数值计算课后习题答案--石瑞民

合集下载

数值分析课后习题答案

数值分析课后习题答案

0 1
0 10 1 1 0 0 0 1
0 0 12 1 1 2 0 0 0

1 2
0 0 0 1 1 0
1 2

1 2


1 2
1
0 0 0 1 0

1 2

1 2


0
1 2

1 2
0
0
0
341 1 1
2-5.对矩阵A进行LDLT分解和GGT分解,并求解方程组
Ax=b,其中
16 4 8
1
A 4 5 4 , b 2
8 4 22
3

16 A 4
4 5
84
44 11
2-3(1).对矩阵A进行LU分解,并求解方程组Ax=b,其中
2 1 1 A1 3 2
4 ,b6
1 2 2
5

2 A 1
1 3
1 2


2 11
22
1
5 2
1

3 21来自,所以 A12
1
2 1 1



5 3
2-2(1).用列主元Gauss消元法解方程组
3 2 6x1 4 10 7 0x2 7 5 1 5x3 6

3 2 6 4 10 7 0 7 10 7 0 7

r1r2
消元

10 7 0 7 3 2 6 4 0 0.1 6 6.1
r=0.5101-n/3.162…<0.5101-n/3<0.01% 因此只需n=5.即取101/2=3.1623

数值分析课后习题答案

数值分析课后习题答案

习 题 一 解 答1.取3.14,3.15,227,355113作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。

分析:求绝对误差的方法是按定义直接计算。

求相对误差的一般方法是先求出绝对误差再按定义式计算。

注意,不应先求相对误差再求绝对误差。

有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。

有了定理2后,可以根据定理2更规范地解答。

根据定理2,首先要将数值转化为科学记数形式,然后解答。

解:(1)绝对误差:e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。

相对误差:3()0.0016()0.51103.14r e x e x x -==≈⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。

而π-3.14=3.14159265…-3.14=0.00159…所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311101022--⨯=⨯所以,3.14作为π的近似值有3个有效数字。

(2)绝对误差:e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。

相对误差:2()0.0085()0.27103.15r e x e x x --==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。

而π-3.15=3.14159265…-3.15=-0.008407…所以│π-3.15│=0.008407……≤0.05=0.5×10-1=11211101022--⨯=⨯所以,3.15作为π的近似值有2个有效数字。

(3)绝对误差:22() 3.141592653.1428571430.0012644930.00137e x π=-=-=-≈-相对误差:3()0.0013()0.4110227r e x e x x--==≈-⨯有效数字: 因为π=3.14159265…=0.314159265…×10, 223.1428571430.3142857143107==⨯,m=1。

数值计算方法与算法第三版课后习题答案

数值计算方法与算法第三版课后习题答案

数值计算方法与算法第三版课后习题答案1. 矩阵乘法问题描述给定两个矩阵A和B,尺寸分别为n×m和m×p,求矩阵A 和矩阵B的乘积矩阵C,尺寸为n×p。

算法实现import numpy as npdef matrix_multiplication(A, B):n, m = A.shapem, p = B.shapeC = np.zeros((n, p))for i in range(n):for j in range(p):for k in range(m):C[i][j] += A[i][k] * B[k][j] return C示例A = np.array([[1, 2], [3, 4]])B = np.array([[5, 6], [7, 8]])C = matrix_multiplication(A, B)print(C)输出结果:[[19. 22.][43. 50.]]2. 数值积分问题描述给定一个函数f(x),以及积分区间[a, b],求函数f(x)在区间[a, b]上的定积分值∫abf(x)dx。

算法实现简单的数值积分算法是采用小梯形法,将区间[a, b]均分成n个子区间,然后计算每个子区间的面积,最后将这些子区间面积相加得到定积分值。

def numerical_integration(f, a, b, n):h = (b - a) / nintegral =0for i in range(n):x1 = a + i * hx2 = a + (i +1) * hintegral += (f(x1) + f(x2)) * h /2 return integral示例import mathf =lambda x: math.sin(x)a =0b = math.pin =100result = numerical_integration(f, a, b, n) print(result)输出结果:1.99983550388744363. 非线性方程求解问题描述给定一个非线性方程f(x) = 0,求方程的根x。

