bb1…b m ac1…c n,所以这两个排列的奇偶性相反.推论 奇排列对换成标准排列的对换次数为奇数,偶排列对换成标准排列的对换次数为偶数.证 由定理1知对换的次数就是排列奇偶性的变化次数,而标准排列是偶排列(逆序数为0),因此知推论成立. 证毕§3n阶行列式的定义为了给出n阶行列式的定义,先来研究三阶行列式的结构.三阶行列式定义为容易看出:(i)(6)式右边的每一项都恰是三个元素的乘积,这三个元素位于不同的行、不同的列.因此, (6)式右端的任一项除正负号外可以写成a1p1a2p2a3p3.这里第一个下标(行标)排成标准次序123,而第二个下标(列标)排成p1p2p3,它是1,2,3三个数的某个排列.这样的排列共有6种,对应(6)式右端共含6项.(i i)各项的正负号与列标的排列对照.带正号的三项列标排列是123,231,312;带负号的三项列标排列是132,213,321.经计算可知前三个排列都是偶排列,而后三个排列都是奇排列.因此各项所带的正负号可以表示为(-1)t,其中t为列标排列的逆序数.总之,三阶行列式可以写成其中t为排列p1p2p3的逆序数,∑表示对1,2,3三个数的所有排列p1p2p3取和:仿此,可以把行列式推广到一般情形.定义2设有n2个数,排成n行n列的数表a a…aa a…aa a…a,作出表中位于不同行不同列的n个数的乘积,并冠以符号(-1)t,得到形如(-1)t a1p1a2p2…a npn的项,其中p1p2…p n为自然数1,2,…,n的一个排列,t为这个排列的逆序数.由于这样的排列共有n!个,因而形如(7)式的项共有n!项.所有这n!项的代数和∑(-1)t a1p1a2p2…a np n称为n阶行列式,记作简记作de t(a i j),其中数a i j为行列式D的(i,j)元.按此定义的二阶、三阶行列式,与§1中用对角线法则定义的二阶、三阶行列式显然是一致的.当n = 1时,一阶行列式︳a︳=a,注意不要与绝对值记号相混淆.主对角线以下(上)的元素都为0的行列式叫做上(下)三角形行列式;特别,主对角线以下和以上的元素都为0的行列式叫做对角行列式.例5证明(1)下三角形行列式(2)对角行列式证(1)由于当j>i时,a i j=0,故D中可能不为0的元素a i pi,其下标应有p i≤ i,即p1≤1,…,p n≤n,而p1+…+p n=1+…+n,因此p1=1,…,p n=n,所以D中可能不为0的项只有一项(-1t a11a22…a nn.此项的符号(-1)t=(-1)0=1,所以D=a1a…a.(2)由(1)即得.§4行列式的性质记行列式D T称为行列式D的转置行列式.性质1行列式与它的转置行列式相等.证 记D=de t(a i j)的转置行列式D T=de t(b i j),即D T的(i,j)元为b i j,则b ij=a j i(i,j=1,2,…,n),按定义下证D=D.对于行列式D的任一项其中1…i…j…n为标准排列,t为排列p1…p i…p j…p n的逆序数,对换元素与成这时,这一项的值不变,而行标排列与列标排列同时作了一次相应的对换.设新的行标排列1…j…i…n的逆序数为r,则r为奇数;设新的列标排列p1…p j…p i…p n的逆序数为t1,则(-1)t1=-(-1)t.故(-1)=-(-1)1=(-1)(-1)1=(-1)1,于是这就表明,对换乘积中两元素的次序,从而行标排列与列标排列同时作了相应的对换,则行标排列与列标排列的逆序数之和并不改变奇偶性.经一次对换是如此,经多次对换当然还是如此。
线性代数习题集[带答案解析]教学提纲
![线性代数习题集[带答案解析]教学提纲](https://img.taocdn.com/s3/m/79e7d8cc51e79b89680226e3.png)
线性代数习题集[带答案解析]仅供学习与交流,如有侵权请联系网站删除 谢谢1第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)243512.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ).(A) 0 (B)1- (C) 1 (D) 25.=0001100000100100( ).(A) 0 (B)1- (C) 1 (D) 26.在函数1323211112)(x x xxx f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 2仅供学习与交流,如有侵权请联系网站删除 谢谢27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)0二、填空题仅供学习与交流,如有侵权请联系网站删除 谢谢31. n 2阶排列)12(13)2(24-n n 的逆序数是.2.在六阶行列式中项261365415432a a a a a a 所带的符号是.3.四阶行列式中包含4322a a 且带正号的项是.4.若一个n 阶行列式中至少有12+-n n 个元素等于0, 则这个行列式的值等于.5. 行列式=100111010100111.6.行列式=-000100002000010n n .7.行列式=--001)1(2211)1(111n n n n a a a a a a .8.如果M a a a a a a a a a D ==333231232221131211,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.仅供学习与交流,如有侵权请联系网站删除 谢谢410.行列式=--+---+---1111111111111111x x x x .11.n 阶行列式=+++λλλ111111111.12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++44434241234A A A A .14.已知db c a cc a b b a b c a cb a D =, D 中第四列元的代数余子式的和为.15.设行列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余子式,则=+4241A A ,=+4443A A .仅供学习与交流,如有侵权请联系网站删除 谢谢516.已知行列式nn D001030102112531-=,D 中第一行元的代数余子式的和为.17.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.18.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1.cb a db a dc a dc bd c b a d c ba d cb a++++++++33332222; 2.yxyx x y x y y x y x +++;3.解方程0011011101110=x x xx ; 4.111111321321221221221----n n n n a a a a x a a a a x a a a a xa a a a x ;仅供学习与交流,如有侵权请联系网站删除 谢谢65. na a a a 111111111111210(n j a j ,,1,0,1 =≠); 6. bn b b----)1(1111211111311117. n a b b b a a b b a a a b 321222111111111; 8.xa a a a x a a a a x a a a a x n nn 321212121;9.2212221212121111nn n nnx x x x x x x x x x x x x x x +++; 10. 21000120000021001210001211.aa a a a a aa a D ---------=110001100011000110001.仅供学习与交流,如有侵权请联系网站删除 谢谢7四、证明题1.设1=abcd ,证明:011111111111122222222=++++dddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b adc b a +++------=.4.∏∑≤<≤=----=nj i i jni innn nn nn n nna aa a a a a a a a a a a a a 1121222212222121)(111.5.设c b a ,,两两不等,证明0111333=c b a c ba 的充要条件是0=++cb a .仅供学习与交流,如有侵权请联系网站删除 谢谢8参考答案一.单项选择题A D A C C D ABCD B B 二.填空题1.n ;2.”“-;3.43312214a a a a ;4.0;5.0;6.!)1(1n n --;7.1)1(212)1()1(n n n n n a a a ---; 8.M 3-; 9.160-; 10.4x ; 11.1)(-+n n λλ; 12.2-;13.0; 14.0; 15.9,12-; 16.)11(!1∑=-nk k n ; 17.3,2-≠k ; 18.7=k三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ------+++-; 2. )(233y x +-; 3. 1,0,2-=x ; 4. ∏-=-11)(n k k a x5. )111()1(00∑∏==-+-nk k nk k a a ; 6. ))2(()1)(2(b n b b ---+- ;7. ∏=--nk k kna b1)()1(; 8. ∏∑==-+nk k nk k a x a x 11)()(;9. ∑=+nk k x 11; 10. 1+n ;11. )1)(1(42a a a ++-. 四. 证明题 (略)仅供学习与交流,如有侵权请联系网站删除 谢谢9第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。
线性代数第一章n阶行列式练习题

线性代数第一章n阶行列式练习题填空01111.设n阶行列式D =10111a131?11?10?11?01?111110,则D的值为.1a11a122a113a12?a114a13?a122.设行列式D =a21a22a23a31a32a33= a ,则行列式D1 =2a213a22?a214a23?a222a313a32?a314a33?a32= .3.设行列式D =1234234567894567,则D的第3列元素的代数余子式之和为. 4.设f=x1?2101?x11312x14?323x?443xx ,则f的展开式中??的系数为,的系数为,常数项为.5.方程1?2231x2313x4114x= 0 的根x = .6.当满足条件时线性方程组选择??x1?x2?x3?x4?0??x??x?x?x?0?1234???x1?x2??x3?x4?0??x1?x2?x3??x4?0 只有零解.1.设4阶行列式D =a100b10a2b200b3a30b400a4,则D的值为.a1a2a3a4?b1b2b3b;a1a2a3a4?b1b2b3b;;.?2.设D为n阶行列式,Aij 为D的元素aij 的代数余子式,则.?ai?1n nijAij?= 0;?ai?1ijAij?= D; ?aj?1n n1jA2j?= D ; ?aj?1ijAij?= 0.a11a12?a1na1na1,n?1?a11a21a22?a2n3.设行列式D =a2na2,n?1?a21= aan1an2?ann,则行列式D1 =nannan,n?1?an1= .n2a ;-a ;a ; a .4.设f=x?2x?1x?2x?32x?22x?12x?22x?33x?33x?24x?53x?5 4x4x?35x?74x?,则方程f= 0的根的个数为.1 ;;;.a1a1a15.方程a2a3a4?xa4a4a4= 0a2a3?xa2?xa3a2a3a1?x的根为.a1?a2,a3?a;0 ,a1?a2?a3?a4;a1a2a3a,0 ;0 ,?a1?a2?a3?a4.6.设D为n阶行列式,下列命题中错误的是.2n 若D中至少有?-?n?+?1个元素为0 ,则D = 0 ;若D中每列元素之和均为0 ,则D = 0 ;若D中位于某k行及某l列的交点处的元素都为0 ,且k?+?l?>?n ,则D = 0 ;若D的主对角线和次对角线上的元素都为0 ,则D = 0 .1.答案n?1 .提示将D化为上三角行列式即得..答案 4a .提示利用行列式性质、5变化行列式D1 即得..答案 0 .提示A13?A23?A33?A43?=123423451111456.4.答案-、1、-.提示x、x3的系数由4个主对角元的乘积?x2x 确定,常数项为f.5.答案 x = -、1 、.提示将方程左边的行列式化为上三角行列式后展开即得..答案??≠?1且≠ -.提示齐次线性方程组只有零解的充要条件是系数行列式等于0 .选择 1.答案.提示利用行列式的Laplace展开定理即得..答案.提示由定理1.2即得..答案.提示利用行列式性质2变化行列式D1 即得..答案.提示先利用行列式性质5将方程f= 0左端的行列式化简,再利用行列式定义判断多项式f的次数.5.答案.提示将方程左边的行列式化为上三角即得.6.答案.提示命题是错误的.反例:100100000010010= 1 .一. 判断题1. n阶行列式aij的展开式中含有a11的项数为n?1. 正确答案:!解答:方法1因为含有a11的项的一般形式是a11a2j2?anjn,其中j2j3?jn是n?1级全排列的全体,所以共有!项. 方法由行列式展开定理a11a12a22?an2a1na2n?ann?a11A11?a12A12a1nA1n,a21?an1而a12A12a1nA1n中不再含有a11,而A11共有!项,所以含有a11的项数是!.注意:含有任何元素a的项数都是!.ij2. 若n阶行列式aij中每行元素之和均为零,则aij 等于零.a11a12a22?an2a1na2n?ann3、?、n列都加到第一列,则行中的2、解答:将a21?an1列式中有一列元素全为零,所以aij等于零.a10a2b300b2a30b100a4?a1b4b1a2a4b3b2a33.00b4.解答:方法1按第一列展开 a100b40a2b300b2a30b100a4?a1b4b1a4?a1b4b1a2a4b3b2a3?a1a4a2b3b2a3?b1b4a2b3b2a3.方法交换2,4列,再交换2,4行a10a2b300b2a30b100a4??a100b4b100a40b2a300a2b30?a1b400b1a40000a3b200b3a2D00b4=a1b4b1a2a4b3b2a3.方法Laplace展开定理:设在n行列式 k个行,由这k中任意取定了行元素所组成的一切k阶子式与它们的代数余子式的乘积之和等于行列式D。
线性代数行列式部分练习题及答案

《线性代数与解析几何》练习题行列式部分一.填空题:1.已知41132213----=D 用ij A 表示D 的元素ij a 的代数余子式,则21222323______A A A --+=,31323323____A A A --+=,行列式__________333231232221131211=A A A A A A A A A 2.12434003209106412a a a a a 的的代数余子式的值等于________。
3.设512312123122x x x D xxx=,则D 的展开式中3x 的系数为______4.4阶行列式111213142122232414423132333441424344a a a a a a a a D a a a a a a a a a a =展开式中含有因子的项为______和______5.行列式234234234234a a a ab b b b Dc c c c dd d d ==______6.设xx x x x f 321132213321)(=则(4)_____f = 7.设0112520842111111154115212111111541132111111323232=++-x x xx x xx x x上述方程的解______________________=x8.行列式112233440000000a b a b D b a b a ==__________ 9.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ 只有零解,则λ应满足_________条件。
10.若方程123123123020kx x x x kx x x x x ++=⎧⎪+-=⎨⎪-+=⎩有非零解,则k =_________或k =________。
11.行列式xy yyx y yyx=______ 12.行列式1110110110110111=______13.行列式000000000ab c de f=______14.方程组12312321231x x x x x x x x x λλλλλ++=⎧⎪++=⎨⎪++=⎩ 有唯一解时,对λ的要求是______二.计算题: 1.已知5阶行列式270513422111542131122254321=求434241A A A ++和4544A A +,其中ij A 是元素ij a 的代数余子式。
同济大学线性代数第六版标准答案(全)

第一章 行列式1. 利用对角线法则计算下列三阶行列式: (1)381141102---;解 381141102---=2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4. (2)b a c a c b cb a ;解 ba c a cb cb a=acb +bac +cba -bbb -aaa -ccc=3abc -a 3-b 3-c 3.(3)222111c b a c b a ;解 222111c b a c b a=bc 2+ca 2+ab 2-ac 2-ba 2-cb 2=(a -b )(b -c )(c -a ).(4)y x y x x y x y yx y x +++.解 yx y x x y x y yx y x +++=x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3).2. 按自然数从小到大为标准次序, 求下列各排列的逆序数:(1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2;解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1;解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3;解 逆序数为3: 2 1, 4 1, 4 3.(5)1 3 ⋅⋅⋅ (2n-1) 2 4 ⋅⋅⋅ (2n);解逆序数为2)1(-nn:3 2 (1个)5 2, 5 4(2个)7 2, 7 4, 7 6(3个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6, ⋅⋅⋅, (2n-1)(2n-2) (n-1个) (6)1 3 ⋅⋅⋅(2n-1) (2n) (2n-2) ⋅⋅⋅ 2.解逆序数为n(n-1) :3 2(1个)5 2, 5 4 (2个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6, ⋅⋅⋅, (2n-1)(2n-2) (n-1个)4 2(1个)6 2, 6 4(2个)⋅⋅⋅⋅⋅⋅(2n)2, (2n)4, (2n)6, ⋅⋅⋅, (2n)(2n-2) (n-1个)3. 写出四阶行列式中含有因子a11a23的项.解含因子a11a23的项的一般形式为(-1)t a 11a 23a 3r a 4s ,其中rs 是2和4构成的排列, 这种排列共有两个, 即24和42. 所以含因子a 11a 23的项分别是(-1)t a 11a 23a 32a 44=(-1)1a 11a 23a 32a 44=-a 11a 23a 32a 44, (-1)t a 11a 23a 34a 42=(-1)2a 11a 23a 34a 42=a 11a 23a 34a 42. 4. 计算下列各行列式:(1)71100251020214214; 解 7110251020214214010014231020211021473234-----======c c c c 34)1(143102211014+-⨯---= 143102211014--=01417172001099323211=-++======c c c c .(2)2605232112131412-; 解 2605232112131412-260503212213041224--=====c c 041203212213041224--=====r r 000003212213041214=--=====r r .(3)efcf bf de cd bd aeac ab ---;解 ef cf bf de cd bd ae ac ab ---e c b e c b ec b adf ---=abcdef adfbce 4111111111=---=.