【配套K12】高一数学上学期期末模拟试卷(二)(含解析)
【好题】高一数学上期末模拟试题(附答案)

【好题】高一数学上期末模拟试题(附答案)一、选择题1.已知()f x 在R 上是奇函数,且2(4)(),(0,2)()2,(7)f x f x x f x x f +=∈==当时,则 A .-2B .2C .-98D .982.设a b c ,,均为正数,且122log aa =,121log 2bb ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭.则( ) A .a b c <<B .c b a <<C .c a b <<D .b a c <<3.已知函数1()log ()(011a f x a a x =>≠+且)的定义域和值域都是[0,1],则a=( ) A .12B .2C .22D .24.设f(x)=()2,01,0x a x x a x x ⎧-≤⎪⎨++>⎪⎩若f(0)是f(x)的最小值,则a 的取值范围为( ) A .[-1,2] B .[-1,0] C .[1,2] D .[0,2]5.下列函数中,值域是()0,+∞的是( ) A .2y x = B .211y x =+ C .2x y =-D .()lg 1(0)y x x =+>6.函数()f x 的反函数图像向右平移1个单位,得到函数图像C ,函数()g x 的图像与函数图像C 关于y x =成轴对称,那么()g x =( ) A .(1)f x +B .(1)f x -C .()1f x +D .()1f x -7.已知函数()y f x =是偶函数,(2)y f x =-在[0,2]是单调减函数,则( ) A .(1)(2)(0)f f f -<< B .(1)(0)(2)f f f -<< C .(0)(1)(2)f f f <-<D .(2)(1)(0)f f f <-<8.点P 从点O 出发,按逆时针方向沿周长为l 的平面图形运动一周,O ,P 两点连线的距离y 与点P 走过的路程x 的函数关系如图所示,则点P 所走的图形可能是A .B .C .D .9.曲线241(22)y x x =-+-≤≤与直线24y kx k =-+有两个不同的交点时实数k 的范围是( ) A .53(,]124B .5(,)12+∞ C .13(,)34D .53(,)(,)124-∞⋃+∞ 10.函数()()212ln 12f x x x =-+的图象大致是( ) A .B .C .D .11.设函数()1x2,x 12f x 1log x,x 1-≤⎧=->⎨⎩,则满足()f x 2≤的x 的取值范围是( )A .[]1,2- B .[]0,2C .[)1,∞+D .[)0,∞+ 12.对数函数且与二次函数在同一坐标系内的图象可能是( )A .B .C .D .二、填空题13.已知1,0()1,0x f x x ≥⎧=⎨-<⎩,则不等式(2)(2)5x x f x +++≤的解集为______.14.已知函数()22ln 0210x x f x x x x ⎧+=⎨--+≤⎩,>,,若存在互不相等实数a b c d 、、、,有()()()()f a f b f c f d ===,则+++a b c d 的取值范围是______.15.已知函数()()1123121x a x a x f x x -⎧-+<=⎨≥⎩的值域为R ,则实数a 的取值范围是_____.16.已知函数2()2f x x ax a =-+++,1()2x g x +=,若关于x 的不等式()()f x g x >恰有两个非负整数....解,则实数a 的取值范围是__________. 17.对于函数()y f x =,若存在定义域D 内某个区间[a ,b ],使得()y f x =在[a ,b ]上的值域也为[a ,b ],则称函数()y f x =在定义域D 上封闭,如果函数4()1xf x x=-+在R 上封闭,则b a -=____. 18.若函数()121xf x a =++是奇函数,则实数a 的值是_________. 19.已知sin ()(1)x f x f x π⎧=⎨-⎩(0)(0)x x <>则1111()()66f f -+为_____20.已知函数()f x 为R 上的增函数,且对任意x ∈R 都有()34xf f x ⎡⎤-=⎣⎦,则()4f =______. 三、解答题21.已知函数2()(8)f x ax b x a ab =+--- 的零点是-3和2 (1)求函数()f x 的解析式.(2)当函数()f x 的定义域是0,1时求函数()f x 的值域.22.已知函数()212xxk f x -=+(x ∈R ) (1)若函数()f x 为奇函数,求实数k 的值;(2)在(1)的条件下,若不等式()()240f ax f x +-≥对[]1,2x ∈-恒成立,求实数a的取值范围. 23.计算或化简:(1)112320412730.1log 321664π-⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭; (2)6log 3332log 27log 2log 36lg 2lg 5-⋅---.24.已知.(1)若函数的定义域为,求实数的取值范围; (2)若函数在区间上是递增的,求实数的取值范围.25.如图,OAB ∆是等腰直角三角形,ABO 90∠=,且直角边长为2,记OAB ∆位于直线()0x t t =>左侧的图形面积为()f t ,试求函数()f t 的解析式.26.设全集为R ,集合A ={x |3≤x <7},B ={x |2<x <6},求∁R (A ∪B ),∁R (A ∩B ),(∁R A )∩B ,A ∪(∁R B ).【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】∵f(x+4)=f(x),∴f(x)是以4为周期的周期函数,∴f(2 019)=f(504×4+3)=f(3)=f(-1).又f(x)为奇函数,∴f(-1)=-f(1)=-2×12=-2,即f(2 019)=-2. 故选A2.A解析:A 【解析】试题分析:在同一坐标系中分别画出2,xy =12xy ⎛⎫= ⎪⎝⎭,2log y x =,12log y x =的图象,2xy =与12log y x =的交点的横坐标为a ,12xy ⎛⎫= ⎪⎝⎭与12log y x =的图象的交点的横坐标为b ,12xy ⎛⎫= ⎪⎝⎭与2log y x =的图象的交点的横坐标为c ,从图象可以看出.考点:指数函数、对数函数图象和性质的应用.【方法点睛】一般一个方程中含有两个以上的函数类型,就要考虑用数形结合求解,在同一坐标系中画出两函数图象的交点,函数图象的交点的横坐标即为方程的解.3.A解析:A 【解析】 【分析】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数,但在[0,1]上为减函数,得0<a<1,把x=1代入即可求出a 的值.【详解】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数, 但在[0,1]上为减函数,∴0<a<1,当x=1时,1(1)log ()=-log 2=111a a f =+, 解得1=2a ,本题考查了函数的值与及定义域的求法,属于基础题,关键是先判断出函数的单调性. 点评:做此题时要仔细观察、分析,分析出(0)=0f ,这样避免了讨论.不然的话,需要讨论函数的单调性.4.D解析:D 【解析】 【分析】由分段函数可得当0x =时,2(0)f a =,由于(0)f 是()f x 的最小值,则(,0]-∞为减函数,即有0a ≥,当0x >时,1()f x x a x=++在1x =时取得最小值2a +,则有22a a ≤+,解不等式可得a 的取值范围.【详解】因为当x≤0时,f(x)=()2x a -,f(0)是f(x)的最小值, 所以a≥0.当x >0时,1()2f x x a a x=++≥+,当且仅当x =1时取“=”. 要满足f(0)是f(x)的最小值,需22(0)a f a +>=,即220a a --≤,解得12a -≤≤, 所以a 的取值范围是02a ≤≤, 故选D. 【点睛】该题考查的是有关分段函数的问题,涉及到的知识点有分段函数的最小值,利用函数的性质,建立不等关系,求出参数的取值范围,属于简单题目.5.D解析:D 【解析】 【分析】利用不等式性质及函数单调性对选项依次求值域即可. 【详解】对于A :2y x =的值域为[)0,+∞;对于B :20x ≥,211x ∴+≥,21011x ∴<≤+, 211y x ∴=+的值域为(]0,1; 对于C :2xy =-的值域为(),0-∞; 对于D :0x >,11x ∴+>,()lg 10x ∴+>,()lg 1y x ∴=+的值域为()0,+∞;【点睛】此题主要考查函数值域的求法,考查不等式性质及函数单调性,是一道基础题.6.D解析:D 【解析】 【分析】首先设出()y g x =图象上任意一点的坐标为(,)x y ,求得其关于直线y x =的对称点为(,)y x ,根据图象变换,得到函数()f x 的图象上的点为(,1)x y +,之后应用点在函数图象上的条件,求得对应的函数解析式,得到结果. 【详解】设()y g x =图象上任意一点的坐标为(,)x y , 则其关于直线y x =的对称点为(,)y x , 再将点(,)y x 向左平移一个单位,得到(1,)y x +, 其关于直线y x =的对称点为(,1)x y +, 该点在函数()f x 的图象上,所以有1()y f x +=, 所以有()1y f x =-,即()()1g x f x =-, 故选:D. 【点睛】该题考查的是有关函数解析式的求解问题,涉及到的知识点有点关于直线的对称点的求法,两个会反函数的函数图象关于直线y x =对称,属于简单题目.7.C解析:C 【解析】 【分析】先根据()2y f x =-在[]0,2是单调减函数,转化出()y f x =的一个单调区间,再结合偶函数关于y 轴对称得[]02,上的单调性,结合函数图像即可求得答案 【详解】()2y f x =-在[]0,2是单调减函数,令2t x =-,则[]20t ,∈-,即()f t 在[]20-,上是减函数 ()y f x ∴=在[]20-,上是减函数函数()y f x =是偶函数,()y f x ∴=在[]02,上是增函数 ()()11f f -=,则()()()012f f f <-<【点睛】本题是函数奇偶性和单调性的综合应用,先求出函数的单调区间,然后结合奇偶性进行判定大小,较为基础.8.C解析:C 【解析】 【分析】认真观察函数图像,根据运动特点,采用排除法解决. 