数值课后题答案

数值课后题答案

习 题 一1、解:根据绝对误差限不超过末位数的半个单位,相对误差限为绝对误差限除以有效数字本身,有效数字的位数根据有效数字的定义来求.因此 49×10-2 :E = 0.005; r E = 0.0102; 2位有效数字. 0.0490 :E = 0.00005;r E = 0.00102; 3位有效数字. 490.00 :E = 0.005; r E = 0.0000102;5位有效数字.2、解:722= 3.1428 …… , π = 3.1415 …… , 取它们的相同部分3.14,故有3位有效数字.E = 3.1428 - 3.1415 = 0.0013 ;r E = 14.3E = 14.30013.0 = 0.00041.3、解:101的近似值的首位非0数字1α = 1,因此有 |)(*x E r |)1(10121--⨯⨯=n < = 21× 10-4 , 解之得n > = 5,所以 n = 5 . 4、证:)()(1)()(1)(*11**11**x x x nx E x n x E n n n-=≈--)(11)()(1)()(*****11****x E nx x x n x x x x nx x E x E r nnnn n r =-=-≈=- 5、解:(1)因为=20 4.4721…… ,又=)(*x E |*x x -| = |47.420-| = 0.0021 < 0.01, 所以 =*x 4.47.(2)20的近似值的首位非0数字1α = 4,因此有 |)(*x E r |)1(10421--⨯⨯=n < = 0.01 , 解之得n > = 3 .所以,=*x 4.47. 6、解:设正方形的边长为x ,则其面积为2x y =,由题设知x 的近似值为*x = 10 cm .记*y 为y 的近似值,则)(20)(20)(2)(*****x E x x x x x y E =-=-= < = 0.1,所以)(*x E < = 0.005 cm .7、解:因为)()(*1x x nx x E n n -≈-,所以n x nE x x x n xx E x E r nn nr 01.0)()()(*==-≈=. 9、证:)()()(**t gtE t t gt S S S E =-≈-=t t E gt t t gt S S S S E r )(22/)()(2**=-≈-= 由上述两式易知,结论. 10、解:代入求解,经过计算可知第(3)个计算结果最好.11、解:基本原则为:因式分解,分母分子有理化、三角函数恒等变形…… (1)通分;(2)分子有理化;(3)三角函数恒等变形.12、解: 因为20=x ,41.1*0=x ,所以|*0x x -| < = δ=⨯-21021 于是有|*11x x -| = |110110*00+--x x | = 10|*00x x -| < =δ10 |*22x x -| = |110110*11+--x x | = 10|*11x x -| < =δ210 类推有 |*1010x x -| < =810102110⨯=δ 即计算到10x ,其误差限为δ1010,亦即若在0x 处有误差限为δ,则10x 的误差将扩大1010倍,可见这个计算过程是不稳定的.习 题 二1、 解:只用一种方法.(1)方程组的增广矩阵为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----11114423243112 → ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----1010411101110112 → ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---11041001110112 → 31=x , 12=x , 13=x . (2)方程组的增广矩阵为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------017232221413 → ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--247210250413 → ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--147200250413 → 21=x , 12=x , 2/13=x . (3)适用于计算机编程计算.2、 解:第一步:计算U 的第一行,L 的第一列,得611=u 212=u 113=u 114-=u3/1/112121==u a l 6/1/113131==u a l6/1/114141-==u a l第二步:计算U 的第二行,L 的第二列,得3/1012212222=-=u l a u 3/213212323=-=u l a u 3/114212424=-=u l a u 5/1/)(2212313232=-=u u l a l10/1/)(2212414242=-=u u l a l第三步:计算U 的第三行,L 的第三列,得10/37233213313333=--=u l u l a u 10/9243214313434-=--=u l u l a u 37/9/)(33234213414343-=--=u u l u l a l第四步:计算U 的第四行,得370/9553443244214414444-=---=u l u l u l a u从而, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----3101141101421126 = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--137/910/16/1015/16/10013/10001⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---370/95500010/910/37003/13/23/1001126 由b LY = , 解得Y =(6,-3,23/5,-955/370)T . 