(4)dc b a 100110011001---. 解d c b a 100110011001---dc b aab ar r 10011001101021---++===== dc a ab 101101)1)(1(12--+--=+01011123-+-++=====cd c ada ab dc ccdad ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1. 5. 证明:(1)1112222b b a a b ab a +=(a -b )3;证明1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--==(a -b )3 . (2)y x z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bxaz bz ay by ax +++++++++bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bxaz z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=y x z x z y zy x b y x z x z y z y x a 33+=y x z x z y zy x b a )(33+=.(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;证明 2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2, c 2-c 1得) 5232125232125232125232122222++++++++++++=d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2得) 022122212221222122222=++++=d d c c b b a a . (4)444422221111d c b a d c b a d c b a =(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ); 证明 444422221111d c b a d c b a d c b a )()()(0)()()(001111222222222a d d a c c a b b a d d a c c a b b ad a c a b ---------=)()()(111))()((222a d d a c c a b b d c b a d a c a b +++---=))(())((00111))()((a b d b d d a b c b c c bd b c a d a c a b ++-++------= )()(11))()()()((a b d d a b c c b d b c a d a c a b ++++-----==(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ).(5)1221 1 000 00 1000 01a x a a a a x x xn n n +⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--- =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n . 证明 用数学归纳法证明.当n =2时, 2121221a x a x a x a x D ++=+-=, 命题成立. 假设对于(n -1)阶行列式命题成立, 即 D n -1=x n -1+a 1 x n -2+ ⋅ ⋅ ⋅ +a n -2x +a n -1, 则D n 按第一列展开, 有11100 100 01)1(11-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--+=+-x x a xD D n n n n =xD n -1+a n =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n . 因此, 对于n 阶行列式命题成立.6. 设n 阶行列式D =det(a ij ), 把D 上下翻转、或逆时针旋转90︒、或依副对角线翻转, 依次得n nn n a a a a D 11111 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=, 11112 n nn n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= , 11113 a a a a D n nnn ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,证明D D D n n 2)1(21)1(--==, D 3=D .证明 因为D =det(a ij ), 所以 nnn n n n nnnn a a a a a a a a a a D 2211111111111 )1( ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=- ⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=-- )1()1(331122111121nnn n nn n n a a a a a a a a D D n n n n 2)1()1()2( 21)1()1(--+-+⋅⋅⋅++-=-=.同理可证nnn n n n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=- )1(11112)1(2D D n n T n n 2)1(2)1()1()1(---=-=. D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(.7. 计算下列各行列式(D k 为k 阶行列式): (1)aa D n 11⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0;解 aa a a a D n 010 000 00 000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开) )1()1(10 000 00 000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a an n n nn a a a+⋅⋅⋅-⋅-=--+)2)(2(1)1()1(=a n -a n -2=a n -2(a 2-1).(2)xa a a x a a a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(-1)分别加到其余各行, 得 ax x a ax x a a x x a aa a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0, 再将各列都加到第一列上, 得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 0000 )1(=[x +(n -1)a ](x -a )n -1.(3)111 1 )( )1()( )1(1111⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅--⋅⋅⋅-=---+n a a a n a a a n a a a D n n n nn n n ; 解 根据第6题结果, 有nn n n n n n n n n a a a n a a a n a a aD )( )1()( )1( 11 11)1(1112)1(1-⋅⋅⋅--⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=---++此行列式为范德蒙德行列式. ∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏≥>≥++---=112)1()]([)1(j i n n n j i∏≥>≥++⋅⋅⋅+-++-⋅-⋅-=1121)1(2)1()()1()1(j i n n n n n j i∏≥>≥+-=11)(j i n j i .(4)nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112; 解nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112(按第1行展开) nn n n n nd d c d c b a b a a 00011111111----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=0)1(1111111112c d c d c b a b a b nn n n n nn ----+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-+. 再按最后一行展开得递推公式D 2n =a n d n D 2n -2-b n c n D 2n -2, 即D 2n =(a n d n -b n c n )D 2n -2. 于是 ∏=-=ni i i i i n D c b d a D 222)(.而 111111112c b d a d c b a D -==, 所以 ∏=-=n i i i i i n c b d a D 12)(. (5) D =det(a ij ), 其中a ij =|i -j |;解 a ij =|i -j |, 043214 01233 10122 21011 3210)det(⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅==n n n n n n n n a D ij n 0 4321 1 11111 11111 11111 1111 2132⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅--⋅⋅⋅-=====n n n n r r r r 152423210 22210 02210 00210 0001 1213-⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅-+⋅⋅⋅+=====n n n n n c c c c =(-1)n -1(n -1)2n -2. (6)nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121, 其中a 1a 2 ⋅ ⋅ ⋅ a n≠0.解nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121nn n n a a a a a a a a a c c c c +-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=====--10 0001 000 100 0100 0100 0011332212132 1111312112111011 000 00 11000 01100 001 ------+-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅⋅⋅⋅=nn n a a a a a a a a∑=------+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=n i i n n a a a a a a a a 1111131******** 00010 000 00 10000 01000 001)11)((121∑=+=ni i n a a a a .8. 用克莱姆法则解下列方程组:(1)⎪⎩⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x ;解 因为14211213513241211111-=----=D ,142112105132412211151-=------=D , 284112035122412111512-=-----=D , 426110135232422115113-=----=D , 14202132132212151114=-----=D , 所以 111==D D x , 222==D D x , 333==D D x , 144-==DD x . (2)⎪⎪⎩⎪⎪⎨⎧=+=++=++=++=+150650650651655454343232121x x x x x x x x x x x x x .解 因为 665510006510006510065100065==D , 150751001651000651000650000611==D , 114551010651000650000601000152-==D , 703511650000601000051001653==D , 39551601000051000651010654-==D ,2121100005100065100651100655==D , 所以66515071=x , 66511452-=x , 6657033=x , 6653954-=x , 6652124=x .9. 问l , m 取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 系数行列式为μλμμμλ-==1211111D .令D =0, 得 m =0或l =1.于是, 当m =0或l =1时该齐次线性方程组有非零解.10. 问l 取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解?解 系数行列式为λλλλλλλ--+--=----=101112431111132421D=(1-l )3+(l -3)-4(1-l )-2(1-l )(-3-l ) =(1-l )3+2(1-l )2+l -3. 令D =0, 得l =0, l =2或l =3.于是, 当l =0, l =2或l =3时, 该齐次线性方程组有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y ,⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换. 解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T.4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫⎝⎛=49635.(2)⎪⎪⎭⎫⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142. (4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA . (2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2吗?解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B )(A -B )≠A 2-B 2. 6. 举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k .解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫ ⎝⎛=λλλ001001A , 求A k . 解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ, ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=k A k k k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. 9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以(AB )T =(BA )T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以AB =(AB )T =B T A T =BA .11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A , 故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解 ⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A |=1≠0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A , 所以 *||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos .(3)⎪⎪⎭⎫ ⎝⎛---145243121; 解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012. (4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) . 解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ;解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ; 解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x . (2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x . 解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x ,故有 ⎪⎩⎪⎨⎧===305321x x x . 14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 因为A k =O , 所以E -A k =E . 又因为E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E ,由定理2推论知(E -A )可逆, 且(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ).另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ),故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ),两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得A 2-A =2E , 即A (A -E )=2E ,或 E E A A =-⋅)(21, 由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E ,或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-. 证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2,即 |A ||A -E |=2,故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆.由 A 2-A -2E =O ⇒A (A -E )=2E⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-, 又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1,)3(41)2(1A E E A -=+-. 16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|. 解 因为*||11A A A =-, 所以 |||521||*5)2(|111----=-A A A A A |2521|11---=A A =|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16.17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*.证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有 |A *|=|A |n |A -1|=|A |n -1≠0,从而A *也可逆.因为A *=|A |A -1, 所以(A *)-1=|A |-1A . 