【详解】由函数关系式可知当点P 运动到图形周长一半时O,P 两点连线的距离最大,可以排除选项A,D,对选项B 正方形的图像关于对角线对称,所以距离y 与点P 走过的路程x 的函数图像应该关于2l对称,由图可知不满足题意故排除选项B , 故选C . 【点睛】本题考查函数图象的识别和判断,考查对于运动问题的深刻理解,解题关键是认真分析函数图象的特点.考查学生分析问题的能力.9.A解析:A 【解析】试题分析:1(22)y x =-≤≤对应的图形为以0,1为圆心2为半径的圆的上半部分,直线24y kx k =-+过定点()2,4,直线与半圆相切时斜率512k =,过点()2,1-时斜率34k =,结合图形可知实数k 的范围是53(,]124考点:1.直线与圆的位置关系;2.数形结合法10.A解析:A 【解析】函数有意义,则:10,1x x +>∴>-, 由函数的解析式可得:()()21002ln 0102f =⨯-+=,则选项BD 错误; 且211111112ln 1ln ln 402222848f ⎛⎫⎛⎫⎛⎫-=⨯--⨯-+=-=+> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则选项C 错误; 本题选择A 选项.点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.11.D解析:D 【解析】 【分析】分类讨论:①当x 1≤时;②当x 1>时,再按照指数不等式和对数不等式求解,最后求出它们的并集即可. 【详解】当x 1≤时,1x 22-≤的可变形为1x 1-≤,x 0≥,0x 1∴≤≤. 当x 1>时,21log x 2-≤的可变形为1x 2≥,x 1∴≥,故答案为[)0,∞+. 故选D . 【点睛】本题主要考查不等式的转化与求解,应该转化特定的不等式类型求解.12.A解析:A 【解析】 【分析】根据对数函数的单调性,分类讨论,结合二次函数的图象与性质,利用排除法,即可求解,得到答案. 【详解】 由题意,若,则在上单调递减,又由函数开口向下,其图象的对称轴在轴左侧,排除C ,D.若,则在上是增函数,函数图象开口向上,且对称轴在轴右侧,因此B 项不正确,只有选项A 满足. 【点睛】本题主要考查了对数函数与二次参数的图象与性质,其中解答中熟记二次函数和对数的函数的图象与性质,合理进行排除判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.二、填空题13.【解析】当时解得;当时恒成立解得:合并解集为故填:解析:3{|}2x x ≤【解析】当20x +≥时,()()()22525x x f x x x +++≤⇔++≤,解得 322x -≤≤;当20x +<时,()()()22525x x f x x x +++≤⇔-+≤,恒成立,解得:2x <-,合并解集为32x x ⎧⎫≤⎨⎬⎩⎭ ,故填:32x x ⎧⎫≤⎨⎬⎩⎭. 14.【解析】【分析】不妨设根据二次函数对称性求得的值根据绝对值的定义求得的关系式将转化为来表示根据的取值范围求得的取值范围【详解】不妨设画出函数的图像如下图所示二次函数的对称轴为所以不妨设则由得得结合图解析:341112,1e e e ⎡⎫+--⎪⎢⎣⎭【解析】 【分析】不妨设,0,,0a b c d ≤>,根据二次函数对称性求得+a b 的值.根据绝对值的定义求得,c d 的关系式,将d 转化为c 来表示,根据c 的取值范围,求得+++a b c d 的取值范围. 【详解】不妨设,0,,0a b c d ≤>,画出函数()f x 的图像如下图所示.二次函数221y x x =--+的对称轴为1x =-,所以2a b +=-.不妨设c d <,则由2ln 2ln c d +=+得2ln 2ln c d --=+,得44,e cd e d c--==,结合图像可知12ln 2c ≤+<,解得(43,c e e --⎤∈⎦,所以(()4432,e a b c d c c e e c ---⎤+++=-++∈⎦,由于42e y x x-=-++在(43,e e --⎤⎦上为减函数,故4341112,21e e e c c e -⎡⎫+--++∈⎢⎣-⎪⎭.【点睛】本小题主要考查分段函数的图像与性质,考查二次函数的图像,考查含有绝对值函数的图像,考查数形结合的数学思想方法,属于中档题.15.【解析】【分析】根据整个函数值域为R 及分段函数右段的值域可判断出左段的函数为单调性递增且最大值大于等于1即可求得的取值范围【详解】当时此时值域为若值域为则当时为单调递增函数且最大值需大于等于1即解得解析:10,2⎡⎫⎪⎢⎣⎭【解析】 【分析】根据整个函数值域为R 及分段函数右段的值域,可判断出左段的函数为单调性递增,且最大值大于等于1,即可求得a 的取值范围. 【详解】当1x ≥时,()12x f x -=,此时值域为[)1,+∞ 若值域为R ,则当1x <时.()()123f x a x a =-+为单调递增函数,且最大值需大于等于1即1201231a a a ->⎧⎨-+≥⎩,解得102a ≤< 故答案为:10,2⎡⎫⎪⎢⎣⎭【点睛】本题考查了分段函数值域的关系及判断,指数函数的性质与一次函数性质的应用,属于中档题.16.【解析】【分析】由题意可得f (x )g (x )的图象均过(﹣11)分别讨论a >0a <0时f (x )>g (x )的整数解情况解不等式即可得到所求范围【详解】由函数可得的图象均过且的对称轴为当时对称轴大于0由题解析:310,23⎛⎤⎥⎝⎦【解析】 【分析】由题意可得f (x ),g (x )的图象均过(﹣1,1),分别讨论a >0,a <0时,f (x )>g (x )的整数解情况,解不等式即可得到所求范围. 【详解】由函数2()2f x x ax a =-+++,1()2x g x +=可得()f x ,()g x 的图象均过(1,1)-,且()f x 的对称轴为2ax =,当0a >时,对称轴大于0.由题意可得()()f x g x >恰有0,1两个整数解,可得(1)(1)310(2)(2)23f g a f g >⎧⇒<≤⎨≤⎩;当0a <时,对称轴小于0.因为()()11f g -=-,由题意不等式恰有-3,-2两个整数解,不合题意,综上可得a 的范围是310,23⎛⎤⎥⎝⎦. 故答案为:310,23⎛⎤ ⎥⎝⎦. 【点睛】本题考查了二次函数的性质与图象,指数函数的图像的应用,属于中档题.17.6【解析】【分析】利用定义证明函数的奇偶性以及单调性结合题设条件列出方程组求解即可【详解】则函数在R 上为奇函数设即结合奇函数的性质得函数在R 上为减函数并且由题意可知:由于函数在R 上封闭故有解得:所以解析:6 【解析】 【分析】利用定义证明函数()y f x =的奇偶性以及单调性,结合题设条件,列出方程组,求解即可. 【详解】44()()11x xf x f x x x--=-==-+-+,则函数()f x 在R 上为奇函数设120x x ≤<,4()1xf x x=-+ ()()()2112121212444()()01111x x x x f x f x x x x x --=-+=>++++,即12()()f x f x >结合奇函数的性质得函数()f x 在R 上为减函数,并且(0)0f = 由题意可知:0,0a b <>由于函数()f x 在R 上封闭,故有4141()()a bab f a b f b aa b -=-⎧⎪=⎧⎪⇒⎨⎨=⎩-=+⎪⎪⎩,解得:3,3a b =-=所以6b a -= 故答案为:6 【点睛】本题主要考查了利用定义证明函数的奇偶性以及单调性,属于中档题.18.【解析】【分析】由函数是奇函数得到即可求解得到答案【详解】由题意函数是奇函数所以解得当时函数满足所以故答案为:【点睛】本题主要考查了利用函数的奇偶性求解参数问题其中解答中熟记奇函数的性质是解答的关键解析:12- 【解析】 【分析】由函数()f x 是奇函数,得到()010021f a =+=+,即可求解,得到答案. 【详解】由题意,函数()121x f x a =++是奇函数,所以()010021f a =+=+,解得12a =-, 当12a =-时,函数()11212xf x =-+满足()()f x f x -=-, 所以12a =-. 故答案为:12-. 【点睛】本题主要考查了利用函数的奇偶性求解参数问题,其中解答中熟记奇函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.19.0【解析】【分析】根据分段函数的解析式代入求值即可求解【详解】因为则所以【点睛】本题主要考查了分段函数求值属于中档题解析:0 【解析】 【分析】根据分段函数的解析式,代入求值即可求解. 【详解】因为sin ()(1)x f x f x π⎧=⎨-⎩(0)(0)x x <> 则11111()sin()sin 6662f ππ-=-==, 11511()()()sin()66662f f f π==-=-=-, 所以1111()()066f f -+=.【点睛】本题主要考查了分段函数求值,属于中档题.20.【解析】【分析】采用换元法结合函数的单调性计算出的解析式从而即可求解出的值【详解】令所以又因为所以又因为是上的增函数且所以所以所以故答案为:【点睛】本题考查用换元法求解函数的解析式并求值难度一般已知 解析:82【解析】 【分析】采用换元法结合函数的单调性计算出()f x 的解析式,从而即可求解出()4f 的值. 【详解】令()3xf x t -=,所以()3xf x t =+,又因为()4f t =,所以34t t +=,又因为34ty t =+-是R 上的增函数且1314+=,所以1t =, 所以()31xf x =+,所以()443182f =+=.故答案为:82. 【点睛】本题考查用换元法求解函数的解析式并求值,难度一般.已知()()f g x 的解析式,可考虑用换元的方法(令()g x t =)求解出()f x 的解析式.三、解答题21.