由Y UX = , 解得X =(1,-1,1,-1)T . 3、(1)解:首先检验系数矩阵的对称正定性,这可以通过计算其各阶顺序主子式是否大于零来判断.11a = 3 > 0, 2223= 2 > 0, 301022123 = 4 > 0,所以系数矩阵是对称正定的.记系数矩阵为A ,则平方根法可按如下三步进行:第一步 分解:A = L L T . 由公式计算出矩阵的各元素:311=l 33221=l 3622=l 3331=l 3632-=l 233=l因此, L =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-23633036332003. 第二步 求解方程组LY = b . 解得Y = (335,36,2)T . 第三步 求解方程组L T X = Y . 解得X =(0,2,1)T .(2)解:首先检验系数矩阵的对称正定性,这可以通过计算其各阶顺序主子式是否大于零来判断.11a = 3 > 0,2223= 2 > 0, 1203022323 = 6 > 0,所以系数矩阵是对称正定的.记系数矩阵为A ,则平方根法可按如下三步进行:第一步 分解:A = L L T . 由公式计算出矩阵的各元素:311=l 33221=l 3622=l 331=l 632-=l 333=l因此, L =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-363036332003 . 第二步 求解方程组LY = b . 解得Y = (335,66-,33)T. 第三步 求解方程组L T X = Y . 解得X = (1,21,31)T . 4、解: 对1=i , 2111==a d ;对2=i , 121-=t , 2121-=l , 252-=d ;对3=i , 131=t , 2732=t ,2131=l , 5732-=l ,5273=d .所以数组A 的形式为: ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=527572102521002A 求解方程组LY = b . 解得Y = (4,7,569)T . 求解方程组DL T X = Y . 解得X = (910,97,923)T .5、解:(1)设A = LU = ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1010000000000010010015432l l l l ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡5432106000000000600006006u u u u u计算各元素得: 51=u , 512=l , 1952=u , 1953=l , 19653=u ,65194=l , 652114=u , 211655=l , 2116655=u .求解方程组LY = d . 解得Y = (1,51-,191,651-,211212)T.求解方程组UX = Y . 解得X = (6651509,6651145,665703,665395-,665212)T.(2)设A = LU = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100100132l l ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡3211001u u u 计算各元素得:51=u ,512=l ,5242=u ,2453=l ,241153=u . 求解方程组LY = d . 解得Y = (17,553,24115)T.求解方程组UX = Y . 解得X = (3,2,1)T. 6、证:(1)(2)相同.因为此方程组的系数矩阵为严格对角占优矩阵,所以雅可比迭代法和相应的高斯-赛德尔迭代法都收敛. (1)雅可比迭代公式:7107271)(3)(2)1(1+--=+k k k x x x14141)(3)(1)1(2+--=+k k k x x x329292)(2)(1)1(3+--=+k k k x x x高斯-赛德尔迭代公式:7107271)(3)(2)1(1+--=+k k k x x x14141)(3)1(1)1(2+--=++k k k x x x329292)1(2)1(1)1(3+--=+++k k k x x x(2)雅可比迭代公式:545152)(3)(2)1(1+-=+k k k x x x525351)(3)(1)1(2++-=+k k k x x x5115152)(2)(1)1(3++=+k k k x x x高斯-赛德尔迭代公式:545152)(3)(2)1(1+-=+k k k x x x525351)(3)1(1)1(2++-=++k k k x x x5115152)1(2)1(1)1(3++=+++k k k x x x7、(1)证:因为此方程组的系数矩阵为严格对角占优矩阵,所以雅可比迭代法和相应的高斯-赛德尔迭代法都收敛。

数值计算方法第三版课后习题答案

数值计算方法第三版课后习题答案

习题一解答1.取3.14,3.15,227,355113作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。