又*)(||)*(||1111---==A A A A A , 所以 (A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*.18. 设n 阶矩阵A 的伴随矩阵为A *, 证明: (1)若|A |=0, 则|A *|=0; (2)|A *|=|A |n -1. 证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得 A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0. (2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到|A ||A *|=|A |n . 若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立. 因此|A *|=|A |n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A , 所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E , B =-8(A *-2E )-1A -1 =-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B . 解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A 11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11.解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001,故 ⎪⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511,求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0).ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫⎝⎛+=222111B A O B B A A ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠.解 4100120021010*********0021010010110100101==--=--=D C B A , 而 01111|||||||| ==D C B A ,故 |||||||| D C B A D C B A ≠.28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A , 则 ⎪⎭⎫⎝⎛=21A O O A A ,故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A , 1682818281810||||||||||===A A A A A . ⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求 (1)1-⎪⎭⎫ ⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n EBC OBC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A . 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321.由此得 ⎪⎩⎪⎨⎧=+=+==s nEBD CD O BD CD O AD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025;解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A B C O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001. 第三章 矩阵的初等变换与线性方程组1. 把下列矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫⎝⎛--340313021201;解 ⎪⎪⎭⎫⎝⎛--340313021201(下一步: r 2+(-2)r 1, r 3+(-3)r 1. )~⎪⎪⎭⎫⎝⎛---020*********(下一步: r 2÷(-1), r 3÷(-2). )~⎪⎪⎭⎫⎝⎛--010*********(下一步: r 3-r 2. )~⎪⎪⎭⎫⎝⎛--300031001201(下一步: r 3÷3. )~⎪⎪⎭⎫⎝⎛--100031001201(下一步: r 2+3r 3. )~⎪⎪⎭⎫⎝⎛-100001001201(下一步: r 1+(-2)r 2, r 1+r 3. )~⎪⎪⎭⎫⎝⎛100001000001.(2)⎪⎪⎭⎫⎝⎛----174034301320;解 ⎪⎪⎭⎫⎝⎛----174034301320(下一步: r 2⨯2+(-3)r 1, r 3+(-2)r 1. )~⎪⎪⎭⎫⎝⎛---310031001320(下一步: r 3+r 2, r 1+3r 2. )~⎪⎪⎭⎫⎝⎛0000310010020(下一步: r 1÷2. )~⎪⎪⎭⎫⎝⎛000031005010.(3)⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; 解 ⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311(下一步: r 2-3r 1, r 3-2r 1, r 4-3r 1. )~⎪⎪⎪⎭⎫⎝⎛--------1010500663008840034311(下一步: r 2÷(-4), r 3÷(-3) , r 4÷(-5). )~⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311(下一步: r 1-3r 2, r 3-r 2, r 4-r 2. )~⎪⎪⎪⎭⎫⎝⎛---00000000002210032011. (4)⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 ⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132(下一步: r 1-2r 2, r 3-3r 2, r 4-2r 2. ) ~⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110(下一步: r 2+2r 1, r 3-8r 1, r 4-7r 1. ) ~⎪⎪⎪⎭⎫ ⎝⎛--41000410002020111110(下一步: r 1↔r 2, r 2⨯(-1), r 4-r 3. ) ~⎪⎪⎪⎭⎫ ⎝⎛----00000410001111020201(下一步: r 2+r 3. ) ~⎪⎪⎪⎭⎫ ⎝⎛--00000410003011020201. 2. 设⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A , 求A . 解 ⎪⎪⎭⎫ ⎝⎛100001010是初等矩阵E (1, 2), 其逆矩阵就是其本身. ⎪⎪⎭⎫ ⎝⎛100010101是初等矩阵E (1, 2(1)), 其逆矩阵是E (1, 2(-1)) ⎪⎪⎭⎫ ⎝⎛-=100010101. ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=100010101987654321100001010A ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=287221254100010101987321654. 3. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:(1)⎪⎪⎭⎫ ⎝⎛323513123; 解 ⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫ ⎝⎛---101011001200410123 ~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫ ⎝⎛----2/102/11002110102/922/7003 ~⎪⎪⎭⎫ ⎝⎛----2/102/11002110102/33/26/7001 故逆矩阵为⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267.(2)⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023. 解 ⎪⎪⎪⎭⎫ ⎝⎛-----10000100001000011210232112201023 ~⎪⎪⎪⎭⎫ ⎝⎛----00100301100001001220594012102321 ~⎪⎪⎪⎭⎫ ⎝⎛--------20104301100001001200110012102321 ~⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321 ~⎪⎪⎪⎭⎫ ⎝⎛----------10612631110`1022111000010000100021 ~⎪⎪⎪⎭⎫ ⎝⎛-------106126311101042111000010000100001故逆矩阵为⎪⎪⎪⎭⎫ ⎝⎛-------10612631110104211. 4. (1)设⎪⎪⎭⎫ ⎝⎛--=113122214A , ⎪⎪⎭⎫ ⎝⎛--=132231B , 求X 使AX =B ; 解 因为⎪⎪⎭⎫ ⎝⎛----=132231 113122214) ,(B A ⎪⎪⎭⎫ ⎝⎛--412315210 100010001 ~r , 所以 ⎪⎪⎭⎫ ⎝⎛--==-4123152101B A X . (2)设⎪⎪⎭⎫ ⎝⎛---=433312120A , ⎪⎭⎫ ⎝⎛-=132321B , 求X 使XA =B . 解 考虑A T X T =B T . 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(TT B A ⎪⎪⎭⎫ ⎝⎛---411007101042001 ~r , 所以 ⎪⎪⎭⎫ ⎝⎛---==-417142)(1T T T B A X , 从而 ⎪⎭⎫ ⎝⎛---==-4741121BA X . 5. 设⎪⎪⎭⎫ ⎝⎛---=101110011A , AX =2X +A , 求X .解 原方程化为(A -2E )X =A . 因为⎪⎪⎭⎫ ⎝⎛---------=-101101110110011011) ,2(A E A ⎪⎪⎭⎫ ⎝⎛---011100101010110001~, 所以 ⎪⎪⎭⎫ ⎝⎛---=-=-011101110)2(1A E A X . 6. 在秩是r 的矩阵中,有没有等于0的r -1阶子式? 有没有等于0的r 阶子式?解 在秩是r 的矩阵中, 可能存在等于0的r -1阶子式, 也可能存在等于0的r 阶子式.例如, ⎪⎪⎭⎫ ⎝⎛=010*********A , R (A )=3. 0000是等于0的2阶子式, 010001000是等于0的3阶子式. 7. 从矩阵A 中划去一行得到矩阵B , 问A , B 的秩的关系怎样?解 R (A )≥R (B ).这是因为B 的非零子式必是A 的非零子式, 故A 的秩不会小于B 的秩.8. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:⎪⎪⎪⎪⎭⎫ ⎝⎛-0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量.9. 求下列矩阵的秩, 并求一个最高阶非零子式:(1)⎪⎪⎭⎫ ⎝⎛---443112112013; 解 ⎪⎪⎭⎫ ⎝⎛---443112112013(下一步: r 1↔r 2. ) ~⎪⎪⎭⎫ ⎝⎛---443120131211(下一步: r 2-3r 1, r 3-r 1. ) ~⎪⎪⎭⎫ ⎝⎛----564056401211(下一步: r 3-r 2. )~⎪⎭⎫ ⎝⎛---000056401211, 矩阵的2秩为, 41113-=-是一个最高阶非零子式. (2)⎪⎪⎭⎫ ⎝⎛-------815073*********; 解 ⎪⎪⎭⎫ ⎝⎛-------815073*********(下一步: r 1-r 2, r 2-2r 1, r 3-7r 1. ) ~⎪⎭⎫ ⎝⎛------15273321059117014431(下一步: r 3-3r 2. ) ~⎪⎭⎫ ⎝⎛----0000059117014431, 矩阵的秩是2, 71223-=-是一个最高阶非零子式. (3)⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812. 解 ⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812(下一步: r 1-2r 4, r 2-2r 4, r 3-3r 4. )~⎪⎪⎪⎭⎫ ⎝⎛------02301024205363071210(下一步: r 2+3r 1, r 3+2r 1. ) ~⎪⎪⎪⎭⎫ ⎝⎛-0230114000016000071210(下一步: r 2÷16r 4, r 3-16r 2. ) ~⎪⎪⎪⎭⎫ ⎝⎛-02301000001000071210 ~⎪⎪⎪⎭⎫ ⎝⎛-00000100007121002301, 矩阵的秩为3, 070023085570≠=-是一个最高阶非零子式. 10. 设A 、B 都是m ⨯n 矩阵, 证明A ~B 的充分必要条件是R (A )=R (B ).证明 根据定理3, 必要性是成立的.充分性. 设R (A )=R (B ), 则A 与B 的标准形是相同的. 设A 与B 的标准形为D , 则有A ~D , D ~B .由等价关系的传递性, 有A ~B .11. 设⎪⎪⎭⎫ ⎝⎛----=32321321k k k A , 问k 为何值, 可使 (1)R (A )=1; (2)R (A )=2; (3)R (A )=3.解 ⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫ ⎝⎛+-----)2)(1(0011011 ~k k k k k r . (1)当k =1时, R (A )=1;(2)当k =-2且k ≠1时, R (A )=2;(3)当k ≠1且k ≠-2时, R (A )=3.12. 求解下列齐次线性方程组:(1)⎪⎩⎪⎨⎧=+++=-++=-++02220202432143214321x x x x x x x x x x x x ; 解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛--212211121211~⎪⎪⎭⎫ ⎝⎛---3/410013100101, 于是 ⎪⎪⎩⎪⎪⎨⎧==-==4443424134334x x x x x x x x , 故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x (k 为任意常数). (2)⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x ; 解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛----5110531631121~⎪⎪⎭⎫ ⎝⎛-000001001021,于是 ⎪⎩⎪⎨⎧===+-=4432242102x x x x x x x x , 故方程组的解为 ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10010012214321k k x x x x (k 1, k 2为任意常数). (3)⎪⎩⎪⎨⎧=-+-=+-+=-++=+-+07420634072305324321432143214321x x x x x x x x x x x x x x x x ; 解 对系数矩阵A 进行初等行变换, 有。
线性代数第一章行列式

04
式可以表示为三个向量的向量积的 二倍,即 |a b c| = 2abc。
向量积的符号由行列式的值决定,当行列式 值为正时,向量积为正;当行列式值为负时, 向量积为负。
行列式可以用来判断平行四边形的 形状,当行列式值为正时,平行四 边形为锐角;当行列式值为负时, 平行四边形为钝角。
行列式与平行四边形面积的关系
行列式可以表示平行四边形的面积,即 |a b| = ab/2。
当行列式值为正时,平行四边形的面积为正; 当行列式值为负时,平行四边形的面积为负。
行列式可以用来判断平行四边形的方向,当行 列式值为正时,平行四边形为顺时针方向;当 行列式值为负时,平行四边形为逆时针方向。
行列式与空间向量的关系
01
02
03
行列式可以表示空间向量的模长,即 |a b c| = abc。
当行列式值为正时,空间向量的模长 为正;当行列式值为负时,空间向量 的模长为负。
行列式可以用来判断空间向量的方向 ,当行列式值为正时,空间向量为右 手系;当行列式值为负时,空间向量 为左手系。
05
行列式的应用实例
在线性方程组中的应用
定义
代数余子式是去掉一个元素所在的行和列后,剩 下的元素构成的二阶行列式。
性质
代数余子式与去掉的元素所在的行和列的符号有 关。
计算方法
可以通过二阶行列式的计算法则来计算代数余子 式。
行列式的展开定理
01
定理内容
一个n阶行列式等于它的任一行 (或列)的所有元素与其对应的 代数余子式的乘积之和。
02
03
定性。
求解线性方程组
03
在求解线性方程组时,可以利用展开定理计算系数矩阵的行列
式值,从而判断方程组是否有解。
线性代数同济大学课后习题详解