(1)2()3318f x x x =--+(2)[12,18] 【解析】 【分析】 【详解】 (1)832,323,5b a aba b a a----+=--⨯=∴=-= ,()23318f x x x =--+ (2)因为()23318f x x x =--+开口向下,对称轴12x =- ,在[]0,1单调递减,所以()()max min 0,18,1,12x f x x f x ====当当 所以函数()f x 的值域为[12,18] 【点睛】本题将函数的零点、解析式、最大小值等有关知识与性质有机整合在一起,旨在考查函数的表示、零点、最大小值等基础知识及综合运用.求解时先依据函数零点与方程的根之间的关系,求出函数解析式中的参数的值;解答第二问时,借助二次函数的图像和性质,运用数形结合的数学思想求出最大小值从而使得问题获解. 22.(1)1k =(2)30a -≤≤ 【解析】 【分析】(1)根据()00f =计算得到1k =,再验证得到答案.(2)化简得到()()24f x f ax -≥-对[]1,2x ∈-恒成立,确定函数单调递减,利用单调性得到240x ax +-≤对[]1,2x ∈-恒成立,计算得到答案. 【详解】(1)因为()f x 为奇函数且定义域为R ,则()00f =,即002021k -=+,所以1k =.当1k =时因为()f x 为奇函数,()()12212121x x x x f x f x -----===-++,满足条件()f x 为奇函数.(2)不等式()()240f ax f x +-≥对[]1,2x ∈-恒成立即()()24f x f ax -≥-对[]1,2x ∈-恒成立,因为()f x 为奇函数,所以()()24f x f ax -≥-对[]1,2x ∈-恒成立(*)在R 上任取1x ,2x ,且12x x <,则()()()21121212122221212()()12121212x x x x x x x x f x f x ----=-=++++, 因为21x x >,所以1120x +>,2120x +>,21220x x ->, 所以()()120f x f x ->,即()()12f x f x >, 所以函数()f x 在区间(1,)-+∞上单调递减; 所以(*)可化为24x ax -≤-对[]1,2x ∈-恒成立, 即240x ax +-≤对[]1,2x ∈-恒成立. 令()24g x x ax =+-,因为()g x 的图象是开口向上的抛物线,所以由()0g x ≤有对[]1,2x ∈-恒成立可得:()()10,20,g g ⎧-≤⎪⎨≤⎪⎩即140,4240,a a --≤⎧⎨+-≤⎩解得:30a -≤≤,所以实数a 的取值范围是30a -≤≤. 【点睛】本题考查了函数的奇偶性,单调性,恒成立问题,意在考查学生的综合应用能力. 23.(1)99;(2)3-. 【解析】 【分析】(1)直接根据指数与对数的性质运算即可; (2)直接利用对数运算性质即可得出. 【详解】(1)原式21123325249131log 216104-⎡⎤⎛⎫⎛⎫⎛⎫=++--⎢⎥ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦7351001442=++-- 99=.(2)原式323log 313lg 10=---31422=-- 3=-.【点睛】本题主要考查了指数对数运算性质,考查了推理能力与计算能力,属于中档题. 24.(1)(2)【解析】试题分析:(1)由于函数定义域为全体实数,故恒成立,即有,解得;(2)由于在定义域上是减函数,故根据复合函数单调性有函数在上为减函数,结合函数的定义域有,解得.试题解析:(1)由函数的定义域为可得:不等式的解集为,∴解得,∴所求的取值范围是(2)由函数在区间上是递增的得:区间上是递减的,且在区间上恒成立;则,解得25.()221,02 2144,2424,4t tf t t t tt⎧<≤⎪⎪⎪=-+-<≤⎨⎪>⎪⎪⎩【解析】【分析】分02t<≤、24t<≤和4t>三种情况讨论,当02t<≤时,直线x t=左边为直角边长为t的等腰直角三角形;当24t<≤时,由AOB∆的面积减去直角边长为4t-的等腰直角三角形面积得出()f t;当4t>时,直线x t=左边为AOB∆.综合可得出函数()y f t=的解析式.【详解】等腰直角三角形OAB∆中,ABO90∠=,且直角边长为22,所以斜边4OA=,当02t<≤时,设直线x t=与OA、OB分别交于点C、D,则OC CD t==,()212f t t∴=;当24t<≤时,设直线x t=与OA、AB分别交于点E、F,则4EF EA t==-,()()221112222444222f t t t t∴=⨯-=-+-.当4t >时,()4f t =.综上所述,()221,022144,2424,4t t f t t t t t ⎧<≤⎪⎪⎪=-+-<≤⎨⎪>⎪⎪⎩.【点睛】本题考查分段函数解析式的求解,解题时要注意对自变量的取值进行分类讨论,注意处理好各段的端点,考查分析问题和解决问题的能力,属于中等题. 26.见解析 【解析】 【分析】根据题意,在数轴上表示出集合,A B ,再根据集合的运算,即可得到求解. 【详解】 解:如图所示.∴A ∪B ={x |2<x<7}, A ∩B ={x |3≤x <6}.∴∁R (A ∪B )={x |x ≤2或x ≥7},∁R (A ∩B )={x |x ≥6或x <3}. 又∵∁R A ={x |x <3或x ≥7},∴(∁R A )∩B ={x |2<x <3}. 又∵∁R B ={x |x ≤2或x ≥6},∴A∪(∁R B)={x|x≤2或x≥3}.【点睛】本题主要考查了集合的交集、并集与补集的混合运算问题,其中解答中正确在数轴上作出集合,A B,再根据集合的交集、并集和补集的基本运算求解是解答的关键,同时在数轴上画出集合时,要注意集合的端点的虚实,着重考查了数形结合思想的应用,以及推理与运算能力.。
配套K12高一数学上学期期末考试试题(扫描版)3

贵州省凯里市第一中学2015-2016学年高一数学上学期期末考试试题(扫描版)凯里一中高一年级数学期末试卷参考答案暨评分标准二、填空题(每小题16题提示:记、的夹角为,则,由及,,由的取值范围是三、解答题17.解:(1)依题意得解得…………5分(2)由(1)得由,故由,故…………8分则…………10分18.解:(1)由经过点得,又解得…………6分(2)由(1)得,由得解得(舍去由解得…………12分19.解(1)…………6分(2)…………12分20.解:(1)设的最小正周期为,依题意可得,于是得这时,,将点代入得即,又故…………6分(2)由故的取值集合…………12分21.解:由的图像经过、两点,得由有两个相异的实根,得,故的取值范围是……6分(2)由于二次函数的对称轴在区间上为减函数,在区间上为增函数,而,故在区间上的最小值为,最大值为.…………12分22.解:(1)……………4分所以,的最小正周期……………6分(2)由于在区间上是增函数,在区间上是减函数,又,故函数在区间上的最大值为,最小值为……………12分四、附加解答题23.解:(1)在静止状态时,以为原点建立如图所示直角坐标系,依题意得,,则…………6分(2)在运动状态时,仍然如上图建立直角坐标系,设,依题意得,这时,,…10分则由知,当时,的值最小,且最小值为.…15分 24.解(1)由,,,故由于当时,的值最大,且最大值为;…7分(2)由(1)得故令,则,由,则,令,易知在区间上为增函数,则,,即故当时,求函数的值域是……………15分。
2023-2024学年福建省福州高一上册期末考试数学模拟试题(含解析)

2023-2024学年福建省福州高一上册期末考试数学模拟试题一、单选题1.已知全集U =R ,集合{}23,A y y x x R ==+∈,{}24B x x =-<<,则图中阴影部分表示的集合为()A .[]2,3-B .()2,3-C .(]2,3-D .[)2,3-【正确答案】B【分析】首先求得集合A ,结合图象求得正确结论.【详解】233y x =+≥,所以[)3,A =+∞,图象表示集合为()U A B ⋂ð,()U ,3A =-∞ð,()()U 2,3A B ⋂=-ð.故选:B2.设θ∈R ,则“ππ1212θ-<”是“1sin 2θ<”的().A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】A 【详解】πππ||012126θθ-<⇔<<1sin 2θ⇒<,但10,sin 2θθ=<,不满足ππ||1212θ-<,所以是充分不必要条件,选A.充要条件【名师点睛】本题考查充要条件的判断,若p q ⇒,则p 是q 的充分条件,若q p ⇒,则p 是q 的必要条件,若p q ⇔,则p 是q 的充要条件;从集合的角度看,若A B ⊆,则A 是B 的充分条件,若B A ⊆,则A 是B 的必要条件,若A B =,则A 是B 的充要条件,若A 是B 的真子集,则A 是B 的充分不必要条件,若B 是A 的真子集,则A 是B 的必要不充分条件.3.已知1sin 412πα⎛⎫-= ⎪⎝⎭,则5cos 26πα⎛⎫+= ⎪⎝⎭()A .8B .8C .78D .78-【正确答案】D【分析】利用诱导公式可得51cos(412πα+=-,再由二倍角余弦公式求5cos 26πα⎛⎫+ ⎪⎝⎭.【详解】由51sin(cos[(1212]cos(2412ππππααα-=-+-=-+=,即51cos(412πα+=-,又255cos 22c 71os ()1628ππαα⎛⎫+=+-=- ⎪⎝⎭.故选:D4.幂函数()()222af x a a x =--在R 上单调递增,则函数()1(1)x ag x b b +=+>的图象过定点()A .(1,1)B .(1,2)C .(-3,1)D .(-3,2)【正确答案】D【分析】由函数()f x 为幂函数且在R 上单调递增,可得3a =,再由指数函数过定点(0,1),即可得函数()g x 所过的定点.【详解】解:因为()()222af x a a x =--为幂函数且在R 上单调递增,所以22210a a a ⎧--=⎨>⎩,解得3a =,所以()311(1)x ax g x bb b ++=+=+>,又因为指数函数x y a =恒过定点(0,1),所以()31(1)x g x b b +=+>恒过定点(3,2)-.故选:D.5.已知函数()34log 3ax f x x +=+在区间(]1,3-上单调递减,则实数a 的取值范围是()A .4,3⎛⎫-∞ ⎪⎝⎭B .4,43⎡⎤⎢⎥⎣⎦C .44,33⎛⎫- ⎪⎝⎭D .4,43⎛⎤- ⎥⎝⎦【正确答案】C【分析】求出函数()f x 的定义域,由单调性求出a 的范围,再由函数在(]1,3-上有意义,列式计算作答.