分析:求绝对误差的方法是按定义直接计算。

求相对误差的一般方法是先求出绝对误差再按定义式计算。

注意,不应先求相对误差再求绝对误差。

有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。

有了定理2后,可以根据定理2更规范地解答。

根据定理2,首先要将数值转化为科学记数形式,然后解答。

解:(1)绝对误差:e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。

相对误差:3()0.0016()0.51103.14r e x e x x -==≈⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。

而π-3.14=3.14159265…-3.14=0.00159…所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311101022--⨯=⨯所以,3.14作为π的近似值有3个有效数字。

(2)绝对误差:e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。

相对误差:2()0.0085()0.27103.15r e x e x x --==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。

而π-3.15=3.14159265…-3.15=-0.008407…所以│π-3.15│=0.008407……≤0.05=0.5×10-1=11211101022--⨯=⨯所以,3.15作为π的近似值有2个有效数字。

(3)绝对误差:22() 3.14159265 3.1428571430.0012644930.00137e x π=-=-=-≈- 相对误差:3()0.0013()0.4110227r e x e x x--==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10,223.1428571430.3142857143107==⨯,m=1。

数值计算方法习题答案(第二版)(绪论)

数值计算方法习题答案(第二版)(绪论)

数值分析(p11页)4 试证:对任给初值x 0,0)a >的牛顿迭代公式112(),0,1,2,......k ak k x x x k +=+= 恒成立下列关系式:2112(1)(,0,1,2,....(2)1,2,......kk k x k x x k x k +-=-=≥=证明:(1)(21122k k k k k kx a x x x x +-⎫⎛-=+==⎪ ⎝⎭(2) 取初值00>x ,显然有0>k x ,对任意0≥k ,a a x a x x a x x k k k k k ≥+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛+=+2121216 证明:若k x 有n 位有效数字,则n k x -⨯≤-110218, 而()k k k k k x x x x x 288821821-=-⎪⎪⎭⎫⎝⎛+=-+ nnk k x x 2122110215.22104185.28--+⨯=⨯⨯<-∴>≥ 1k x +∴必有2n 位有效数字。

8 解:此题的相对误差限通常有两种解法. ①根据本章中所给出的定理:(设x 的近似数*x 可表示为m n a a a x 10......021*⨯±=,如果*x 具有l 位有效数字,则其相对误差限为()11**1021--⨯≤-l a x x x ,其中1a 为*x 中第一个非零数)则7.21=x ,有两位有效数字,相对误差限为025.010221111=⨯⨯≤--x x e 71.22=x ,有两位有效数字,相对误差限为025.010221122=⨯⨯≤--x x e 3 2.718x =,有两位有效数字,其相对误差限为:00025.010221333=⨯⨯≤--x e x ②第二种方法直接根据相对误差限的定义式求解 对于7.21=x ,0183.01<-e x∴其相对误差限为00678.07.20183.011≈<-x e x 同理对于71.22=x ,有003063.071.20083.022≈<-x e x 对于718.23=x ,有00012.0718.20003.033≈<-x e x备注:(1)两种方法均可得出相对误差限,但第一种是对于所有具有n 位有效数字的近似数都成立的正确结论,故他对误差限的估计偏大,但计算略简单些;而第二种方法给出较好的误差限估计,但计算稍复杂。

数值分析课后习题部分参考答案.doc

数值分析课后习题部分参考答案Chapter 1(P10) 5.求厲的近似值x*,使其相对误差不超过0.1%。

解:V2 = 1.4 ••- o设X*有"位有效数字,则le(x*)lV0.5xl0xl(T"。

,*““0.5x10-" 牛(x )1< ] 。

从而,丨<故,若0.5x10-" <0.1%,则满足要求。

解之得,M>4O %* =1.414 O(P10) 7.正方形的边长约100cm ,问测量边长时误差应多大,才能保证面积的误差不超过1 cm2 o解:设边长为a ,则a心100cm。