《线性代数》同济大学版课后习题答案详解第一章队列式1利用对角线法例计算以下三阶队列式201(1)141183201解1411832 (4) 30( 1)(1) 1180132(1) 81( 4)(1)2481644a b c(2) b c ac a ba b c解 b c ac a bacb bac cba bbb aaa ccc3333abc a b c1 11(3) a b c a2 b2c21 11解 a b c a2b2 c2bc2ca2ab2ac2ba2cb2(a)()(c)b bc ax y x y(4)y x y xx y x yx y x y解y x y xx y x yx( x y) y yx( x y)( x y) yx y3( x y) 3x33xy(x y)y33x2y x3y3x32( x3y3)2按自然数从小到大为标准序次求以下各摆列的逆序数(1)1234解逆序数为 0(2)4132解逆序数为 441434232(3)3421解逆序数为 5 3 231 4 241,21(4)2413解逆序数为 3 2 141 4 3(5)1 3(2 n1) 24(2 n)解逆序数为n(n 1)232(1个)5 2 5 4(2 个 ) 7 27 47 6(3 个)(2n 1)2 (2 n 1)4 (2 n 1)6 (2 n 1)(2 n 2) ( n 1个)(6)1 3 (2n 1) (2 n ) (2 n2)2解 逆序数为 n ( n 1)3 2(1 个)5 25 4 (2 个)(2 n 1)2(2 n1)4(2 n 1)6(2 n 1)(2 n 2) ( n 1个)4 2(1 个)6 26 4(2个 )(2n )2 (2 n )4 (2 n )6 (2 n )(2 n 2) ( n 1 个 )3 写出四阶队列式中含有因子 a 11a 23 的项解 含因子 a 11 a 23 的项的一般形式为( 1) t a 11a 23 a 3 r a 4 s此中 rs 是 2 和 4 组成的摆列 这类摆列共有两个即 24和 42所以含因子 a 11 a 23 的项分别是(1) ta a a a( 1)1a a a aa a a a11 2332 4411 23 32 4411 23 3244( 1) t a 11a 23a 34a 42 ( 1) 2 a 11 a 23a 34 a 42 a 11a 23 a 34a 424计算以下各队列式4 1 2 4(1)1202105200 1 1 7解4 1 2 4 c 2 c 3 4 1 2 101 2 0 21 2 0 2 10520 c 7c 10 3 2 140 1 1 7 4 3 00 1 0 4 1 101 2 2 (1)43 103 144 1 10 c 2 c 3 9 9 100 1 2 2 c 1 12 c 3 0 0 2 10 3 14 17 17 142141(2) 3 1211232 50622 1 4 1 c c 2 1 4 0 r r 2 1 4 0解3 1 2 14 2 3 1 2 24 2 31 2 212 3 21 2 3 01 2 3 05 06 25 06 2 2 1 4 0r r 2 1 4 04 1 31 2 21 2 3 00 0 0 0ab ac ae(3)bd cd de bf cf efab ac ae b c e解 bd cd de adf b c ebf cf ef b c e1 1 1 4abcdefadfbce 1 1 11 1 1a 1 0 0(4)1 b 1 0 0 1 c 1 0 0 1 da 1 0 0 r ar 0 1 ab a 0 解1 b1 0 12 1 b 1 01 c11 c 10 0 1 d0 1 d( 1)(1 ab a 0 c 3 dc2 1 ab a ad 1)2 1 1 c 11 c 1 cd0 1 d 0 1 0 ( 1)( 1) 3 21 abad abcd ab cd ad 11 1 cd5证明 :a 2 ab b 2(1)2a a b 2b ( a b )3;1 1 1证明a 2ab b 2c 2 c 1 a 2 ab a 2 b 2 a 22a a b 2b 2a b a 2b 2a1 1 1 c 3 c 1 1 0 0( 1)3 1aba 2b 22(b a)(ba)aba( a b )a12 3b a2b 2aax by ay bz az bx x y z (2)ay bz az bx ax by (a 3 b 3) y z x ; az bx ax by ay bz z x y证明ax by ay bz az bx ay bz az bx ax by az bx ax by ay bzx ay bz az bx y ay bz az bx a y az bx ax by b z az bx ax byz ax by ay bzx ax by ay bzx ay bz z y z az bx a 2 y az bx x b 2z x ax byz ax by y x y ay bzx y zy z x a 3 y z xb 3 z x yz x yx y zx y z x y za3 y z x b3 y z xz x y z x yx y z(a3b3) y z x1111(4)a b c da2b2c2d2a4b4c4d4(a b)(a c)(a d)(b c)(b d)(c d)(a b cd);证明z x ya2(a1)2(a2)2(ab2(b1)2(b2)2(b(3)(c1)2(c2)2(c c2d2(d1)2(d2)2(d 证明a2(a1)2(a2)2(ab2(b1)2(b2)2(bc2(c1)2(c2)2(cd 2(d1)2(d2)2(da22a12a 3 2ab22b12b32bc22c12c32cd22d 1 2d3 2da22a 1 2 2b22b1 2 20c22c1 2 2d 22d 1 2 23)23)23)23)23)23)23)23)2555( c450 ;( c4c3c3c2c2c1得)(bc3c3c2得)(b1 1 11a b c da2 b2 c2 d 2a4 b4 c4 d 411a1a1a0b c d0b(b a)c(c a)d(d a)0 b2(b2a2) c2(c2a2 ) d 2(d 2a2)111(b a)(c a)(d a)b c db2(b a) c2(c a) d 2(d a)11b1a)(c a)(d a)0c(cc d b0b)(c b a) d(d b)(d b a)11a)(c a)(d a)(c b)(d b) c(c b a) d(d b a)=(a b )(a c)(a d)(b c)(b d)(c d)()a b c dx10000x100(5)n1 n 1n 1n000x x a x a x a1an an 1an 2a2 x a1证明用数学概括法证明当 n 2 时D2x1x2a1x a2a2 x a1命题建立假定对于 ( n1) 阶队列式命题建立即n 1x n 1a1x n2n 2n 1D a x a则 n 按第一列睁开有D1000DnxD a ( 1)n 1x10 0n 1n11x1 xD n1a n x n1n11a x a n x a n所以对于 n 阶队列式命题建立6设 n 阶队列式 D det( a ij), 把D上下翻转、或逆时针旋转90 、或依副对角线翻转挨次得an1anna1nannD1a a D2 a a111n11n1ann a 1nD3a n1a11n(n 1)证明D1 D2 (1)2 DD3D证明因为 D det(a ij)所以a n1a nna11a1nD1(n 1a n1a nna11a1n1)a21a2na11a1na21a2n(1)n 1(1)n 2 a n1anna31a3nn( n1)(1)1 2(n 2)(n1) D(1)2D同理可证n(n1)a11an1n(n1)n(n 1)D2 (1)2a1nann(1)2D T(1)2Dn(n1)n(n1)n(n1)D (1)2 D ( 1) 2 ( 1) 2 D ( 1)n( n 1) D D327计算以下各队列式 ( k为k阶队列式 )D(1)D na 11, 此中对角线上元素都是 a未写出的元素都是 0a解a 0 0 0 1 0 a 0 0 0 0a0 0D n( 按第 n 行睁开 )0 0 0 a 0 1 0 0 0 a0 00 0 1 (a 0 0 0 0 1)n 1 0 a 0 0 00 0 0a( n 1) (n 1)a(1)2n a a(n 1)(n 1)a( 1)n 1( 1)nanana n 2 a n 2 ( a 21)a( n 2)( n 2)x a a(2)D nxa ; aa ax解 将第一行乘 (1) 分别加到其他各行 得x a a a a a x x 0a0 D n a x 0 x 0a x0 x a再将各列都加到第一列上 得x (n 1)a aaaD n0 x a0 0]() n10 x a 0[x (n 1)a x a0 x aa n (a 1)n(an)n (3)Dn 1an 1(a 1)n 1(a n)n 1;aa 1a n111解依据第 6 题结果有1 a 1a 1nDn 1( 1)n(n 1)a12a n 1(a1)n 1(a n)n 1a n(a 1)n(a n)n此队列式为范德蒙品德列式n( n 1)Dn 1( 1)2[( a i 1) (a j1)]n 1 i j 1( 1)n( n 1)[ (ij)]2n 1 i j1( 1)n( n 1)(n (n 1)1(ij)21)2n 1 i j 1(i j)n 1 ij 1a nb n(4)D2na 1b 1;c 1d 1c nd n解a nb nD2na 1b 1 (按第 1 行睁开 )c 1d 1c nd nan 1bn 1a 1b 1a nc 1d 1cn 1dn 10 00 d n0 a n 1b n 1ab( 1)2n 1b n1 1c 1d 1c n 1d n 1c n再按最后一行睁开得递推公式D a d D 2b c DD(a dbc D2 nn n 2nn n 2n 2 即2 nn nn n )2 n 2D2n nb ic i )D 2 于是(a i d ii 2而D 2 a 1 b 1a 1d 1b 1c1 c d1 1D2n nb ic i )所以(a i d ii 1(5) D det( a ij ) 此中 a ij| i j |;解 a | i j |ij0 1 2 31 0 12 D n det(a ij )2 1 0 132 1 0n 1 n 2 n 3 n41 1 1 1 1r 1 r 211 1 1111111r 2 r 311111n1 n2 n3 n4 01 0 0 0c 2 c 112122c 3 c 11222n1 2n 3 2n4 2n 5(1) n 1( n1)2 n 21 a 1 1 1(6)D n1 1 a 21,此中12a a111 a n解1 a 1 11 1 1 a 21 D n1 11 a nn 1 n 2 n 3 n 40 0 0 0n 1a na 1 0 0 c 1 c 2a 2a 2 0 0 a 3 a 3 c 2 c 30 00 0 1 0 01 1 0 a aa0 1 11 2n0 0 0 0 0 0 1 0 00 1 0 a 1a 2 a n0 0 1 0 0 00 0 0(a 1a 2 a n )(1n 1 )i 1a i8 用克莱姆法例解以下方程组0 0 1 0 0 1 0 0 1an 1an 11a n 1 a n 0 0 a 10 0 11a 0 0 2a 131 1 a 1n 111 1 an0 0 a 1 0 0 1a 1 0 02a 130 1 a1n 10 0 na11i 1 ix 1 x 2 x 3 x 4 5(1)x 12x 2 x 34x 422x 1 3x 2x 3 5x 4 23x 1 x 2 2x 3 11x 4 0解 因为1 1 1 1 D 12 1 41422 3 1 53 1 2 115 1 1 1 D 12 2 1 4 1422 3 1 5 0 1 2 111 5 1 1 D2 1 2 1 4 2842 2 1 53 0 2 111 1 5 1 D 3 12 2 4 42623 2 5 3 1 0 111 1 1 5 D 4 12 1 2 1422 3 1 23 1 2 0所 以x 1D 1 1 x 2D 2 2 x 3D 33DDDx 4 D 4 1 D5x 1 6x 2 1x 1 5x 2 6x 30 (2)x 2 5x 3 6x 4 0x 3 5x 4 6x 5 0x 4 5x 5 1解 因为56000 D 1560066501560001560001516000 D 056001507 01560 1 00156100155100010600D 200560 1145001560101556100D 315000 70301060000560011556010 D 415600 39501500 001060001556001D 15600212015605 0015000011所以15071145703 395x 1665 x 2665 x 3665 x 4 665x 4 212665x 1 x 2 x 3 09问取何值时齐次线性方程组xxx0 有非零123x 1 2 x 2 x 3解?解 系数队列式为1 1D 1 11 21令D 0 得0 或1于是当0 或1 时该齐次线性方程组有非零解(1)x 12x 2 4x 3 010问取何值时齐次线性方程组2x(3)xx0 有1x 2 23x 1 (1 )x 3 0非零解?解 系数队列式为D1 2 4 13 4 2 312 11 11111(1 ) 3 (3) 4(1 ) 2(1 )(3)(1) 3 2(1) 23令D 0 得0 2 或 3于是当02 或3 时该齐次线性方程组有非零解第二章 矩阵及其运算1 已知线性变换x 1 2y 1 2y 2 y 3 x 2 3y 1 y 2 5y 3 x 3 3y 1 2y 2 3y 3求从变量x1 x2 x3到变量 y1y2 y3的线性变换解由已知x2 2 1y1x23 1 5y2x33 2 3y2y1 2 2 1 1 x17 4 9y1故y2 3 1 5x2 6 3 7 y2y 23 2 3x3 3 2 4y3y17x14x29x3y26x13x27x3y33x12x24x32已知两个线性变换x1 2y1 y3y13z1 z2x22y1 3y2 2y3y2 2z1 z3x3 4y1 y2 5y3y3z2 3z3求从 z1z2z3到 x1x2 x3的线性变换解由已知x 2 0 1y1 2 0 1 3 1 012 3 2 y2 2 3 2 2 0 1 x2x3 4 1 5y 4 1 50 1 326 1 3z112 4 9 z210 1 16 z3z1z2z3x16z1z23z3所以有x12z4z9z2123x310z1z216z31111233设A111B1 2 4求 3AB 2A及A T B111051111123111解3AB2A 3 1 111 2 4 2 1 11111051111058111213223 0 5 6 2 111217 202901114292111123058A T B1111240 5 61110512904计算以下乘积4317(1)1 2 325701431747321 135解123217(2)23165701577201493(2)(123)213解(123)2(132231)(10)121 2)(3)1 (322(1) 22 2 4解1(12)1(1)12 1 233(1) 32 3 6131(4)2 1 4 00121 1 3 4131402131678解21 4 00121 1 3 41312056402a11a12a13x1(5)(x1 x2 x3) a12 a22 a23 x2a13 a23a33x3a11a12a13x1(x1x2x3) a12a22a23a13a23a33x3x1(a x1 a x a x a x a x a x a x a x a33x 3 )x211122133121222233131232x3a x2 a x2 a x22a x x 2a x x 2a x x1112223331212131323235设A1 2B1 0问1 3 1 2(1)AB BA吗?解 ABBA因为 AB3 4BA1 2所以 AB BA4 6 3 8(2)(A B)2A22AB B2吗?解(A B)2A22AB B2因为 A B2 22 5( A B)2 2 2 2 28 142 5 2 514 29但A2 2AB B2 3 868 1 010 164 11812 3 415 27解所以 (A B)2A22AB B2(3)()() 22吗?A BA BA B解 (A )(A )22B BAB因为A B2 2AB0 22 50 1(A B)( A B)2 2 0 2 0 62 5 0 10 9而A 2B 23 8 10 284 113 4 1 7故(A)() 2 2B A B A B6举反列说明以下命题是错误的(1) 若A2则A 0解 取A0 120 但 A 00 0则 A(2)若 A 2A则 A0 或 A E解 取A1 1 则 A2A但 A 0且A E0 0(3)若AX AY且 A 0 则 XY解取A1 0 X1 1Y1 10 01 1 0 1则AX AY且A0 但 XY7设 A 1 023A k求 AA1解A21 0 1 01 01 12 1A 3 A 2A1 0 1 01 02 113 1A k1 0 k 11 08设A0 1 求 A k0 0解第一察看A 20 1 0 0 1 022 11 1 02 20 0 0 0 0 0 2A3A 2A33 2 3 0 3 3 20 3A 4A 3 44 3 6 2 A0 4 4 30 455 4 10 3 A 5A 4 A0 5 5 40 5kkk 1 k(k 1)k 2k2Akkk1k用数学概括法证明当 k 2 时明显建立假定 k 时建立,则 k1 时,10设 AB 都是 n 阶对称矩阵,证明 AB 是对称矩阵的充足必需条件是AB BA证明 充足性因为 A T A B T B 且AB BA所以( ) T ( ) T T T ABABBA A B即是对称矩阵AB必需性 因为 A T AB T B且(AB ) TAB 所以AB ( ) T T TABBA BA11求以下矩阵的逆矩阵 kk k 1k(k 1)k 21 0 Ak 1A kA 020 kk k 11k0 0k 1(k1) k 1 (k 1)k k 12k 1(k 1)k 1k 1由数学概括法原理知kkk 1 k(k 1)k 2A k2kk k1k1 2 (1)2 5解AA*故A1(2)cos sin解A1 2 | |1故1存在因为A2 5 AA 11 A215 2 A 12A222 11A*5 2 | A|2 1sincoscos sin |A | 1 0 故A 1存在因为sincos9设 A B 为 n 阶矩阵,且A 为对称矩阵,证明T也是对称矩阵B AB证明 因为 A T A 所以( T ) T T ( T ) TT TTB ABB B A B A BB ABA*A11A21cos sinA 12A22sin cos所以A 11A*cos sin | A|sin cos进而 B TAB 是对称矩阵1 2 1 (3)3 4 2 5 4 11 2 1解A342 | A |2 0 故A 1存在因为5 4 1A 11A 21A314 2 0A*A12A22A3213 61A 13A 23A3332 1422 1 0 所以A11A*13 3 1| A|2216 71a1a2(4)( a 1a 2a n 0)a na 1解Aa 2由对角矩阵的性质知a n11a 1 A1a 21a n12解以下矩阵方程(1)2 5 X4 61 321解X2 5 1 46 3 5 4 6 2 23 1 3 21 12 2 10 82 1 1 1 1 3(2)X 21 04 3 211 12 1 1 11 1 3解X 2 1 04 3 2 1 1 11 11 31 0 123 2 34 3 23 3 02 2 1 8 5 23 3(3)14X 20311 2 1 101解X141312011 201 1 112431 1 01211011 21 6 6 1 0111012 3 0 1 240 1 0 1 0 0143(4)100X 0012010 0 10 1 01201 2 3x12 2 5x23 5 1x3x1 1 2 3故x2 2 2 5x3 3 5 1x11进而有x20x30x1x2x3(2)2x1 x2 3x33x1 2x2 5x31231112030210 1 01143 1 0 01解X 10020 10 0 10 0 11200 1 00 1 0143 1 0 02101 0 02010 0 11340 0 11200 1 010213利用逆矩阵解以下线性方程组x12x23x3 1 (1)2x1 2x2 5x3 23x1 5x2 x3 3解方程组可表示为解方程组可表示为111x12213x21325x03x1111125故x221310x332503x15故有x20x3314设kO(k为正整数 )证明 () 12k 1A E A E A A A证明 因为 A k O 所以 E A k E 又因为 证明 2A 2E 2A 2E 两头同时取队列式得由 A O 得 Ak( E)( E A2k1)|2| 2 E AAAAAA所以 (E)(EA2k 1)E 即|||A|2AAAAE由定理 2 推论知(E A ) 可逆且故 | A |( ) 1 2k1所以 A 可逆 而22|A 2 | | 2 || |2故2 也可逆E AE A AAA E AEAAA E由A 2A 2EO A (AE )2E证明 一方面有 E ( E A ) 1(EA )A 11 ( A E)另一方面 kO有 1() 21由 AA A AEA E2E (EA)22k 1k 1k(A A )AA (AA )又由 A 2A 2E O (A 2E )A 3(A 2E )4E(EA2A k 1)(E)AA( A 2E )( A 3E )4 E故 (E) 1( E) (E A2k1)(E)A AAAA所以 (A2)1( A2 )(A 3 )4(A2 ) 1两头同时右乘 () 1就有EEEEEA1(3(E A ) 1(E A )EAA 2Ak 1( A 2E) 1)4 EA15设方阵 A 知足 A 2 A 2EO 证明A 及A 2E 都可逆 并求 A 1及1( A1|A|1证明2得2由 22 )16设为3阶矩阵5 *|EA 求|(2 A )AAA E O2 A 2E即 ( ) 2 1A*AA AEE解 因为 A 1所以1或A ( A E) E | A|2|(2A) 1 5A*| |1A 1 5|A|A 1| |1A 15A 1|1(A E)由定理 2 推论知 A 可逆 且A 1| 12 (31| 8| A |128 2222A|2) | A16由 A 2 A 2E O得17设矩阵 A 可逆 证明其陪伴阵 A * 也可逆 且(A *)1(A 1)*26E4E即( A 2E )( A 3E )4E1A AA1 A*A|A A 1AE) 1(3E证明由得* |所以当 可逆时有或(A 2 A) E| A|4|A *|| A | n | A 1| | A | n 1 011 进而*也可逆( A 2E)(3) A因为 A *|A |A所以由定理 2推论知 (A2) 可逆且E41(*)1| |1 A A A又A1 (A 1)* |A|(A 1)*所以|A1|(*) 1 | |1||1||(1)* (1)*AAAA A AA18 设 n 阶矩阵 A 的陪伴矩阵为 A *证明(1) 若| A | 0 则| A *| 0 (2)|*| | | n 1A A证明(1)用反证法证明假定 | *| 0 则有 *(*)1E 由此得AA AA *( *) 1 | | ( *) 1 OA A A A E A所以 * O 这与 | *| 0 矛盾,故当 | | 0 时有|*|AA AA(2)因为A 11 A* 则 *| |取队列式获得AAA E| A|||| *| | | nA AA若| |0 则| *|| | n 1AAA若| A | 0 由(1) 知| A *| 0 此时命题也建立所以| *| | | n 1A A0 3 319设A 110 ABA 2B 求 B1 2 3解 由AB A 2 可得(A 2 )故EE B A2E) 1A2 3 3 10 3 3 0 3 3 B ( A 1 1 0 1 1 01 2 31 2 11 2 3 1 1 01 0 120设A 020且AB E A 2 B求 B1 0 1解由AB E A 2 B 得(A ) 2 EE B A即(A) (A )(A)E B EE0 0 11 0 所以(A E )可逆因为|A E| 010进而1 0 02 0 1B A E0 3 01 0 221 设 A diag(1 2 1)A *BA 2BA8E 求B解 由 A *BA 2BA 8E 得(A *2E )BA 8EB8( *2 )11A E A8[ ( * 2 )] 1A A E8( * 2 ) 1AA A8(| | 2 ) 1A E A8( 2E 2A ) 14( E ) 1A4[diag(212)]14diag( 1, 1, 1)222diag(12 1)线性代数同济大学课后习题详解21 / 681 0 0 01 4 22已知矩阵 A 的陪伴阵A*1 0 0111 41332731 273211 0A11 0211116836843 0 83 3且 ABA 1BA 1 3E求 B11 11解 由| A *|| A |38得| A |224设AP P此中P1021由ABA1 13E 得BA11 15AB B 3AB 3(A E ) 1A 3[ A (E A1 )]1A求 ( )8(5 E 6A2)AAA3(E1A*) 1 6(2EA*) 1解( )8(5 E 62)1 26 0 0diag(11 58)[diag(5 5 5) diag(66 30)diag(1125)]0 0diag(1 158)diag(120 0) 12diag(10)10100060 0( A )P () P 161 0 1 06 0 6 01P ( )P*030 6030 1|P |231此中P1 41 0 111 1 1 1 0 02 2 2设P AP1 10 2求 A2 10 2 0 0 0 3 0 3解 由P 1AP得APP 1 所以 A 11A =P 11 P 1.111000 12 1 |P |3P*1 4 P 11 1 4 1 1 11 131 1411111 1 0 111 01 1 1而25 设矩阵 A 、B 及 A B 都可逆证明A 1 B 1也可逆并求其逆阵0 20 211证明因为故A 1( A ) 1B 1A 1A 1B 1B B而 A 1(A) 1 是三个可逆矩阵的乘积所以A 1(A ) 1可逆即A 1B 1可B BB B逆(A 1B 1 ) 1[ A 1 ( A)1]1( ) 1AB B B A B线性代数同济大学课后习题详解22 / 681210 1 0 3 1 26计算01010 1 2100210 0 2300030 0 03 解设A1 2 A2 110 1 20 3B 22 3 03则A E E BA A BB111112O A 2 O B 2 O A 2B 2而A 1B 1 B 21 2 3 1 2 3 0 1 2 1 0 3A 2B 22 1 234 30 3393 1B1215 22 427取AB CD1 0 考证AB|A| |B|0 1 C D |C| |D | 1 0 1 0 2 0 0 0解A B 0 1 01 0 200 2010CD 10 1 0 1 0 1 0 0201 40 1 0 1 0 1 0 1 而|A||B| 11 0 |C| |D| 11故A B|A| |B|C D|C| |D|3 4 O28设A 4 3 84O 2 0求|A|及A2 2所A 1E EB 1 A 1 A 1B 1 B 2 1 2 0 1 OA 2 OB 2O A 2B 20 00 01 2 1 0 1 0 3 1 1 2 0 1 0 1 0 1 2 1 0 1 即0 2 1 0 0 2 3 0 0 0 0 0 0 3 0 0 0 30 0以 解令A 3 4 A2 0 5 214 3 22 22 4 则AA 1 O43O A 29A O8O故8A852A11O A 2O A82 424 3 |A 8 | |A 18||A 28| |A 1|8| A 2 |810160 9线性代数同济大学课后习题详解23 / 68A 14 O54 0 O40 54AO A 4O24 0226 2429设 n 阶矩阵 A 及 s 阶矩阵 B 都可逆 求(1)O A 1B O解 设O A 1 C 1 C 2 则B OC 3 C 4O AC 1 C 2 AC 3 AC 4 E n O BO C 3C 4BC 1 BC 2 O E sAC E C A 13 n3由此得AC 4 O C 4 O BC 1 O C 1 OBC 2 E s C 2 B 1所以O A 1O B 1B OA 1 O(2)A O 1C B1D 1 D 2 解设A O 则C BD 3 D 4A O D 1 D 2 AD 1 AD 2C BD 3 D 4CD 1 BD 3 CD 2 BD 4AD ED A 11n1由此得AD 2 O O D 2 OCDBD D 3 B 1CA 113E sCD 2 BD 4 D 4 B 1所以A O 1A 1 O C BB 1CA 1 B 130求以下矩阵的逆阵5200 (1)210000830052解 设A5 2B 8 3 2 1则5 2 A15 2 1 1 22 12 5B 1 8 312 35 25 8于E n OO E s是线性代数同济大学课后习题详解24 / 685200 111 2 0 0 2100 AA 12 5 0 0 0083 BB 10 0 2 3 00520 0 5 81 把以下矩阵化为行最简形矩阵1 02 1 (1)2 03 13 04 31000 1200 (2)2130 12141 0 解设 A1 21 1000 1200 2130 12141 0 1 12 2 1 1 2 6 1 5 824B3 0C2 1 则1 4 1 2A O 1A 1O C BB 1CA 1 B 10 00 0 1 0 3 1 1 12 41 02 1解2 03 1 (下一步 r 2(2) r 1r 3 (3) r 1 )3 04 31 02 1~0 0 1 3 (下一步 r 2 ( 1)r 3 (2))0 0 2 01 02 1~0 0 1 3 ( 下一步 r 3 r 2)0 0 1 01 02 1~0 0 1 3 ( 下一步 r 3 3)0 0 0 31 02 1~0 0 1 3 (下一步 r 2 3r 3)0 0 0 11 02 1~0 0 1 0 ( 下一步 r 1 (2) r 2r 1 r 3)0 0 0 1第三章 矩阵的初等变换与线性方程组线性代数同济大学课后习题详解25 / 681000 ~0010 00010 2 3 1 (2)0 3 4 30 4 7 10 2 3 1解0 3 4 3 (下一步 r 2 2( 3) r 1r 3 ( 2) r 1 )0 4 7 10 2 3 1~0 0 1 3 (下一步 r 3 r 2r 13r 2)0 01 302010~0 0 1 3 ( 下一步 r 12)0 0 0 00105 ~0013 00001 1 3 4 3 (3)3 3 54 12 23 2 033 42 11 1 3 4 3解3 3 5 41 (下一步 r23 r 1 r 3 2 1r 43r 1)2 2 32 0r3 34 2 11 1 343~00488(下一步r 2 ( 4) r 3 ( 3)3660 05 10 10r 4 ( 5))1 1 3 4 3~0 0 1 2 2(下一步r 13 2r 3r 2r 4r 2)0 1 2 2r0 0 1 2 21 1 023 ~0 0 1 2 2 0 0 0 0 00 0 0 0 02 3 1 3 7 (4)1 2 0 2 43 2 832 3 7432 3 13 7解1 2 0 2 4(下一步r 12r 2r 33 2 r 422)3 2 8 3 0rr23 743线性代数同济大学课后习题详解26 / 680 1 1 1 1~1 2 024(下一步r 22 1r 38r 1r 47 1)0 8 89 12rr0 7 78 110 1 1 1 1~1 02 0 2( 下一步r 1 r 2r 2 ( 1) r 4 r 3 )0 001 4 0 001 41 02 0 2~0 1 1 11 (下一步 r2 r3 )0 0 0140 0 0 0 01 02 0 2 ~0 1 1 0 30 0 0 1 40 0 0 0 00 1 01 0 1 123 2设100A0104 5 6 求 A0 0 10 0 17 8 90 1 0解1 0 0 是初等矩阵 E (12)其逆矩阵就是其自己0 0 11 0 10 1 0 是初等矩阵 E (1 2(1))其逆矩阵是0 0 1E1 0 12( 1)) 0 1(10 0 10 1 0 1 2 3 1 0 1 A1 0 0 4 5 6 0 1 00 0 1 7 8 90 0 14 5 6 1 0 14 5 2 1 2 3 0 1 0 1 2 2 7 8 9 0 0 17 8 23试利用矩阵的初等变换求以下方阵的逆矩阵3 2 1 (1)3 1 5 3 2 3321100 3 2 1 1 0 0解315010~0 1 4 1 1 0323001 00 2 1 0 13 203/20 1/2 3 00 7/22 9/2~0 10 11 2~0 10 1 1 20 0 2 1 010 0 1 1/2 0 1/ 21 0 0 7/ 6 2/3 3/ 2~0 1 0 1 120 0 1 1/ 2 0 1/ 2线性代数同济大学课后习题详解27 / 687 2 36 3 2 故逆矩阵为1 1 21 012 23 2 0 1 (2)0 2 2 1 1 2 3 20 1 2 13 2 0 11000 解0 2 210100123200100 1 2 100011 2 3 2 0 0 1 0 ~0 1 2 1 0 0 0 1 0 4 9 5 1 0 3 0 0 2210 10 01 2 3 2 0 0 1 0 ~0 1 2 1 0 0 0 1 0 0 1 1 1 0 3 40 2 1 0 1 0 21 2 3 2 0 0 1 0 ~0 1 2 1 0 0 0 1 0 0 1 1 1 0 3 40 0 0 1 2 1 6 101 2 0 0 1 1 2 2 ~0 1 0 0 0 1` 010 0 1 0 11 360 0 0 1 2 1 6 101000 1 1 2 4 ~0100 0 1 0 1 0010 1 1 3 6 0001216 101 12 4 故逆矩阵为0 1 0 11 1 3 6216 104 121 34(1)设A2 21 B2 2 求X 使AX B3 113 1解 因为41213r1 0 0 102 (A,B) 2 2 1 2 2~ 010 15 33 1 1 3 10 0 1 12 4线性代数同济大学课后习题详解28 / 6810 2所以X A 1B 15 312 40 2 11 2 3(2) 设A2 13 B求X 使XA B23 13 3 4解 考虑 A T X T B T 因为0 2 3 1 2 r 10024(A T ,B T ) 2 1 32 3 ~ 0 101 71 3 4 3 1 0 0 1 1 4X T(A T ) 1BT2 4 所以1 71 4进而X BA12 1 14 7 4A1 1 0 AXXAX5设0 112求1 01解 原方程化为 ( A 2E ) XA 因为1 1 0 1 1 0 (A 2E, A)0 1 1 0 1 11 0 1 1 0 11 0 0 0 1 1~ 0 1 0 1 0 10 0 1 1 1 02E) 1A0 1 1 所以X (A 1 0 11 16 在秩是 r 的矩阵中 , 有没有等于 0 的 r1 阶子式 ? 有没有等于 0 的 r 阶子式 ?解 在秩是 r 的矩阵中 可能存在等于 0 的 r 1 阶子式也可能存在等于 0的 r 阶子式1000比如 A 0100R (A ) 300100 0是等于 0的2阶子式0 0 01 0 0 是等于 0的3阶子式 0 00 1 07从矩阵 A 中划去一行获得矩阵B 问 AB 的秩的关系如何 ?解 R (A ) R (B )这是因为 B 的非零子式必是 A 的非零子式故 A 的秩不会小于 B 的秩8求作一个秩是 4 的方阵它的两个行向量是(110)(110 0)解用已知向量简单组成一个有 4 个非零行的 5 阶下三角矩阵线性代数同济大学课后习题详解29 / 681 00001 1000 1 0100 0 0010 00000此矩阵的秩为 4其第 2 行和第 3 行是已知向量9求以下矩阵的秩并求一个最高阶非零子式3 1 0 2 (1)1 12 1 ; 1 34 43 1 0 2解1 12 1 (下一步 r 1 r 2)1 3 4 41 12 1~3 1 0 2 (下一步 r23r 1 r 3 r 1 )1 3 4 41 12 1~0 4 6 5 (下一步 r 3 r 2)0 4 6 51 12 1 ~0 4 6 50 0 0 0矩阵的秩为 23 14 是一个最高阶非零子式1 13 2 1 3 1 (2)2 13 1 3 7 0 5 1 83 2 1 3 2解2 13 1 3 ( 下一步 r 1r 2r 2 2r 1 r 3 7r 1 )7 0 5 1 81 3 4 4 1~0 7 11 9 5 (下一步 r 3 3r 2)0 21 33 27 151 3 4 4 1 ~0 7 11 9 50 0 0 0矩阵的秩是 232 7是一个最高阶非零子式212 1 83 7 (3)2 3 0 7 53 2 5 8 0 1 0 3 2 02 1 83 7解2 3 0 7 5(下一步r 12r 4r 22 4 r 33r 4)3 2 5 8 0r10 3 2线性代数同济大学课后习题详解30 / 68~~~~0 1 2 1 0 3 6 3 0 2 4 2 1 0 3 20 1 2 1 7 0 0 0 0 160 0 0 14 1 0 32 00 1 2 1 70 0 0 0 1 0 0 0 0 01 0 32 01 0 32 0 0 1 2 1 7 0 0 0 0 1 0 0 00 07 5(下一步r 23 1r 32 1 )rr( 下一步 r 2 16r 4 r 3 16r 2)1 2 3k11设A1 2k 3 问 k 为何值可使k 2 3(1)R ( A ) 1 (2) R ( A ) 2 (3) R (A ) 3解A1 2 3k r 1 1 k1 2k 3 ~ 0 k 1 k 1k 2 3 0 0 (k 1)(k 2)(1) 当 k 1 时 R (A ) 1(2)当k2 且 k1 时 ( ) 2R A(3)当k 1 且k2 时( ) 3R A12 求解以下齐次线性方程组 :x 1 x 2 2x 3 x 4 0(1)2x 1 x 2 x 3 x 4 02x 1 2x 2 x 3 2x 4 0解 对系数矩阵 A 进行初等行变换有0 7 5 70 0 是一个最高阶非零子式 矩阵的秩为 35 8 03 2 010设 、 都是m n 矩阵 证明 ~ 的充足必需条件是( ) ( )A BA BR A R B 证明 依据定理 3 必需性是建立的充足性 设 ( ) ( )则 A 与 B 的标准形是同样的 设A与B的标准形R A R B为 D 则有A ~D D ~B由等价关系的传达性有 ~A B1 12 11 0 1 0A2 1 1 1 ~0 1 3 12 2 1 2 0 0 1 4/3x 4 x134x 2 3x 4于是4 xx334x 4 x 4故方程组的解为。
线性代数习题集(带问题详解)
线性代数习题集(带问题详解)第一部分专项同步练习第一章行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)243512.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ).(A) 0 (B)1- (C) 1 (D) 25. =0001100000100100( ).(A) 0 (B)1- (C) 1 (D) 26.在函数10323211112)(x x x xx f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-9.已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ).(A)1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ).(A)1- (B)2- (C)3- (D)012. k 等于下列选项中哪个值时,齐次线性方程组=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)0二、填空题1. n 2阶排列)12(13)2(24-n n 的逆序数是.2.在六阶行列式中项261365415432a a a a a a 所带的符号是.3.四阶行列式中包含4322a a 且带正号的项是.4.若一个n 阶行列式中至少有12+-n n 个元素等于0, 则这个行列式的值等于.5. 行列式=0100111010100111.6.行列式=-0100002000010 n n .7.行列式=--001)1(2211)1(111 n n n n a a a a a a .8.如果M a a a a a a a a a D ==333231232221131211 ,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.10.行列式=--+---+---1111111111111111x x x x .11.n 阶行列式=+++λλλ111111111.12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++44434241234A A A A .14.已知db c a cc a b b a b c a cb a D =, D 中第四列元的代数余子式的和为.15.设行列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余子式,则=+4241A A ,=+4443A A .16.已知行列式nn D001031002112531-=,D 中第一行元的代数余子式的和为.17.齐次线性方程组=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是. 18.若齐次线性方程组=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1.cb a d b a dc ad c b dcbad c b a d c b a++++++++33332222; 2.yxyx x y x y y x y x +++;3.解方程0011011101110=x x x x ; 4.111111321321221221221----n n n n a a a a xa a a a xa a a a xa a a a x;5. na a a a 111111111111210(n j a j ,,1,0,1 =≠); 6. b n b b ----)1(1111211111311117. n a b b b a a b b a a a b 3 21222111111111; 8.xa a a a x a a a a x a a a a x n n n 321212121;9.2212221212121111nn n nnx x x x x x x x x x x x x x x +++ ; 10. 2 10001200000210001210001211.aa a aa a a a aD ---------=1101100011000110001.。
(完整版)第一章行列式与矩阵的计算的练习(含答案)
(完整版)第一章行列式与矩阵的计算的练习(含答案)行列式及矩阵的计算(课堂练习)一、填空1.已知三阶方阵A 的行列式为3,则2A -= -242. 设12,01A -??= 1()32x g x x -=-+,则()g A =0800-??3.设,,αβγ为3维列向量,记矩阵(,,),(,,)A B αβγαββγγα==+++,若3,A B =则=,,,,6αβγβγα+=4.行列式11111111---x 的展开式中,x 的系数是 2 . 5.设???? ??=1201A 则=kA 1021k ??。