【详解】函数33443()log =log 33ax a f x a x x +-⎛⎫=+ ⎪++⎝⎭,因为3log y x =在()0,∞+上递增,则433ay a x -=++在(]1,3-上递减,所以得430a ->,解得43a <,由(]1,3x ∀∈-,()f x 有意义得:3406a +>,解得43a >-,因此,4433a -<<,所以实数a 的取值范围是44,33⎛⎫- ⎪⎝⎭.故选:C.6.关于x 的不等式22630(0)x ax a a -+≤>的解集为[]12,x x,则1212x x -)A.-B.C.-D.【正确答案】C【分析】由题意可得12,x x 是方程22630x ax a -+=的两个根,利用根与系数的关系,可得112226,3x x x x a a ==+,再求出12x x -,代入1212x x --果.【详解】因为关于x 的不等式22630(0)x ax a a -+≤>的解集为[]12,x x ,所以12,x x 是方程22630x ax a -+=的两个根,且12x x <,所以112226,3x x x x a a ==+,所以12x x ===--,所以1212x x -=-=-⎛=- ⎝⎭≤-=-,当且仅当3a =,即a =所以1212x x -的最大值是-,故选:C7.已知函数()()lg 122x xf x x -=-++,则不等式()()12f x f x +<的解集为()A .()(),11,-∞-⋃+∞B .()2,1--C .()(),21,-∞-+∞D .()()1,1,3-∞-⋃+∞【正确答案】C【分析】首先求出函数的定义域,再判断函数的奇偶性与单调性,根据奇偶性、单调性及定义域将函数不等式转化为自变量的不等式组,解得即可.【详解】解:对于函数()()lg 122x xf x x -=-++,令10x ->,解得1x >或1x <-,所以函数的定义域为()(),11,-∞-⋃+∞,又()()()()lg 122lg 122x x x xf x x x f x ---=--++=-++=,所以()f x 为偶函数,当1x >时()()lg 122x xf x x -=-++,则()lg 1y x =-在()1,+∞上单调递增,令()22x xg x -=+,()1,x ∈+∞,所以()()2ln 22ln 222ln 20x x x x g x --'=-=->,所以()22x xg x -=+在()1,+∞上单调递增,则()f x 在()1,+∞上单调递增,从而得到()f x 在(),1-∞-上单调递减,则不等式()()12f x f x +<等价于211121x x x x ⎧>+⎪+>⎨⎪>⎩,解得1x >或<2x -,所以不等式的解集为()(),21,-∞-+∞ .故选:C8.函数()sin()0,||2f x x πωϕωϕ⎛⎫=+>≤ ⎪⎝⎭,已知,06π⎛⎫- ⎪⎝⎭为()f x 图象的一个对称中心,直线1312x π=为() f x 图象的一条对称轴,且() f x 在1319,1212ππ⎡⎤⎢⎥⎣⎦上单调递减.记满足条件的所有ω的值的和为S ,则S 的值为()A .125B .85C .165D .185【正确答案】A由一条对称轴和一个对称中心可以得到131264TkT ππ+=+或133,1264T kT k ππ+=+∈Z ,由() f x 在1319,1212ππ⎡⎤⎢⎥⎣⎦上单调递减可以得到191312122T ππ-≤,算出ω的大致范围,验证即可.【详解】由题意知:131264TkT ππ+=+或133,1264T kT k ππ+=+∈Z ∴51244k ππω⎛⎫=+⋅ ⎪⎝⎭或53244k ππω⎛⎫=+⋅ ⎪⎝⎭∴2(14)5k ω=+或2(34),5k k Zω=+∈∵()f x 在1319,1212ππ⎡⎤⎢⎥⎣⎦上单调递减,∴191312122T ππ-≤∴12222ππωω≤⋅⇒≤①当2(14)5k ω=+时,取0k =知25ω=此时2()sin 515f x x π⎛⎫=+ ⎪⎝⎭,当1319,1212x ππ⎡⎤∈⎢⎥⎣⎦时,27,515210x πππ⎡⎤+∈⎢⎥⎣⎦满足()f x 在1319,1212ππ⎡⎤⎢⎥⎣⎦上单调递减,∴25ω=符合取1k =时,2ω=,此时()sin 23f x x π⎛⎫=+ ⎪⎝⎭,当1319,1212x ππ⎡⎤∈⎢⎥⎣⎦时,572,322x πππ⎛⎫+∈ ⎪⎝⎭满足()f x 在1319,1212ππ⎡⎤⎢⎥⎣⎦上单调递减,∴2ω=符合当1k ≤-时,0ω<,舍去,当2k ≥时,2ω>也舍去②当2(34)5k ω=+时,取0k =知65ω=此时6()sin 55f x x π⎛⎫=+ ⎪⎝⎭,当1319,1212x ππ⎡⎤∈⎢⎥⎣⎦时,6321,55210x πππ⎡⎤+∈⎢⎥⎣⎦,此时()f x 在1319,1212ππ⎡⎤⎢⎥⎣⎦上单调递增,舍去当1k ≤-时,0ω<,舍去,当1k ≥时,2ω>也舍去综上:25ω=或2,212255S =+=.故选:A.本题考查三角函数的图象与性质,难度较大,易错点在于已知一条对称轴和一个对称中心要分两种情况分析.二、多选题9.下列能成为26x >充分条件的是()A .111x ->B .101000x >C .22350x x -->D .2log 4x >【正确答案】BD分别解出选项中的集合,再根据充分条件与集合的包含关系,求参数的取值范围.【详解】226log 6xx >⇒>,即{}2log 6A x x =>,分别解出选项中的集合:A.111x ->或111x -<-,得12x >或10x <-,即{12x x >或10}x <-;B.1010003x x >⇒>,即{}3x x >;C.()()223501250x x x x -->⇒+->,得52x >或1x <-,即5{2x x >或1}x <-;D.2log 416x x >⇒>,即{}16x x >,要能成为26x >充分条件,选项中的解集需是集合{}2log 6A x x =>的子集,其中只有BD 符号题意.故选:BD本题考查充分条件与集合的包含关系,重点考查计算能力,以及理解充分条件,属于基础题型.10.已知关于x 的不等式210ax bx c ++-<的解集为{}|x x αβ<<,且1βα-<,若1x ,2x 是方程20ax bx c ++=的两个不等实根,则下列关系式中正确的有()A .a<0B .12x x βα-=-C .121x x -<D .222221x x βα->-【正确答案】BC【分析】由不等式的解集,可知0a >,从而判断A 错误;根据图像的平移变换,可得变换前后对称轴不变,即122bx x aαβ+=+=-,变形后可判断B 正确;根据1βα-<,亦可判断C 正确,通过举反例12,,,0x x αβ<,即可判断D 错误.【详解】解:由题意得0a >,故A 错误,因为将二次函数21y ax bx c =++-的图像上的所有点向上平移1个单位长度,得到二次函数2y ax bx c =++的图像,所以122bx x aαβ+=+=-,即12x x βα-=-,B 正确,如图,又01βα<-<,所以121x x βα-<-<,C 正确,当120,0x x αβ<<<<时,21x x βα-=-,21x x βα+<+,所以()()()()2222222111x x x x x x βββααα-=-+<-+=-,D 错误.故选:BC.11.函数()22()41sin ()f x ax a x x a ⎡⎤=+-∈⎣⎦R 在区间[2,2]ππ-上的大致图象可能为()A .B .C .D .【正确答案】ABD【分析】根据函数图象的对称性可得函数的奇偶性,从而确定参数a 的值,再判断即可.【详解】解:对于A ,B 中函数图象关于原点对称,则对应的()f x 为奇函数,令()()2241g x ax a x =+-,则()g x 为偶函数,即()()g x g x -=,即()()22224141ax a x ax a x --=+-,所以2410a -=,解得12a =±,当12a =时,21()sin 2f x x x =,符合A 项,当12a =-时,21()sin 2f x x x =-,符合B 项.对于C ,D 中函数图象关于y 轴对称,则对应的()f x 为偶函数,令()()2241h x ax a x =+-,则()h x 为奇函数,即()()h x h x -=-,即()()22224141ax a x ax a x --=---,所以0a =,此时()sin f x x x =-,当()0,x π∈时,()0f x <,故D 正确,故C 错误;故选:ABD.12.已知函数()ln 1,e ,1e x x f x a b x x x -≥⎧⎪=⎨⎛⎫-+<< ⎪⎪⎝⎭⎩的最小值为0,e 是自然对数的底数,则()A .若()1,0a ∈-,则e eab ≥+B .若()0,1a ∈,则1b a ≤+C .若()2,e a ∈-∞-,则22e e a b <--D .若()2e ,a ∞∈+,则1b a ≥+【正确答案】AD【分析】由已知得当1e x <<时,()min 0f x ≥,对于AC ,当a<0时,()a f x b x x ⎛⎫=-+ ⎪⎝⎭为()1,e 上的减函数,则()0e f ≥,代入解不等式得解;对于BD ,当0a >时,由对勾函数ay x x =+在(x ∈上单调递减,在)x ∈+∞上单调递增,判断()a f x b x x ⎛⎫=-+ ⎪⎝⎭的单调性,求出最小值即可判断.【详解】由函数()ln 1,e,1e x x f x a b x x x -≥⎧⎪=⎨⎛⎫-+<< ⎪⎪⎝⎭⎩的最小值为0,当e x ≥时,()ln 10f x x =-≥,即[)()0,f x ∈+∞,故当1e x <<时,()a f x b x x ⎛⎫=-+ ⎪⎝⎭的值域为[)0,∞+的子集,即()min 0f x ≥对于AC ,当a<0时,()a f x b x x ⎛⎫=-+ ⎪⎝⎭为()1,e 上的减函数,又()e e e a f b ⎛⎫=-+ ⎪⎝⎭,则e 0e a b ⎛⎫-+≥ ⎪⎝⎭,即e e a b ≥+,故A 正确,C 错误;当0a >时,对勾函数ay x x=+在(x ∈上单调递减,在)x ∈+∞上单调递增,对于B ,当()0,1a ∈时,对勾函数ay x x=+在()1,e 上单调递增,则函数()a f x b x x ⎛⎫=-+ ⎪⎝⎭在()1,e 上单调递减,由A 知,e e a b ≥+,故B 错误;对于D ,当()2e ,a ∞∈+时,对勾函数a y x x=+在()1,e 上单调递减,则函数()a f x b x x ⎛⎫=-+ ⎪⎝⎭在()1,e 上单调递增,又()()11f b a =-+,则()10b a -+≥,即1b a ≥+,故D 正确;故选:AD思路点睛:本题考查已知函数的最值求参数,解题时需先求出由函数在e x ≥时的值域为[)0,∞+,进而将问题转化为当1e x <<时,函数的值域为[)0,∞+的子集,即()min 0f x ≥,分类讨论研究函数的单调性求出最值,考查学生的分析转化能力,属于难题.