设测量边长时的绝对误差为e,由误差在数值计算的传播,这时得到的面积的绝对误差有如下估计:® 2xl00xe…按测量要求,l2xl00xel<l解得,lel< 0.5x10 2 oChapter 2(P47) 5.用三角分解法求下列矩阵的逆矩阵:‘1 1 -1]A = 2 1 0 。

J j 0丿解:设A1 =(«0 /)=分别求如下线性方程组:先求A的LU分解(利用分解的紧凑格式),气1)1 (1)1 (-D-(2)2(D-1(0)2、⑴1(-1)2 (0) —3,(1 0 0、 ri 1 -1] 即,厶=2 1 0 ,U =0-12 J 2 1丿<0 0-3经直接三角分解法的回代程,分别求解方程组,1 0Ly =0 和 Ua = v ,得,a = 0J3 2 3 1(P47) 6.分别用平方根法和改进平方根法求解方程组:(1 2 1 -3兀1)2 50 -5兀2 2 10 14 1 x 3 16 、一 -5 1 15丿3解:平方根法:先求系数矩阵4的Cholesky 分解(利用分解的紧凑格式),'(1)1、< 1 0 0 0、(2)2(5)1,即,L =2 1 0 0 (1)1 (0)-2 (14)3 1 -2 3 、(_3) _ 3 (-5)1 (1)2 (15<-31 2 b216 改进平方根Ly = 和 II x = y ,得,x = 先求系数矩阵A 的形如A = LDU 的分解,其中厶-(/y .)4x4为单位下二角矩阵,D = diag{d l ,d 2,d 3,d 4}为对角矩阵。

数值计算课后答案3教学提纲

习 题 三 解 答1、用高斯消元法解下列方程组。

(1)12312312231425427x x x x x x x x -+=⎧⎪++=⎨⎪+=⎩①②③解:⨯4②+(-)①2,12⨯③+(-)①消去第二、三个方程的1x ,得:1232323231425313222x x x x x x x ⎧⎪-+=⎪-=⎨⎪⎪-=⎩④⑤⑥ 再由52)4⨯⑥+(-⑤消去此方程组的第三个方程的2x ,得到三角方程组:1232332314272184x x x x x x ⎧⎪-+=⎪-=⎨⎪⎪-=⎩回代,得:36x =-,21x =-,19x = 所以方程组的解为(9,1,6)T x =--注意:①算法要求,不能化简。

化简则不是严格意义上的消元法,在算法设计上就多出了步骤。

实际上,由于数值计算时用小数进行的,化简既是不必要的也是不能实现的。

无论是顺序消元法还是选主元素消元法都是这样。

②消元法要求采用一般形式,或者说是分量形式,不能用矩阵,以展示消元过程。

要通过练习熟悉消元的过程而不是矩阵变换的技术。

矩阵形式错一点就是全错,也不利于检查。

一般形式或分量形式:12312312231425427x x x x x x x x -+=⎧⎪++=⎨⎪+=⎩①②③矩阵形式123213142541207x x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭向量形式123213142541207x x x -⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭③必须是方程组到方程组的变形。

三元方程组的消元过程要有三个方程组,不能变形出单一的方程。

④消元顺序12x x →→L ,不能颠倒。

按为支援在方程组中的排列顺序消元也是存储算法的要求。

实际上,不按顺序消元是不规范的选主元素。

⑤不能化简方程,否则系数矩阵会变化,也不利于算法设计。

(2)1231231231132323110221x x x x x x x x x --=⎧⎪-++=⎨⎪++=-⎩①②③解:⨯23②+()①11,111⨯③+(-)①消去第二、三个方程的1x ,得: 123232311323523569111111252414111111x x x x x x x ⎧--=⎪⎪⎪-=⎨⎪⎪+=-⎪⎩④⑤⑥ 再由2511)5211⨯⑥+(-⑤消去此方程组的第三个方程的2x ,得到三角方程组:123233113235235691111111932235252x x x x x x ⎧⎪--=⎪⎪-=⎨⎪⎪=-⎪⎩回代,得:32122310641,,193193193x x x =-==, 所以方程组的解为 41106223(,,)193193193Tx =-2、将矩阵1020011120110011A ⎛⎫⎪⎪= ⎪-⎪⎝⎭作LU 分解。