(k 为正整数). 6.设321,,ααα,21,ββ都是四维列向量,且四阶行列式1123,,,m αααβ=,1232,,,n αααβ=,则12312,,,2αααββ-=16m n +解:11231232,,,2,,,Dαααβαααβ=+-14412312322,,,(1),,,16m n αααβαααβ=+-=+7. 已知四阶行列式D 中第三列元素分别为1,3,-2,2,它们对应的余子式分别为3,-2,1,1,则行列式D =-3 .解:D =1×3+3×(-2)+(-2)×1+2×1=-3二、判断题1.设A 、B 均为n 阶方阵,则A B A B =.(× )2.设A 、B 均为n 阶方阵,则AB A B =. (√ )三、行列式计算(1)4333343333433334ΛΛΛΛΛΛΛΛΛ=n D 解:nD n c c c c c c +++13121M 43313343133341333313ΛΛΛΛΛΛΛΛΛ++++n n n n 11312r r r r r r n ---M 10100001033313ΛΛΛΛΛΛΛΛΛ+n =13+n (2)11111231149118271D --=--解:(范得蒙行列式)=(-1-3)(-1+2)(-1-1)(3+2)(3-1)(-2-1)=-240五、a 为何值时,线性方程组:-=++=++=++aax x x x ax x x x x a 322321321321有唯一解?解:2)1)(2(111111det -+==a a aa a A ,2-≠a 且1≠a 时,有唯一解.。
《线性代数》同济大学版 课后习题答案详解
《线性代数》同济大学版 课后习题答案详解第一章 行列式1. 利用对角线法则计算下列三阶行列式:(1)381141102---;解381141102--- =2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4.(2)ba c a cb cb a ;解ba c a cbc b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3.(3)222111c b a cb a ;解222111c b a c b a=bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).(4)yx y x x y x y y x y x +++.解yx y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3).2. 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2;解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1;解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3;解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ⋅ ⋅ ⋅ (2n -1) 2 4 ⋅ ⋅ ⋅ (2n ); 解 逆序数为2)1(-n n :3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n -1)2, (2n -1)4, (2n -1)6, ⋅ ⋅ ⋅, (2n -1)(2n -2) (n -1个)(6)1 3 ⋅ ⋅ ⋅ (2n -1) (2n ) (2n -2) ⋅ ⋅ ⋅ 2. 解 逆序数为n (n -1) : 3 2(1个) 5 2, 5 4 (2个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n -1)2, (2n -1)4, (2n -1)6, ⋅ ⋅ ⋅, (2n -1)(2n -2) (n -1个) 4 2(1个) 6 2, 6 4(2个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n )2, (2n )4, (2n )6, ⋅ ⋅ ⋅, (2n )(2n -2) (n -1个) 3. 写出四阶行列式中含有因子a 11a 23的项. 解 含因子a 11a 23的项的一般形式为(-1)t a 11a 23a 3r a 4s ,其中rs 是2和4构成的排列, 这种排列共有两个, 即24和42. 所以含因子a 11a 23的项分别是(-1)t a 11a 23a 32a 44=(-1)1a 11a 23a 32a 44=-a 11a 23a 32a 44, (-1)t a 11a 23a 34a 42=(-1)2a 11a 23a 34a 42=a 11a 23a 34a 42. 4. 计算下列各行列式:(1)7110025*******214; 解71100251020214214010014231020211021473234-----======c c c c 34)1(143102211014+-⨯---= 143102211014--=01417172001099323211=-++======c c c c .(2)2605232112131412-; 解2605232112131412-260503212213041224--=====c c 041203212213041224--=====r r000003212213041214=--=====r r . (3)efcf bf decd bd ae ac ab ---;解efcf bf de cd bd ae ac ab ---e c b e c b e c b adf ---=abcdef adfbce 4111111111=---=.(4)dc b a100110011001---. 解d c b a 100110011001---dc b aab ar r 10011001101021---++===== dc a ab 101101)1)(1(12--+--=+01011123-+-++=====cd c ad a ab dc ccdad ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1.5. 证明:(1)1112222b b a a b ab a +=(a -b )3;证明1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--==(a -b )3 .(2)yx z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++ bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bx az z y b y by ax z x bx az y z bz ay x a +++++++=22zy x y x z x z y b y x z x z y z y x a 33+=y x z x z y z y x b y x z x z y z y x a 33+=yx z x z y z y x b a )(33+=.(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;证明2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2, c 2-c 1得)5232125232125232125232122222++++++++++++=d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2得) 022122212221222122222=++++=d d c c b b a a . (4)444422221111d c b a d c b a d c b a=(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d );证明444422221111d c b a d c b a d c b a)()()(0)()()(001111222222222a d d a c c a b b a d d a c c a b b ad a c a b ---------=)()()(111))()((222a d d a c c a b b d c b a d a c a b +++---=))(())((00111))()((a b d b d d a b c b c c bd b c a d a c a b ++-++------=)()(11))()()()((a b d d a b c c b d b c a d a c a b ++++-----==(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ).(5)1221 1 000 00 1000 01a x a a a a x x x n n n+⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--- =x n+a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n .证明 用数学归纳法证明. 当n =2时,2121221a x a x a x a x D ++=+-=, 命题成立.假设对于(n -1)阶行列式命题成立, 即 D n -1=x n -1+a 1 x n -2+ ⋅ ⋅ ⋅ +a n -2x +a n -1, 则D n 按第一列展开, 有11100 100 01)1(11-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--+=+-x x a xD D n n n n =xD n -1+a n =x n +a1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n .因此, 对于n 阶行列式命题成立.6. 设n 阶行列式D =det(a ij ), 把D 上下翻转、或逆时针旋转90︒、或依副对角线翻转, 依次得n nn n a a a a D 11111 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=, 11112 n nn n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= , 11113 a a a a D n n nn ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,证明D D D n n 2)1(21)1(--==, D 3=D .证明 因为D =det(a ij ), 所以nnn n n n nnnn a a a a a a a a a a D 2211111111111)1( ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=- ⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=-- )1()1(331122111121nnn n nn n n a a a a a a a aD D n n n n 2)1()1()2( 21)1()1(--+-+⋅⋅⋅++-=-=.同理可证nnn n n n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=- )1(11112)1(2D D n n T n n 2)1(2)1()1()1(---=-=.D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(.7. 计算下列各行列式(D k 为k 阶行列式):(1)aaD n 11⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0;解aa a a a D n 0 0010 000 00 000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开))1()1(10 00000 0000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a aan n n nn a a a +⋅⋅⋅-⋅-=--+)2)(2(1 )1()1(=a n -a n -2=a n -2(a 2-1).(2)xa a a x a a a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(-1)分别加到其余各行, 得ax x a ax x a a x x a aa a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0 , 再将各列都加到第一列上, 得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 0000 )1(=[x +(n -1)a ](x -a )n -1.(3)111 1 )( )1()( )1(1111⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅--⋅⋅⋅-=---+n a a a n a a a n a a a D n n n n n n n ; 解 根据第6题结果, 有nnn n n n n n n n a a a n a a a n a a aD )( )1()( )1( 1111)1(1112)1(1-⋅⋅⋅--⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=---++此行列式为范德蒙德行列式.∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏≥>≥++---=112)1()]([)1(j i n n n j i∏≥>≥++⋅⋅⋅+-++-⋅-⋅-=1121)1(2)1()()1()1(j i n n n n n j i∏≥>≥+-=11)(j i n j i .(4)n nnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112;解nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112(按第1行展开)nn n n n nd d c d c b a b a a 00011111111----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=0)1(1111111112c d c d c b a b a b nn n n n nn ----+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-+.再按最后一行展开得递推公式D 2n =a n d n D 2n -2-b n c n D 2n -2, 即D 2n =(a n d n -b n c n )D 2n -2. 于是∏=-=ni i i i i n D c b d a D 222)(.而111111112c b d a d c b a D -==,所以∏=-=n i i i i i n c b d a D 12)(.(5) D =det(a ij ), 其中a ij =|i -j |; 解 a ij =|i -j |,4321 4 01233 10122 21011 3210)det(⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅==n n n n n n n n a D ij n0 4321 1 11111 11111 11111 1111 2132⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅--⋅⋅⋅-=====n n n n r r r r152423210 22210 02210 00210 0001 1213-⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅-+⋅⋅⋅+=====n n n n n c c c c =(-1)n -1(n -1)2n -2.(6)nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 111 1121, 其中a 1a 2 ⋅ ⋅ ⋅ a n ≠0.解nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121nn n n a a a a a a a a a c c c c +-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=====--10 0001 000 100 0100 0100 0011332212132 1111312112111011 000 00 11000 01100 001 ------+-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅⋅⋅⋅=nn n a a a a a a a a∑=------+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=n i i n n a a a a a a a a 1111131******** 00010 000 00 10000 01000 001)11)((121∑=+=ni in a a a a .8. 用克莱姆法则解下列方程组:(1)⎪⎩⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x ;解 因为14211213513241211111-=----=D , 142112105132412211151-=------=D ,28411235122412111512-=-----=D , 42611135232422115113-=----=D ,14202132132212151114=-----=D , 所以111==DD x , 222==D D x , 333==D D x , 144-==D D x .(2)⎪⎪⎩⎪⎪⎨⎧=+=++=++=++=+150650650651655454343232121x x x x x x x x x x x x x .解 因为665510006510006510065100065==D , 15075100165100065100650000611==D ,11455101065100065000601000152-==D ,70351100650000601000051001653==D , 39551000601000051000651010654-==D ,2121105100065100651100655==D , 所以66515071=x , 66511452-=x , 6657033=x , 6653954-=x , 6652124=x .9. 问λ, μ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 系数行列式为μλμμμλ-==1211111D .令D =0, 得μ=0或λ=1.于是, 当μ=0或λ=1时该齐次线性方程组有非零解.10. 问λ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解?解 系数行列式为λλλλλλλ--+--=----=101112431111132421D=(1-λ)3+(λ-3)-4(1-λ)-2(1-λ)(-3-λ) =(1-λ)3+2(1-λ)2+λ-3. 令D =0, 得λ=0, λ=2或λ=3.于是, 当λ=0, λ=2或λ=3时, 该齐次线性方程组有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换. 解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A TB .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T.4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635.(2)⎪⎪⎭⎫⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142.(4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ;解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x x 322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗? 解 AB ≠BA . 因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2. 因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610,所以(A +B )2≠A 2+2AB +B 2.(3)(A +B )(A -B )=A 2-B 2吗?解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B )(A -B )≠A 2-B 2.6. 