三、填空题13.已知函数()32f x x bx x =++为定义在[]21,3a a --上的奇函数,则a b +的值为________.【正确答案】2-【分析】根据奇函数的定义及性质计算可得.【详解】解:因为函数()f x 为定义在[]21,3a a --上的奇函数,则有2130a a -+-=,解得2a =-,又由函数()f x 为奇函数,则有()()0f x f x -+=,则()()()32320x b x x x bx x --+++-++=,所以20bx =恒成立,即0b =,所以2a b +=-;故2-14.若函数xy a =(0a >,且1a ≠),在[]2,3上的最大值比最小值大22a ,则=a ______________.【正确答案】12或32.分01a <<和1a >两种情况,根据指数函数的单调性确定最大值和最小值,根据已知得到关于实数a 的方程求解即得.【详解】若01a <<,则函数()x f x a =在区间[]2,3上单调递减,所以2max ()5f x a =-,3min ()5f x a =-,由题意得2232a a a -=,又01a <<,故12a =;若1a >,则函数()x f x a =在区间[]2,3上单调递增,所以3max ()5f x a =-,2min ()5f x a =-,由题意得2322a a a -=,又1a >,故32a =.所以a 的值为12或32.本题考查函数的最值问题,涉及指数函数的性质,和分类讨论思想,属基础题,关键在于根据指数函数的底数的不同情况确定函数的单调性.15.已知函数()sin()f x x ωϕ=+,其中0ω>,0πϕ<<,π()(4f x f ≤恒成立,且()y f x =在区间3π0,8⎛⎫⎪⎝⎭上恰有3个零点,则ω的取值范围是______________.【正确答案】()6,10【分析】确定函数的max π()()4f x f =,由此可得ππ2π,Z 24k k ωϕ=-+∈,再利用()y f x =在区间3π0,8⎛⎫ ⎪⎝⎭上恰有3个零点得到ππ02ππ243πππ3π2π4π824k k ωωω⎧<-+<⎪⎪⎨⎪<+-+≤⎪⎩,求得答案.【详解】由已知得:π()(4f x f ≤恒成立,则max π()()4f x f =,ππππ2π,Z 2π,Z 4224k k k k ωωϕϕ+=+∈⇒=-+∈,由3π0,8x ⎛⎫∈ ⎪⎝⎭得3π(,)8x ωϕϕωϕ+∈+,由于()y f x =在区间3π0,8⎛⎫⎪⎝⎭上恰有3个零点,故0π3π3π4π8ϕωϕ<<⎧⎪⎨<+≤⎪⎩,则ππ02ππ243πππ3π2π4π824k k ωωω⎧<-+<⎪⎪⎨⎪<+-+≤⎪⎩,Z k ∈,则8282,Z 20162816k k k k k ωω-<<+⎧∈⎨-<≤-⎩,只有当1k =时,不等式组有解,此时610412ωω<<⎧⎨<≤⎩,故610ω<<,故()6,1016.已知函数()12xf x ⎛⎫= ⎪⎝⎭与()()()24log 240g x x ax a =-+>,若对任意的()10,1x ∈,都存在[]20,2x ∈,使得()()12f x g x =,则实数a 的取值范围是______.【正确答案】)+∞【分析】求出函数()y f x =在区间()0,1上的值域为1,12⎛⎫⎪⎝⎭,由题意可知,由41log 12u <<,可得出24u <<,由题意知,函数224u x ax =-+在区间[]0,2上的值域包含()2,4,然后对a 分01a <<、12a ≤<、2a ≥三种情况分类讨论,求出函数224u x ax =-+在区间[]0,2上的值域,可得出关于实数a 的不等式(组),解出即可.【详解】由于函数()12xf x ⎛⎫= ⎪⎝⎭在()0,1上的减函数,则1111222x⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,即()112f x <<,所以,函数()12xf x ⎛⎫= ⎪⎝⎭在区间()0,1上的值域为1,12⎛⎫ ⎪⎝⎭.对于函数()()24log 24g x x ax =-+,内层函数为224u x ax =-+,外层函数为4log y u =.令41log 12u <<,得24u <<.由题意可知,函数224u x ax =-+在区间[]0,2上的值域包含()2,4.函数224u x ax =-+的图象开口向上,对称轴为直线0x a =>.(i )当01a <<时,函数224u x ax =-+在区间()0,a 上单调递减,在区间(],2a 上单调递增,则2min 4u a =-,{}max max 4,8484u a a =-=-,即2484a u a -≤≤-,此时,函数224u x ax =-+在区间[]0,2上的值域为24,84a a ⎡⎤--⎣⎦,由题意可得242844a a ⎧-≤⎨-≥⎩,解得a ≤a ∈∅;(ii )当12a ≤<时,函数224u x ax =-+在区间()0,a 上单调递减,在区间(],2a 上单调递增,则2min 4u a =-,{}max max 4,844u a =-=,即244a u -≤≤,此时,函数224u x ax =-+在区间[]0,2上的值域为24,4a ⎡⎤-⎣⎦,由题意可得242a -≤,解得a ≤a ≥2a ≤<;(iii )当2a ≥时,函数224u x ax =-+在区间[]0,2上单调递减,则min 84u a =-,max 4u =,则函数224u x ax =-+在区间[]0,2上的值域为[]84,4a -,由题意可得842a -≤,解得32a ≥,此时,2a ≥.综上所述,实数a 的取值范围是)+∞.本题考查指数函数与对数函数的综合问题,根据任意性和存在性将问题转化为两个函数值域的包含关系是解题的关键,在处理二次函数的值域问题时,要分析对称轴与区间的位置关系,考查分类讨论思想、化归与转化思想的应用,属于难题.四、解答题17.已知函数()f x =R .(1)求实数a 的取值集合A ;(2)设{}32B x m x m =<<+为非空集合,若x A ∈是x B ∈的必要不充分条件,求实数m 的取值范围.【正确答案】(1){}|04A a a =≤≤;(2)[)0,1.【分析】(1)由题意可知,210ax ax ++≥在R 上恒成立,在对参数a 进行分类讨论,根据二次函数的性质,即可求出结果;(2)由命题的关系与集合间的包含关系得:x A ∈是x B ∈的必要不充分条件,所以B A Ü,由此列出关系式,即可求出结果.【详解】(1)可知,210ax ax ++≥在R 上恒成立,当0a =时,10≥,成立;当0a >时,240a a ∆=-≤,解得04a <≤;综上所述,[]0,4a ∈.所以集合{}|04A a a =≤≤(2)因为,x A ∈是x B ∈的必要不充分条件.所以,B AÜ故323024m m m m <+⎧⎪≥⎨⎪+≤⎩,解得01m ≤<所以,实数m 的取值范围是[)0,1.18.设()27cos cos cos2126f x x x ππ⎛⎫=++ ⎪⎝⎭.(1)求12f π⎛⎫⎪⎝⎭的值及()f x 的单调递增区间;(2)若()20,,23f παα⎛⎫∈= ⎪⎝⎭,求2sin 23απ⎛⎫+ ⎪⎝⎭的值.【正确答案】(1)1,5,,1212k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z【分析】(1)根据余弦的二倍角公式、三角恒等变换公式以及辅角公式可得()11sin 2232f x x π⎛⎫=++ ⎪⎝⎭,由此即可求出12f π⎛⎫⎪⎝⎭的值,再根据正弦函数的性质可求得()f x 的单调递增区间;(2)由(1)可得以及()23f α=,可得1sin 233πα⎛⎫+= ⎪⎝⎭,再根据0,2πα⎛⎫∈ ⎪⎝⎭和同角基本关系可得cos 23πα⎛⎫+= ⎪⎝⎭2sin 2sin2333ππαπα⎡⎤⎛⎫⎛⎫+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦和两角和的正弦公式即可求出结果.【详解】(1)解:因为()27cos cos cos2126f x x xππ⎛⎫=++ ⎪⎝⎭25cos cos cos2126x x πππ⎛⎫=+-+ ⎝⎭25cos cos cos2126x x ππ⎛⎫=-+ ⎪⎝⎭151cos 2cos cos 2266x x ππ⎡⎤⎛⎫=+-+ ⎪⎢⎥⎝⎭⎣⎦11515cos 2cos sin 2sin cos cos 2226266x x x πππ=+++112sin242x x=++11122222x x⎫=++⎪⎪⎝⎭11sin2232xπ⎛⎫=++⎪⎝⎭,所以1111sin2sin11221232222fππππ⎛⎫⎛⎫=⨯++=+=⎪ ⎪⎝⎭⎝⎭;令222,232k x k kπππππ-+≤+≤+∈Z,所以5,1212k x k kππππ-+≤≤+∈Z,所以()f x的单调递增区间为5,,1212k k kππππ⎡⎤-++∈⎢⎥⎣⎦Z;(2)解:因为()23fα=,即112sin22323πα⎛⎫++=⎪⎝⎭,所以1sin233πα⎛⎫+=⎪⎝⎭,又0,2πα⎛⎫∈ ⎪⎝⎭,所以()20,απ∈,即42,333πππα⎛⎫⎛⎫+∈⎪ ⎪⎝⎭⎝⎭,又21sin sin0333ππ=>>,所以22,33ππαπ⎛⎫⎛⎫+∈⎪ ⎪⎝⎭⎝⎭,所以cos203πα⎛⎫+<⎪⎝⎭,所以cos233πα⎛⎫+=-⎪⎝⎭,因为21sin2sin2sin22333233ππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=++=+++⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦11123236⎛⎫-=⨯+⨯-=⎪⎪⎝⎭.所以2sin23α⎛⎫+⎪⎝⎭19.