数值分析简明教程课后习题答案

比较详细的数值分析课后习题答案0.1算法1、 (p.11,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(p.11,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。

【解】 由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。

【解】有效数字:因为11102105.001828.0||-⨯=<=- x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=- x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=- x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε;%0184.0718.20005.0||333=<-=x x e r ε。

数值分析课后第二章习题解答


3
x n +1 = x n −
3 2 xn + 2 xn + 10 x n − 20 2 3 x n + 4 x n + 10
容易验证 f(1) f(2) < 0,故方程在[1,2]区间内至少有一根。取初值 x0=1,计算结果如下 1.4117647 1.3693364 1.3688081 1.3688081 取初值 x0=2,计算结果如下 1.4666666 1.3715120 1.3688102 1.3688081 取初值 x0=1.5,计算结果如下 1.3736263 1.3688148 1.3688081 由此可知,方程在区间[1,2]内有一根,其近似值为 x* ≈1.3688081 注:用 MATLAB 求多项式零点命令 roots([1 2 10 – 20 ])可得该方程的三个根近似值 x1 = -1.6844 + 3.4313i,x2 = -1.6844 - 3.4313i,x3 = 1.3688 3 2 8 已知方程 x – x – 1 = 0 在 x0 = 1.5 附近有根,试判断下列迭代格式的收敛性。 (1) x n +1 = 1 + 1 / x n ; (2) x n +1 = 1 /
6
x1=fi(x0); er=abs(x1-x0); x0=x1;k=k+1; end disp([x0,k]) 4 给出求 x n =
2 + 2 + L + 2 的迭代格式,并证明 lim x n = 2 。
n→∞
解 取初值: x1 =
2 ,迭代格式: x n +1 = 2 + x n
( n =1,2,…… )。
产生的迭代序列化简得1011解方程124用此迭代法求方程根的近似值误差不超过1034用迭代法计算得3564233920335413348333475103成立取方程根的近似值1016利用matlab绘图命令将33475附近不为零故迭代法是一阶收敛
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

. . 习 题 一 解 答

1.取3.14,3.15,227,355113作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。 分析:求绝对误差的方法是按定义直接计算。求相对误差的一般方法是先求出绝对误差再按定义式计算。注意,不应先求相对误差再求绝对误差。有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。有了定理2后,可以根据定理2更规范地解答。根据定理2,首先要将数值转化为科学记数形式,然后解答。 解:(1)绝对误差: e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。 相对误差: 3()0.0016()0.51103.14rexexx

有效数字: 因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。 而π-3.14=3.14159265…-3.14=0.00159…

所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311101022

所以,3.14作为π的近似值有3个有效数字。 (2)绝对误差: e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。 相对误差: 2()0.0085()0.27103.15rexexx

有效数字: 因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。 而π-3.15=3.14159265…-3.15=-0.008407…

所以│π-3.15│=0.008407……≤0.05=0.5×10-1=11211101022

所以,3.15作为π的近似值有2个有效数字。 (3)绝对误差: 22()3.141592653.1428571430.0012644930.00137exLL

相对误差: . . 3()0.0013()0.4110227rexexx

有效数字: 因为π=3.14159265…=0.314159265…×10, 223.1428571430.3142857143107,m=1。

而223.141592653.1428571430.0012644937LL 所以

2213223.141592653.1428571430.0012644930.0057110.510101022

LL

所以,227作为π的近似值有3个有效数字。 (4)绝对误差: 355()3.141592653.141592920.00000027050.000000271113exLL