举反列说明下列命题是错误的: (1)若A 2=0, 则A =0; 解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ; 解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E .(3)若AX =AY , 且A ≠0, 则X =Y . 解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k. 解⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k .8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k.解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ,⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA k k kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫. 用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k kk k k k k k A A A ⎪⎪⎪⎪⎭⎫⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ,由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121.9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB , 从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以(AB )T =(BA )T =A T B T =AB , 即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以 AB =(AB )T =B T A T =BA . 11. 求下列矩阵的逆矩阵: (1)⎪⎭⎫ ⎝⎛5221; 解⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225.(2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解 ⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A |=1≠0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A ,所以 *||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫⎝⎛---145243121;解 ⎪⎪⎭⎫⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以*||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程: (1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ;解⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232.(2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ;解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012.13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ,故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 因为A k =O , 所以E -A k =E . 又因为E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A )可逆, 且 (E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ).另一方面, 由A k =O ,有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A (A -E )=2E , 或E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E , 或E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2, 即 |A ||A -E |=2, 故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E ⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E ⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1,)3(41)2(1A E E A -=+-. 16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|. 解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16.17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*. 证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有|A *|=|A |n |A -1|=|A |n -1≠0, 从而A *也可逆.因为A *=|A |A -1, 所以 (A *)-1=|A |-1A . 又*)(||)*(||1111---==A A A A A , 所以(A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*. 18. 设n 阶矩阵A 的伴随矩阵为A *, 证明: (1)若|A |=0, 则|A *|=0; (2)|A *|=|A |n -1. 证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得 A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0. (2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到|A ||A *|=|A |n . 若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立. 因此|A *|=|A |n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E AB ⎪⎪⎭⎫⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A , 所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E , B =-8(A *-2E )-1A -1 =-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B . 解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A , B =3(A -E )-1A =3[A (E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1. |P |=3,⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001,故⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731.24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆. (A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛3000320012101301300120010100121. 解设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A ,⎪⎭⎫ ⎝⎛-=12131B ,⎪⎭⎫ ⎝⎛--=30322B ,则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠. 解4100120021010*********0021010010110100101==--=--=D C B A ,而01111|||||||| ==D C B A , 故|||||||| D C B A D C B A ≠.28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4.解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A , 则 ⎪⎭⎫ ⎝⎛=21A O O A A , 故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ; 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A . 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321.由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD O BD CD OAD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A ,⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫ ⎝⎛4121031200210001.解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A B C O A⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1. 把下列矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫ ⎝⎛--340313021201;解 ⎪⎪⎭⎫ ⎝⎛--340313021201(下一步: r 2+(-2)r 1, r 3+(-3)r 1. )~⎪⎪⎭⎫⎝⎛---020*********(下一步: r 2÷(-1), r 3÷(-2). )~⎪⎪⎭⎫⎝⎛--010*********(下一步: r 3-r 2. )~⎪⎪⎭⎫⎝⎛--300031001201(下一步: r 3÷3. )~⎪⎪⎭⎫⎝⎛--100031001201(下一步: r 2+3r 3. )~⎪⎪⎭⎫⎝⎛-100001001201(下一步: r 1+(-2)r 2, r 1+r 3. )~⎪⎪⎭⎫ ⎝⎛100001000001.(2)⎪⎪⎭⎫ ⎝⎛----174034301320;解 ⎪⎪⎭⎫⎝⎛----174034301320(下一步: r 2⨯2+(-3)r 1, r 3+(-2)r 1. )~⎪⎪⎭⎫ ⎝⎛---310031001320(下一步: r 3+r 2, r 1+3r 2. )~⎪⎪⎭⎫⎝⎛0000310010020(下一步: r 1÷2. )~⎪⎪⎭⎫ ⎝⎛000031005010.(3)⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311;解 ⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311(下一步: r 2-3r 1, r 3-2r 1, r 4-3r 1. )~⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311(下一步: r 2÷(-4), r 3÷(-3) , r 4÷(-5). )~⎪⎪⎪⎭⎫ ⎝⎛-----22100221002210034311(下一步: r 1-3r 2, r 3-r 2, r 4-r 2. )~⎪⎪⎪⎭⎫ ⎝⎛---00000000002210032011.(4)⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132.解 ⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132(下一步: r 1-2r 2, r 3-3r 2, r 4-2r 2. )~⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110(下一步: r 2+2r 1, r 3-8r 1, r 4-7r 1. )~⎪⎪⎪⎭⎫ ⎝⎛--41000410002020111110(下一步: r 1↔r 2, r 2⨯(-1), r 4-r 3. )~⎪⎪⎪⎭⎫⎝⎛----00000410001111020201(下一步: r 2+r 3. )~⎪⎪⎪⎭⎫ ⎝⎛--00000410003011020201.2. 设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A , 求A .解 ⎪⎪⎭⎫⎝⎛100001010是初等矩阵E (1, 2), 其逆矩阵就是其本身.⎪⎪⎭⎫⎝⎛100010101是初等矩阵E (1, 2(1)), 其逆矩阵是E (1, 2(-1)) ⎪⎪⎭⎫⎝⎛-=100010101.⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=100010101987654321100001010A⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=287221254100010101987321654.3. 试利用矩阵的初等变换, 求下列方阵的逆矩阵: (1)⎪⎪⎭⎫⎝⎛323513123;解 ⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫⎝⎛---101011001200410123 ~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫⎝⎛----2/102/11002110102/922/7003 ~⎪⎪⎭⎫ ⎝⎛----2/102/11002110102/33/26/7001故逆矩阵为⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267. (2)⎪⎪⎪⎭⎫⎝⎛-----1210232112201023.解 ⎪⎪⎪⎭⎫⎝⎛-----10000100001000011210232112201023~⎪⎪⎪⎭⎫ ⎝⎛----00100301100001001220594012102321~⎪⎪⎪⎭⎫ ⎝⎛--------20104301100001001200110012102321~⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321~⎪⎪⎪⎭⎫ ⎝⎛----------10612631110`1022111000010000100021~⎪⎪⎪⎭⎫ ⎝⎛-------106126311101042111000010000100001故逆矩阵为⎪⎪⎪⎭⎫ ⎝⎛-------10612631110104211.4. (1)设⎪⎪⎭⎫ ⎝⎛--=113122214A , ⎪⎪⎭⎫⎝⎛--=132231B , 求X 使AX =B ;解 因为⎪⎪⎭⎫ ⎝⎛----=132231 113122214) ,(B A ⎪⎪⎭⎫⎝⎛--412315210 100010001 ~r ,所以 ⎪⎪⎭⎫ ⎝⎛--==-4123152101B A X .(2)设⎪⎪⎭⎫ ⎝⎛---=433312120A , ⎪⎭⎫ ⎝⎛-=132321B , 求X 使XA =B .解 考虑A T X T =B T . 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(TTB A ⎪⎪⎭⎫⎝⎛---411007101042001 ~r ,所以 ⎪⎪⎭⎫⎝⎛---==-417142)(1TT T B A X ,从而 ⎪⎭⎫ ⎝⎛---==-4741121BA X .5. 设⎪⎪⎭⎫⎝⎛---=101110011A , AX =2X +A , 求X .解 原方程化为(A -2E )X =A . 因为⎪⎪⎭⎫⎝⎛---------=-101101110110011011) ,2(A E A⎪⎪⎭⎫⎝⎛---011100101010110001~,所以⎪⎪⎭⎫ ⎝⎛---=-=-011101110)2(1A E A X .6. 在秩是r 的矩阵中,有没有等于0的r -1阶子式? 有没有等于0的r 阶子式? 解 在秩是r 的矩阵中, 可能存在等于0的r -1阶子式, 也可能存在等于0的r 阶子式.例如, ⎪⎪⎭⎫⎝⎛=010*********A , R (A )=3.0000是等于0的2阶子式, 010001000是等于0的3阶子式. 7. 从矩阵A 中划去一行得到矩阵B , 问A , B 的秩的关系怎样? 解 R (A )≥R (B ).这是因为B 的非零子式必是A 的非零子式, 故A 的秩不会小于B 的秩.8. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:⎪⎪⎪⎪⎭⎫ ⎝⎛-0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量.9. 求下列矩阵的秩, 并求一个最高阶非零子式:(1)⎪⎪⎭⎫⎝⎛---443112112013;解 ⎪⎪⎭⎫ ⎝⎛---443112112013(下一步: r 1↔r 2. )~⎪⎪⎭⎫ ⎝⎛---443120131211(下一步: r 2-3r 1, r 3-r 1. )~⎪⎪⎭⎫⎝⎛----564056401211(下一步: r 3-r 2. )~⎪⎭⎫ ⎝⎛---000056401211, 矩阵的2秩为, 41113-=-是一个最高阶非零子式.(2)⎪⎪⎭⎫ ⎝⎛-------815073*********;解 ⎪⎪⎭⎫ ⎝⎛-------815073*********(下一步: r 1-r 2, r 2-2r 1, r 3-7r 1. )~⎪⎭⎫ ⎝⎛------15273321059117014431(下一步: r 3-3r 2. ) ~⎪⎭⎫ ⎝⎛----0000059117014431,矩阵的秩是2, 71223-=-是一个最高阶非零子式.(3)⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812.解 ⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812(下一步: r 1-2r 4, r 2-2r 4, r 3-3r 4. )~⎪⎪⎪⎭⎫ ⎝⎛------02301024205363071210(下一步: r 2+3r 1, r 3+2r 1. )~⎪⎪⎪⎭⎫⎝⎛-0230114000016000071210(下一步: r 2÷16r 4, r 3-16r 2. )~⎪⎪⎪⎭⎫ ⎝⎛-02301000001000071210~⎪⎪⎪⎭⎫ ⎝⎛-00000100007121002301,矩阵的秩为3, 070023085570≠=-是一个最高阶非零子式.10. 设A 、B 都是m ⨯n 矩阵, 证明A ~B 的充分必要条件是R (A )=R (B ). 证明 根据定理3, 必要性是成立的.充分性. 设R (A )=R (B ), 则A 与B 的标准形是相同的. 设A 与B 的标准形为D , 则有A ~D , D ~B .由等价关系的传递性, 有A ~B .11. 设⎪⎪⎭⎫⎝⎛----=32321321k k k A , 问k 为何值, 可使(1)R (A )=1; (2)R (A )=2; (3)R (A )=3.解⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫⎝⎛+-----)2)(1(0011011 ~k k k k k r . (1)当k =1时, R (A )=1; (2)当k =-2且k ≠1时, R (A )=2; (3)当k ≠1且k ≠-2时, R (A )=3.12. 