某地某路无人驾驶公交车发车时间间隔t(单位:分钟)满足520t≤≤,Nt∈,经测算.该路无人驾驶公交车载客量()p t与发车时间间隔t满足:()()26010,51060,1020t tp tt⎧--≤<⎪=⎨≤≤⎪⎩,其中Nt∈.(1)求()5p,并说明()5p的实际意义:(2)若该路公交车每分钟的净收益()62410p tyt+=-(元),问当发车时间间隔为多少时,该路公交车每分钟的净收益最大?并求每分钟的最大净收益.【正确答案】(1)()535p=;发车时间间隔为5分钟时,载客量为35(2)发车时间间隔为6分钟时,该路公交车每分钟的净收益最大,最大净收益为38元.【分析】(1)将5t =代入函数()y p t =的解析式,可计算出()5p ,结合题意说明()5p 的实际意义;(2)求出函数()612410p y t+=-的解析式,分别求出该函数在区间[)5,10和[]10,20上的最大值,比较大小后可得出结论.【详解】(1)()()256051035p =--=,实际意义为:发车时间间隔为5分钟时,载客量为35;(2)()62410p t y t+=- ,∴当510t £<时,()23606102421610110611038t y t tt --+⎛⎫=-=-+≤-= ⎪⎝⎭,当且仅当2166t t=,即6t =时,等号成立,所以,当6t =时,y 取得最大值38;当1020t ≤≤时,660243841010y t t⨯+=-=-,该函数在区间[]10,20上单调递减,则当10t =时,y 取得最大值28.4.综上所述,当发车时间间隔为6分钟时,该路公交车每分钟的净收益最大,最大净收益为38元.20.已知()(),f x g x 分别是定义在R 上的奇函数和偶函数,且()()xf xg x e+=(1)分别求出函数()(),f x g x 的解析式;(2)若)1ln1,ln2x ⎛⎫∀∈- ⎪⎪⎝⎭,都有()()()22240m f x mg x m -+->成立,求实数m 的取值范围.【正确答案】(1)()(),22x x x xe e e ef xg x ---+==(2)52,2⎡--⎢⎣⎦【分析】(1)利用函数的奇偶性,根据()()xf xg x e +=,得到()()x f x g x e --+=,两式联立解得答案.(2)用换元法,将原问题转化为()22260mt m t m +-->在()2,1t ∈--上恒成立的问题,然后根据二次函数在给定区间上的值的情况,分类讨论解答.【详解】(1)(1)()()xf xg x e += ,①()()x f x g x e -∴-+-=,()(),f x g x Q 分别是定义在R 上的奇函数和偶函数,()()x f x g x e -∴-+=,由①②可得:()(),22x x x x e e e e f x g x ---+==;(2)()())221,2,ln 1,ln222x x x x e e e e f x g x x --⎛⎫-+==∈ ⎪ ⎪⎝⎭令x x t e e -=-,则()2222,1,2x x t e e t -∈--+=+,∴原命题等价转化为:()22260mt m t m +-->在()2,1t ∈--上恒成立,(i )当0m =时,则20t ->在()2,1t ∈--上恒成立,0m ∴=成立.(ii )当0m >时,则等价转化为:2260t m t m ⎛⎫+--> ⎪⎝⎭在()2,1t ∈--上恒成立,令()226h t t m t m ⎛⎫=+-- ⎪⎝⎭,要满足题意,()()060,10h h =-<∴-≥ ,解得:25m m-≤-,又50,02m m ->∴<≤(iii )当0m <时,则等价转化为:2260t m t m ⎛⎫+--< ⎪⎝⎭在()2,1t ∈--上恒成立令()226h t t m t m ⎛⎫=+-- ⎪⎝⎭,要满足题意,()()060,20h h =-<∴-≤ ,解得:21m -≤≤,又0,20m m <∴-≤<,综上,实数m 的取值范围为⎡-⎢⎣⎦21.已知函数()1π2cos cos 23f x x x ⎛⎫=-⋅+ ⎪⎝⎭,其中π2ϕ<.(1)()12f ϕ=,求ϕ的值;(2)设函数()π212x g x f ωϕ+⎛⎫=+ ⎪⎝⎭,其中常数0ω>.若函数()g x 的一个单调减区间内有一个零点2π3-,且其图象过点7π,13A ⎛⎫⎪⎝⎭,记函数()g x 的最小正周期为T ,试求T 取最大值时函数()g x 的解析式.【正确答案】(1)π6ϕ=(2)()72πsin 69g x x ⎛⎫=- ⎪⎝⎭【分析】(1)利用两角和的余弦公式、二倍角公式以及辅助角公式可得()πsin 26f x x ⎛⎫=- ⎪⎝⎭,结合条件即可求解;(2)()()sin g x x ωϕ=+,由题设可得1π7π2π23k ωϕ=-+,1k Z ∈和2π2π3π2k ϕω-=+,2k Z ∈,令12Z k k k =-∈,则416k ω-=,进而由周期最大时确定ω、ϕ的值,进而求解.【详解】(1)()21π1ππ12cos cos 2cos cos cos sin sin cos sin232332f x x x x x x x x x ⎛⎫⎛⎫=-⋅+=-⋅⋅-⋅=-⋅ ⎪ ⎪⎝⎭⎝⎭,即()1πsin 2cos 2sin 2226f x x x x ⎛⎫=-=- ⎪⎝⎭,所以()π1sin 262f ϕϕ⎛⎫=-= ⎪⎝⎭,所以ππ22π66k ϕ-=+或π5π22π66k ϕ-=+,Z k ∈,则ππ6k ϕ=+或ππ2k ϕ=+,Z k ∈,又因为π2ϕ<,所以π6ϕ=.(2)()()πsin 212x g x f x ωϕωϕ+⎛⎫=+=+ ⎪⎝⎭,因为函数图象过点7π,13A ⎛⎫⎪⎝⎭,所以7π7πsin 133g ωϕ⎛⎫⎛⎫=+= ⎪⎪⎝⎭⎝⎭,则17ππ2π32k ωϕ+=+,1k Z ∈,所以1π7π2π23k ωϕ=-+,1k Z ∈.又函数()g x 的一个单调减区间内有一个零点2π3-,所以2π22π3πk ϕω+=+-,2k Z ∈,即22ππ2π3k ωϕ=++,2k Z ∈.所以()122136k k ω-=-,令12Z k k k =-∈,则416k ω-=,又0ω>,且2πT ω=,要使T 取最大值,则ω取最小值,当1k =时,min 12ω=,此时14π2π3k ϕ=+,1k Z ∈,由π2ϕ<,可得ϕ没有符合题意的值;当2k =时,min 76ω=,此时116π2π9k ϕ=+,1k Z ∈,由π2ϕ<,可得2π9ϕ=-,符合题意.综上所述,()72πsin 69g x x ⎛⎫=- ⎪⎝⎭.22.已知实数0a >,设函数()()()π2sin21sin cos 21,02f x a x a x x a x ⎡⎤=+-++-∈-⎢⎥⎣⎦,.(1)当2a =时,求函数f (x )的值域:(2)求|f (x )|的最大值.【正确答案】(1)17,416⎡⎤-⎢⎥⎣⎦(2)()2max123,05611,18532,1a a a a f x a a a a ⎧-<≤⎪⎪++⎪=<≤⎨⎪->⎪⎪⎩【分析】(1)令sin cos t x x =+,则24sin 24(1),x t =-即求函数f (x )的值域转化为求24(1)3y t t =-++,[1,1]t ∈-的值域,根据二次函数在闭区间的最值求法即可;(2)令sin cos t x x =+得2sin 21,x t =-从而问题转化为求函数22(1)(1)21y a t a t a =-+-+-,[1,1]t ∈-的最大值.通过分类讨论对称轴14at a-=与区间[1,1]-的位置关系,即可求解最大值.【详解】(1)当2a =时,π()4sin 2(sin cos )3,[,0]2f x x x x x =+++∈-,令ππsin cos sin()([,0])42t x x x x =++∈-,则22(sin cos )x x t +=,所以24sin 24(1),x t =-π[,0],2x ∈- ππππ[,],)[1,1]4444x x ∴+∈-∴+∈-,即[1,1]t ∈-.则221174(1)34(),816y t t t =-++=+-[1,1]t ∈- ,2117174(,4,81616y t ⎡⎤∴=+-∈-⎢⎥⎣⎦即()17,4,16f x ⎡⎤∈-⎢⎥⎣⎦所以函数f (x )的值域17,416⎡⎤-⎢⎥⎣⎦.(2)令ππsin cos sin()([,0])42t x x x x =++∈-令ππsin cos sin()([,0])42t x x x x =++∈-,则22(sin cos )x x t +=,所以2sin 21,x t =-π[,0],2x ∈- ππππ[,],)[1,1]4444x x ∴+∈-∴+∈-,即[1,1]t ∈-.则2221612(1)(1)212()48a a a y a t a t a a t a a-++=-+-+-=+-,[1,1]t ∈-令()221612()48a a a h t a t a a-++=+-,所以()h t 是对称轴为14at a -=,开口向上的抛物线,且2161(1),(1)32,()48a a a h a h a h a a-++-==-=-记|f (x )|的最大值为M .当114a t a-=≥,即105a <≤时,此时()h t 在[1,1]-上单调递减,且|||32|,23a a M a ≤-∴=-;当1014a a -≤<,即115a <≤时,此时1|()||(1)|4a h h a ->-,2618a a M a++∴=当1104a a --<<,即1a >时,此时1|()||(1)|4ah h a-<,32M a ∴=-当114aa-≤-,即103a -<<时,不符合题意舍去.2123,05611,18532,1a a a a M a a a a ⎧-<≤⎪⎪++⎪∴=<≤⎨⎪->⎪⎪⎩,即()2max 123,05611,18532,1a a a a f x a a a a ⎧-<≤⎪⎪++⎪=<≤⎨⎪->⎪⎪⎩关键点点睛:求二次函数在闭区间的最值时,要注意讨论对称轴与区间的位置关系,一般讨论对称轴在区间的左边,对称轴在区间的里面,对称轴在区间的右边.。
高一数学上册期末模拟检测试卷附答案