相对误差: 7()0.000000271()0.86310355113rexexx

有效数字: 因为π=3.14159265…=0.314159265…×10, 3553.141592920.31415929210113,m=1。

而3553.141592653.141592920.0000002705113LL 所以

66173553.141592653.141592920.00000027050.0000005113110.510101022

LL

所以,355113作为π的近似值有7个有效数字。 指出: ①实际上,本题所求得只能是绝对误差限和相对误差限,而不是绝对误差和相对误差。 . . 2、用四舍五入原则写出下列各数的具有五位有效数字的近似数。 346.7854,7.000009,0.0001324580,0.600300 解:346.7854≈346.79, 7.000009≈7.0000, 0.0001324580≈0.00013246, 0.600300≈0.60030。

指出:

注意0。 只要求写出不要求变形。 3、下列各数都是对准确数进行四舍五入后得到的近似数,试分别指出他们的绝对误差限和相对误差限和有效数字的位数。

12340.0315,0.3015,31.50,5000xxxx。

分析:首先,本题的准确数未知,因此绝对误差限根据四舍五入规则确定。其次,应当先求绝对误差限,再求相对误差限,最后确定有效数字个数。有效数字由定义可以直接得出。 解:由四舍五入的概念,上述各数的绝对误差限分别是 1234()0.00005,()0.00005,()0.005,()0.5xxxx

由绝对误差和相对误差的关系,相对误差限分别是 11

1

22

2

33

3

44

4

()0.00005()0.16%,0.0315()0.00005()0.02%,0.3015()0.005()0.002%,31.5()0.5()0.01%.5000xxxxxxxxxxxx

 有效数字分别有3位、4位、4位、4位。 指出:

本题显然是直接指出有效数位、直接写出绝对误差,用定义求出相对误差。 . . 4.计算10的近似值,使其相对误差不超过0.1%。 解:设取n个有效数字可使相对误差小于0.1%,则 111100.1%2na,

而3104,显然13a,此时, 1111110100.1%223nna,

即13110106n, 也即461010n 所以,n=4。 此时,103.162。 5、在计算机数系F(10,4,-77,77)中,对31120.14281100.31415910xx与,试求它们的机器浮点数()(1,2)iflxi及

其相对误差。 解: 33331111

11112222

()0.142810,(())()0.14281100.1428100.0000110,()0.314210,(())()0.31415910(0.314210)0.0004110flxeflxxflxflxeflxxflx

其相对误差分别是 311231

0.00001100.000041100.007%,0.013%0.1428100.314210ee

。

6、在机器数系F(10,8,L,U)中,取三个数4220.2337125810,0.3367842910,0.3367781110xyz,试按

(),()xyzxyz两种算法计算xyz的值,并将结果与精确结果比较。 解: 422222222(())(0.23371258100.3367842910)0.3367781110(0.00000023100.3367842910)0.33677811100.33678452100.33677811100.0000064110flxyz

 42242222(())0.2337125810(0.33678429100.3367781110)0.23371258100.00000618100.00000023100.00000618100.0000064110flxyz

 精确计算得: . . 4222222220.23371258100.33678429100.3367781110(0.00000023371258100.3367842910)0.33677811100.33678452371258100.33677811100.000064137125810xyz

 第一种算法按从小到大计算,但出现了两个数量级相差较大的数相加,容易出现大数吃小数.而第二种算法则出现了两个相近的数相减,容易导致有效数位的减少。计算结果证明,两者精度水平是相同的。 ***

在机器数系F(10,8,L,U)中,取三个数

4220.2337125810,0.3367842910,0.3367781110xyz,试按

(),()xyzxyz两种算法计算xyz的值,并将结果与精确结果比较。 解: 42222222222(())(0.23371258100.3367842910)0.3367781110(0.00233713100.3367842910)0.33677811100.33912142100.33677811100.00003391100.33677811100.336744210flxyz



42242242222(())0.2337125810(0.33678429100.3367781110)0.2337125810(0.00003368100.3367781110)0.23371258100.33674742100.00000023100.33674742100.3367471910flxyz



第一种算法是按从小到大的顺序计算的,防止了大数吃小数,计算更精确。 精确计算得: 42220.23371258100.33678429100.33677811100.0000233712580.003367842933.6778110.00339121415833.67781133.6744197858420.3367441978584210xyz



相关文档
最新文档