求解下列齐次线性方程组:(1)⎪⎩⎪⎨⎧=+++=-++=-++02220202432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛--212211121211~⎪⎪⎭⎫ ⎝⎛---3/410013100101,于是 ⎪⎪⎩⎪⎪⎨⎧==-==4443424134334x x x x x x x x ,故方程组的解为⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x (k 为任意常数). (2)⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛----5110531631121~⎪⎪⎭⎫⎝⎛-000001001021,于是 ⎪⎩⎪⎨⎧===+-=4432242102x x x x x x x x ,故方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10010012214321k k x x x x (k 1, k 2为任意常数).(3)⎪⎩⎪⎨⎧=-+-=+-+=-++=+-+07420634072305324321432143214321x x x x x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎪⎭⎫⎝⎛-----7421631472135132~⎪⎪⎪⎭⎫ ⎝⎛1000010000100001,于是 ⎪⎩⎪⎨⎧====00004321x x x x ,故方程组的解为⎪⎩⎪⎨⎧====00004321x x x x .(4)⎪⎩⎪⎨⎧=++-=+-+=-+-=+-+03270161311402332075434321432143214321x x x x x x x x x x x x x x x x .解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎪⎭⎫⎝⎛-----3127161311423327543~⎪⎪⎪⎪⎪⎭⎫⎝⎛--000000001720171910171317301,于是 ⎪⎪⎩⎪⎪⎨⎧==-=-=4433432431172017191713173x x x x x x x xx x , 故方程组的解为⎪⎪⎪⎪⎪⎭⎫⎝⎛--+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛1017201713011719173214321k k x x x x (k 1, k 2为任意常数).13. 求解下列非齐次线性方程组:(1)⎪⎩⎪⎨⎧=+=+-=-+83111021322421321321x x x x x x x x ;解 对增广矩阵B 进行初等行变换, 有。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 行列式1. 利用对角线法则计算下列三阶行列式:(1)381141102---;解 381141102---=2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4.(2)ba c a cbc b a ;解 ba c a cb cb a=acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3.(3)222111c b a cb a ;解 222111c b a cb a=bc 2+ca 2+ab 2-ac 2-ba 2-cb 2=(a -b)(b -c)(c -a).(4)y x y x x y x y yx y x +++.解 yx y x x y x y y x y x +++=x(x +y)y +yx(x +y)+(x +y)yx -y 3-(x +y)3-x 3=3xy(x +y)-y 3-3x 2y -x 3-y 3-x 3=-2(x 3+y 3).2. 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4;解 逆序数为0 (2)4 1 3 2;解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1;解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3;解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ⋅ ⋅ ⋅ (2n -1) 2 4 ⋅ ⋅ ⋅ (2n); 解 逆序数为2)1(-n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n -1)2, (2n -1)4, (2n -1)6, ⋅ ⋅ ⋅, (2n -1)(2n -2) (n -1个)(6)1 3 ⋅ ⋅ ⋅ (2n -1) (2n) (2n -2) ⋅ ⋅ ⋅ 2. 解 逆序数为n(n -1) : 3 2(1个) 5 2, 5 4 (2个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n -1)2, (2n -1)4, (2n -1)6, ⋅ ⋅ ⋅, (2n -1)(2n -2) (n -1个) 4 2(1个) 6 2, 6 4(2个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n)2, (2n)4, (2n)6, ⋅ ⋅ ⋅, (2n)(2n -2) (n -1个) 3. 写出四阶行列式中含有因子a 11a 23的项. 解 含因子a 11a 23的项的一般形式为(-1)ta 11a 23a 3r a 4s ,其中rs 是2和4构成的排列, 这种排列共有两个, 即24和42. 所以含因子a 11a 23的项分别是(-1)ta 11a 23a 32a 44=(-1)1a 11a 23a 32a 44=-a 11a 23a 32a 44, (-1)ta 11a 23a 34a 42=(-1)2a 11a 23a 34a 42=a 11a 23a 34a 42. 4. 计算下列各行列式:(1)71100251020214214;解 71100251020214214010014231020211021473234-----======c c c c 34)1(143102211014+-⨯---= 143102211014--=01417172001099323211=-++======c c c c .(2)2605232112131412-; 解 2605232112131412-260503212213041224--=====c c 041203212213041224--=====r r 000003212213041214=--=====r r . (3)efcf bf decd bd ae ac ab ---;解 ef cf bf de cd bd ae ac ab ---e c b e c b ec b adf ---=abcdef adfbce 4111111111=---=.(4)dc b a 100110011001---. 解d c b a 1110011001---dc b aab ar r 10011001101021---++===== dc a ab 101101)1)(1(12--+--=+01011123-+-++=====cd c ad a ab dc ccdad ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1.5. 证明:(1)1112222b b a a b ab a +=(a -b)3;证明1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--==(a -b)3.(2)yx z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bxaz z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=y x z x z y zy x b y x z x z y z y x a 33+=yx z x z y zy x b a )(33+=.(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ; 证明2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2, c 2-c 1得) 5232125232125232125232122222++++++++++++=d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2得) 022122212221222122222=++++=d d c c b b a a .(4)444422221111d c b a d c b a d c b a=(a -b)(a -c)(a -d)(b -c)(b -d)(c -d)(a +b +c +d);证明444422221111d c b a d c b a d c b a)()()(0)()()(001111222222222a d d a c c a b b a d d a c c a b b ad a c a b ---------=)()()(111))()((222a d d a c c a b b d c b a d a c a b +++---= ))(())((00111))()((a b d b d d a b c b c c b d b c a d a c a b ++-++------=)()(11))()()()((a b d d a b c c b d b c a d a c a b ++++-----==(a -b)(a -c)(a -d)(b -c)(b -d)(c -d)(a +b +c +d).(5)1221 1 000 00 1000 01a x a a a a x x x n n n +⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--- =x n+a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n.证明 用数学归纳法证明. 当n =2时, 2121221a x a x a x a x D ++=+-=, 命题成立.假设对于(n -1)阶行列式命题成立, 即 D n -1=x n -1+a 1 x n -2+ ⋅ ⋅ ⋅ +a n -2x +a n -1, 则D n 按第一列展开, 有11100 100 01)1(11-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--+=+-x x a xD D n n n n =xD n -1+a n =x n+a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n . 因此, 对于n 阶行列式命题成立.6. 设n 阶行列式D =det(a ij ), 把D 上下翻转、或逆时针旋转90︒、或依副对角线翻转, 依次得n nn n a a a a D 11111 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=, 11112 n nn n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= , 11113 a a a a D n n nn ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,证明D D D n n 2)1(21)1(--==, D 3=D .证明 因为D =det(a ij ), 所以nnn n n n nnnn a a a a a a a a a a D 2211111111111 )1( ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=- ⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=-- )1()1(331122111121nnn n nn n n a a a a a a a a D D n n n n 2)1()1()2( 21)1()1(--+-+⋅⋅⋅++-=-=.同理可证 nnn n n n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=- )1(11112)1(2D D n n T n n 2)1(2)1()1()1(---=-=. D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(.7. 计算下列各行列式(D k 为k 阶行列式):(1)aaD n 11⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0;解aa a a a D n 0 0010 000 00 0000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开) )1()1(10 000 00 000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a an n n nn a a a+⋅⋅⋅-⋅-=--+)2)(2(1)1()1(=a n-a n -2=a n -2(a 2-1).(2)xa a a x a a a x D n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(-1)分别加到其余各行, 得ax x a ax x a a x x a a a a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0, 再将各列都加到第一列上, 得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 0000 )1(=[x +(n -1)a](x -a)n -1. (3)111 1 )( )1()( )1(1111⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅--⋅⋅⋅-=---+n a a a n a a a n a a a D n n n n n n n ;解 根据第6题结果, 有nnn n n n n n n n a a a n a a a n a a aD )( )1()( )1( 11 11)1(1112)1(1-⋅⋅⋅--⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=---++此行列式为范德蒙德行列式. ∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏≥>≥++---=112)1()]([)1(j i n n n j i∏≥>≥++⋅⋅⋅+-++-⋅-⋅-=1121)1(2)1()()1()1(j i n n n n n j i∏≥>≥+-=11)(j i n j i .(4)n nnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112;解nn nnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112(按第1行展开)nn n n n nd d c d c b a b a a 000 011111111----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=0)1(1111111112c d c d c b a b a b nn n n n nn ----+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-+.再按最后一行展开得递推公式D 2n =a n d n D 2n -2-b n c n D 2n -2, 即D 2n =(a n d n -b n c n )D 2n -2. 于是 ∏=-=ni ii ii n D c b d a D 222)(.而 111111112c b d a d c b aD -==, 所以 ∏=-=ni ii ii n c b d a D 12)(.(5) D =det(a ij ), 其中a ij =|i -j|; 解 a ij =|i -j|,4321 4 01233 10122 21011 3210)det(⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅==n n n n n n n n a D ij n 0 4321 1 11111 11111 11111 1111 2132⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅--⋅⋅⋅-=====n n n n r r r r 152423210 22210 02210 00210 0001 1213-⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅-+⋅⋅⋅+=====n n n n n c c c c =(-1)n -1(n -1)2n -2.(6)nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 111 1121, 其中a 1a 2 ⋅ ⋅ ⋅ a n ≠0.解nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121 nn n n a a a a a a a a a c c c c +-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=====--10 0001 000 100 0100 0100 0011332212132 1111312112111011 000 00 11000 01100 001 ------+-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅⋅⋅⋅=nn n a a a a a a a a∑=------+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=n i i n n a a a a a a a a 1111131******** 00010 000 00 10000 01000 001)11)((121∑=+=ni in a a a a .8. 用克莱姆法则解下列方程组:(1)⎪⎩⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x ;解 因为14211213513241211111-=----=D ,142112105132412211151-=------=D , 284112035122412111512-=-----=D , 426110135232422115113-=----=D , 14202132132212151114=-----=D , 所以 111==DD x , 222==D D x , 333==D D x , 144-==D D x .(2)⎪⎪⎩⎪⎪⎨⎧=+=++=++=++=+150650650651655454343232121x x x x x x x x x x x x x .解 因为665510006510006510065100065==D , 150751001651000651000650000611==D , 114551010651000650000601000152-==D , 70351100650000601000051001653==D , 395510601000051000651010654-==D , 2121105100065100651100655==D , 所以66515071=x , 66511452-=x , 6657033=x , 6653954-=x , 6652124=x .9. 问λ, μ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 系数行列式为μλμμμλ-==1211111D .令D =0, 得 μ=0或λ=1.于是, 当μ=0或λ=1时该齐次线性方程组有非零解.10. 问λ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解?解 系数行列式为λλλλλλλ--+--=----=101112431111132421D =(1-λ)3+(λ-3)-4(1-λ)-2(1-λ)(-3-λ) =(1-λ)3+2(1-λ)2+λ-3. 令D =0, 得λ=0, λ=2或λ=3.于是, 当λ=0, λ=2或λ=3时, 该齐次线性方程组有非零解.。