高一数学上册期末模拟检测试卷附答案一、选择题1.对于全集U ,命题甲“所有集合A 都满足U A A U ⋃=”,命题乙为命题甲的否定,则命题甲、乙真假判断正确的是( ) A .甲、乙都是真命题 B .甲、乙都不是真命题 C .甲为真命题,乙为假命题 D .甲为假命题,乙为真命题 2.函数()ln 4f x x x =+-的定义域为( )A .(),4-∞B .(],4-∞C .[]0,4D .(]0,43.下列说法中,错误的是( )A .“度”与“弧度”是度量角的两种不同的度量单位B .1的角是周角的1360,1rad 的角是周角的12πC .1rad 的角比1的角要大D .用角度制和弧度制度量角,都与圆的半径有关 4.已知点()3,4A ,向的OA 绕原点O 逆时针旋转3π后等于OB ,则点B 的坐标为( ) A .433343,22⎛⎫++ ⎪ ⎪⎝⎭ B .433343,22⎛⎫-+ ⎪ ⎪⎝⎭ C .343433,22⎛⎫-- ⎪ ⎪⎝⎭D .343433,22⎛⎫-+ ⎪ ⎪⎝⎭5.方程41log 2x x=-的解所在的区间是( )A .11,43⎛⎫ ⎪⎝⎭B .11,32⎛⎫ ⎪⎝⎭C .12,23⎛⎫ ⎪⎝⎭D .23,34⎛⎫ ⎪⎝⎭6.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (千帕)是气球体积V (立方米)的反比例函数,其图象如图所示,则这个函数的解析式为( )A .p =96VB .p =96V- C .p =69VD .p =96V7.若R 上的奇函数()f x 在区间(,0)-∞上单调递增,且(3)0f =,则不等式()0f x >的解集是( )A .(,3)(3,)-∞-⋃+∞B .(,3)(0,3)-∞-C .(3,0)(3,)-⋃+∞D .()3,3-8.已知函数221,0()2ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩,若函数()y f x k =-有三个零点,则实数k 的取值范围为( ) A .(2,1]--B .[2,1]--C .[1,2]D .[1,2)二、填空题9.已知函数()f x 的定义域为R ,对任意的实数想,x ,y 满足1()()()2f x y f x f y +=++,且1()02f =,下列结论正确的是( ) A .1(0)2f =-B .3(1)2f -=- C .()f x 为R 上的减函数 D .1()2+f x 为奇函数10.下列命题不正确的有( ) A .函数tan y x =在定义域内单调递增 B .若a b >,则lg lg a b >成立C .命题“0x ∃>,230ax ax +-≥”的否定是“0x ∀>,230ax ax +-<”D .已知()f x 是定义在R 上的奇函数,当(),0x ∈-∞时,()221f x x x =-++,则[)0,x ∈+∞时,函数解析式为()221f x x x =-- 11.设0b a <<,则下列不等式中正确的是( ) A .0a b +>B .2211ab a b< C .11b a a b+<+ D .22ln ln a b <12.已知函数()2cos 2,f x x x x =-∈R ,则( ) A .2()2f x -≤≤B .()f x 在区间(0,)π上只有1个零点C .()f x 的最小正周期为πD .,33x R f x f x ππ⎛⎫⎛⎫∀∈+=- ⎪ ⎪⎝⎭⎝⎭三、多选题13.已知集合{15}A x Nx =∈<<∣,则A 的非空真子集有________个. 14.方程2210x x +-=的解可视为函数2y x =+的图像与函数1y x=的图像交点的横坐标,若方程440x ax +-=的各个实根1x ,2x ,,(4)k x k 所对应的点4,i i x x ⎛⎫⎪⎝⎭(1,2,,)i k =均在直线y x =的同侧,则实数a 的取值范围是______.15.若函数sin()(0)y x ωϕω=+>的部分图象如图所示,则ω的值为_______________.16.已知14a <<,函数()[][]129,1,,,4f x x x a x a x=+∃∈∈,使得()()1280f x f x ≥,则a 的取值范围________.四、解答题17.已知a R ∈,集合{}2230A x x x =--≤,{}220B x x ax =--=.(1)若a =1,求A B ,R C A ; (2)若A B A ⋃=,求实数a 的取值范围.18.已知点()()11,A x f x ,()()22,B x f x 是函数()()2sin f x x ωϕ=+0,02πωϕ⎛⎫>-<< ⎪⎝⎭图象上的任意两点,且角ϕ的终边经过点(1,3P -,当12()()4f x f x -=时,12x x -的最小值为3π. (1)求函数()f x 的单调减区间; (2)求函数()f x 在4,99x ππ⎛⎫∈ ⎪⎝⎭内的值域; (3)若方程()23()0f x f x m ⎡⎤-+=⎣⎦在4,99x ππ⎛⎫∈ ⎪⎝⎭内有两个不相等的实数解,求实数m的取值范围.19.已知函数()f x 的图象向左平移3个单位后,再关于y 轴对称可得到函数()22g x x x =-的图象. (1)求()f x 的表达式;(2)()g x 的图象与直线y b =有两个交点时,求b 的取值范围.20.如图,已知正方形ABCD 的边长为1,点P ,Q 分别是边BC ,CD 上的动点(不与端点重合),在运动的过程中,始终保持4PAQ π∠=不变,设BAP α∠=.(1)将APQ 的面积表示成α的函数,并写出定义域; (2)求APQ 面积的最小值.21.已知函数()f x x x a =-为R 上的奇函数. (1)求实数a 的值;(2)若不等式()()2sin 2cos 0f x f t x +-≥对任意π7π,36x ⎡⎤∈⎢⎥⎣⎦恒成立,求实数t 的最小值.22.已知函数()13x mf x -⎛⎫= ⎪⎝⎭,其中m R ∈.(1)当函数()f x 为偶函数时,求m 的值; (2)若0m =,函数()()31xg x f x k=+-,[]2,0x ∈-,是否存在实数k ,使得()g x 的最小值为0?若存在,求出k 的值,若不存在,说明理由; (3)设函数()2327mx h x x =+,()()(),39,3h x x g x f x x ⎧≥⎪=⎨<⎪⎩,若对每一个不小于3的实数1x ,都有小于3的实数2x ,使得()()12g x g x =成立,求实数m 的取值范围.【参考答案】一、选择题1.C 【分析】根据集合的运算可知甲正确,由命题与其否定命题的关系可知乙的真假. 【详解】全集U ,命题甲“所有集合A 都满足U A A U ⋃=”,根据补集及并集的运算知,是真命题, 所以由乙为命题甲的否定知,乙是假命题. 故选:C 2.D 【分析】根据真数大于0,偶次根式被开方数大于等于0,即可求得答案. 【详解】由题意得040x x >⎧⎨-≥⎩,解得04x <≤,所以定义域为(]0,4.故选:D 3.D 【分析】根据角度和弧度的定义可判断各选项的正误. 【详解】对于A 选项,“度”与“弧度”是度量角的两种不同的度量单位,A 选项正确; 对于B 选项,1的角是周角的1360,1rad 的角是周角的12π,B 选项正确;对于C 选项,11180π=<,C 选项正确;对于D 选项,用角度制和弧度制度量角,都与圆的半径无关,D 选项错误. 故选:D. 【点睛】本题考查角度制与弧度制相关概念的判断,属于基础题. 4.D 【分析】设OA 与x 轴正方向所成的角为α,设OB 与y 轴正方向所成的角为β,先求出5OA =,34cos ,sin 55αα==,再结合两角和的正弦公式和余弦公式求出cos β和sin β,进而可以求出结果. 【详解】设OA 与x 轴正方向所成的角为α,设OB 与y 轴正方向所成的角为β,则3πβα=+,由题意知 5OA =,34cos ,sin 55αα==,所以cos cos cos cos sin sin 333πππβααα⎛⎫=+=-= ⎪⎝⎭sin sin sin cos cos sin 333πππβααα⎛⎫=+=+= ⎪⎝⎭所以点B 的横坐标为5cos 5β==;点B 的纵坐标为5sin 5β==;所以点B 的坐标为⎝⎭, 故选:D. 5.B 【分析】令41()log 2f x x x=+-,则利用函数零点的判定定理求得函数()f x 的零点所在区间即可.【详解】解:令41()log 2f x x x=+-,则()f x 为连续函数,又因为44111()log 32log 10333f =+-=+>,44111()log 22log 0222f =+-=<,11()()032f f <, 所以方程的解所在区间为1(3,1)2, 故选:B . 6.D 【解析】因为气球内气体的气压是气球体积的反比例函数,所以可设kp V=,由图象可知,点()1.5,64 在函数图象上,所以64 1.5k =,解得96k =,故96p V=,故选D.7.C 【分析】由奇偶性可得()f x 在(0,)+∞上单调递增,()(3)3f f -=-0=,分类讨论,利用单调性可得到结论. 【详解】定义在R 上的奇函数()f x 在区间(,0)-∞上单调递增,且f (3)0=, 则()f x 在(0,)+∞上单调递增,且()(3)3f f -=-0=, 因为()0f x >,所以()()03x f x f <⎧⇒⎨>-⎩30x -<<或()()03x f x f >⎧⇒⎨>⎩3x >. 不等式()0f x >的解集是(3,0)(3,)-⋃+∞ 故选:C . 8.A 【分析】做出函数()f x 的图像,根据图像即可求解. 【详解】函数()y f x k =-有三个零点, 即()y f x =与y k =有三个交点,()f x 的图像如下:由图像可得21k -<≤- . 故选:A【点睛】本题考查函数的零点,利用数形结合转化为两个函数的交点,属于基础题.二、填空题9.ABD 【分析】利用赋值法确定ABC 选项的正确性,根据奇偶性的定义判断D 选项的正确性.依题意1()()()2f x y f x f y +=++,且1()02f =,令0x y ==,得()()()()110000022f f f f +=++⇒=-,故A 选项正确. 令11,22x y ==-,则1111122222f f f ⎛⎫⎛⎫⎛⎫-=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 即1111012222f f ⎛⎫⎛⎫-=+-+⇒-=- ⎪ ⎪⎝⎭⎝⎭, 令12x y ==-,得1111122222f f f ⎛⎫⎛⎫⎛⎫--=-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 即()11131222222f f ⎛⎫-=-+=-+=- ⎪⎝⎭,故B 选项正确.由于()()10f f -<,故C 选项错误. 令y x =-,得()()()12f x x f x f x -=+-+, 即()()1122f x f x -=+-+,即()()11022f x f x ⎡⎤⎡⎤=++-+⎢⎥⎢⎥⎣⎦⎣⎦,所以()12f x +为奇函数,故D 选项正确. 故选:ABD 10.ABD 【分析】由正切函数的性质判断A ;由对数函数的性质判断B ;由特称命题的否定判断C ;由函数的奇偶性判断D. 【详解】对于选项A :因为tan y x =在其定义域内不具有单调性,故A 不正确; 对于选项B :若0a b >>,则lg lg a b >,故B 不正确;对于选项C :命题“0x ∃>,230ax ax +-≥”的否定是“0x ∀>,230ax ax +-<”,故C 正确;对于选项D :当0x >时,()()()222121f x f x x x x x =--=---+=+-,又()00f =,所以当[)0,x ∈+∞时,()20,021,0x f x x x x =⎧=⎨+->⎩. 故D 不正确. 故选:ABD.【分析】取特殊值判断A ,由不等式性质判断B ,由作差法判断C ,根据对数函数单调性判断D. 【详解】对于A ,1,2a b =-=-,显然不成立,故A 错;对于B ,两边同乘以22a b 可得a b <,与题意矛盾,故B 错误;对于C , 因为11111()+()(1)0a b a b a b b a b a ab +--=--=-+>,故11b a a b+<+,故C 正确;对于D ,因为0b a <<,所以22a b <,由对数函数ln y x =单调递增知22ln ln a b <,故D 正确. 故选:CD 12.ACD 【分析】利用二倍角公式和三角函数的性质对每一个选项进行判断即可. 【详解】已知函数()2cos 22sin(2)6f x x x x π=-=-,x ∈R ,A 、2()2f x -≤≤正确,B 、当26x k ππ-=,k Z ∈,即212k x ππ=+,k Z ∈,()f x 在区间(0,)π上只有2个零点7,1212x ππ=,则()f x 在区间(0,)π上只有1个零点错误,C 、()f x 的最小正周期为π,正确D 、当3x π=时,函数()2sin(2)6f x x π=-,x ∈R ,2sin 22336f πππ⎛⎫⎛⎫=⨯-= ⎪ ⎪⎝⎭⎝⎭所以3x π=为()f x 图象的一条对称轴,正确.故选:ACD .三、多选题13.6 【分析】由题意可得集合{}234A =,,,结合求子集个数的计算公式即可. 【详解】 由题意知,{}15A x N x =∈<<,所以{}234A =,,,所以集合A 的非空真子集的个数为:3226-=. 故答案为:614.()(),66,-∞-+∞【分析】原方程等价于34x a x +=,分别作出3y x a =+和4y x=的图象,分0a >和0a <讨论,利用数形结合即可得到结论. 【详解】因为方程440x ax +-=等价于34x a x+=, 原方程的实根是3y x a =+ 与曲线4y x=的交点的横坐标, 曲线3y x a =+是由曲线3y x =纵向平移||a 个单位而得到,若交点4,i i x x ⎛⎫⎪⎝⎭(1,2,,)i k =均在直线y x =的同侧,因y x =与4y x=的交点为(2,2),(2,2)--,所以结合图象可得:3022a x a x >⎧⎪+>-⎨⎪≥-⎩或3022a x a x <⎧⎪+<⎨⎪≤⎩恒成立,所以32a x >--在[2,)-+∞上恒成立,或32a x <-+在(,2]-∞上恒成立,所以3max (2)a x >--=3(2)26---=,或33min (2)226a x <-+=-+=-,即实数a 的取值范围是()(),66,-∞-+∞.故答案为: ()(),66,-∞-+∞.【点睛】本题考查了数形结合思想,等价转化思想,函数与方程,幂函数的图象,属于中档题. 15.=4ω. 【分析】由所给函数图像 过点05(,)24y π,011(,)24y π-,列式115sin()sin()2424ππωϕωϕ+=-+,利用诱导公式可得. 【详解】 由函数图像过点05(,)24y π,011(,)24y π-,得05sin()24y πωϕ=+,011sin()24y πωϕ-=+,所以115sin()sin()2424ππωϕωϕ+=-+,又两点在同一周期,所以115()2424ππωϕπωϕ+=++,4ω=.故答案为4. 【点睛】本题考查三角函数的图像与性质,考查简单三角方程的解,考查图形识别与运算求解能力,属于基础题.16.(1,4【分析】由已知得出函数的单调性,再得出()()4f a f =时,a 的值,从而分91,4a <≤9<<44a 两种情况,分别由()()12max max 80f x f x ≥解得可得a 的取值范围. 【详解】 因为()9f x x x =+,所以函数()9f x x x=+在(]0,3上单调递减,在[)3,+∞上单调递增, 当()()99444f a a f a =+==+时,解得94a =(4a =舍去),(1)当()()()()12max max 991,110804a f x f x f f a a a ⎛⎫<≤==+≥ ⎪⎝⎭,解得(1,4a ∈; (2)当()()()()12max max 99<<4,141048044a f x f x f f ⎛⎫==⨯+≥ ⎪⎝⎭,不符题意.故答案为:(1,4. 【点睛】方法点睛:对于不等式有解的问题,常常有以下情况:()m f x >有解⇔()min m f x >,()m f x <有解⇔()max m f x <.四、解答题17.(1){}12A B =-,,()()13R C A =-∞-+∞,,;(2)713⎡⎤⎢⎥⎣⎦,. 【分析】(1)当1a =,先求出集合B ,再利用集合的交集和补集计算即可;(2)先利用已知条件得到B A ⊆,由一元二次方程的根的分布建立不等式组,即可得出结果. 【详解】(1)由题意知:{}[]223013A x x x =--≤=-,,当a =1时,{}{}22012B x x x =--==-,, 所以{}12A B =-,,()()13R C A =-∞-+∞,,; (2)A B A B A ⋃=∴⊆,,因为()2+8>0a =-∆恒成立,所以B ≠∅,所以要使B A ⊆,则需()()2213211203320a a a ⎧-<<⎪⎪⎪--⨯--≥⎨⎪--≥⎪⎪⎩,解得713a ≤≤,所以实数a 的取值范围为:713⎡⎤⎢⎥⎣⎦,.18.(1)()52112,183183k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)(]0,2;(3)112⎧⎫⎨⎬⎩⎭或(]10,0- 【分析】(1)利用三角函数的定义求出ϕ的值,由题意知223T ππω==可得ω的值,进而可得()f x 的解析式,利用整体代入法以及正弦函数的单调性即可求解; (2)由x 的范围求出33x π-的范围,利用正弦函数的性质即可求解;(3)设()(]0,2f x t =∈,将问题转化为y m =-与(]23,0,2y t t t =-∈的图象只有一个交点,数形结合可得112m -=-或010m ≤-<,即可求解. 【详解】(1)因为角ϕ的终边经过点(1,P,所以tan ϕ= 因为02πϕ-<<,所以3πϕ=-,因为当12()()4f x f x -=时,12x x -的最小值为3π, 所以223T ππω==,可得:3ω=,所以()2sin 33f x x π⎛⎫=- ⎪⎝⎭,令()3232232k x k k Z πππππ+≤-≤+∈解得:()52112183183k k x k Z ππππ+≤≤+∈, 所以函数()f x 的单调减区间为()52112,183183k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ (2)当4,99x ππ⎛⎫∈ ⎪⎝⎭时,033x ππ<-<, 所以0sin 313x π⎛⎫<-≤ ⎪⎝⎭,所以()02sin 323f x x π⎛⎫<=-≤ ⎪⎝⎭,所以函数()f x 在4,99x ππ⎛⎫∈ ⎪⎝⎭内的值域为(]0,2, (3)设()(]0,2f x t =∈,因为方程()23()0f x f x m ⎡⎤-+=⎣⎦在4,99x ππ⎛⎫∈ ⎪⎝⎭内有两个不相等的实数解, 则230t t m -+=在(]0,2t ∈内有一根或两个相等的实根,因为23m t t -=-,所以y m =-与(]23,0,2y t t t =-∈的图象只有一个交点,作出y m =-与(]23,0,2y t t t =-∈的图象,由图知:当16t =时211136612y ⎛⎫=⨯-=- ⎪⎝⎭;当0t =时,0y = ;当2t =时,232210y =⨯-=, 所以112m -=-或010m ≤-≤直线y m =-与(]23,0,2y t t t =-∈的图象只有一个交点, 当10m -=时,2t =,此时方程()2sin 323f x x π⎛⎫=-= ⎪⎝⎭只有一解,不符合题意,所以112m -=-或010m ≤-<,即方程()23()0f x f x m ⎡⎤-+=⎣⎦在4,99x ππ⎛⎫∈ ⎪⎝⎭内有两个不相等的实数解, 所以:112m =或100m -<≤ 所以实数m 的取值范围为:112⎧⎫⎨⎬⎩⎭或(]10,0-19.(1)()243f x x x =-+;(2)1b =-或0b >.【分析】(1)()g x 关于y 轴对称的函数()22F x x x =+,再根据函数的平移法则得到答案.(2)将()g x 化简为分段函数,画出函数图象,根据图象得到参数范围. 【详解】(1)()g x 关于y 轴对称的函数()()2222F x x x x x =--=+,()F x 的图象向右平移3个单位可得到函数()f x 的图象,()()()2232343f x x x x x ∴=-+-=-+;(2)()2222,022,0x x x g x x x x x x ⎧-≥=-=⎨+<⎩,作出()g x 的图象可知:()g x 的图象与直线y b =有两个交点时,b 的范围:1b =-或0b >.【点睛】本题考查了函数的平移和对称,利用分段函数图象解决交点个数问题,意在考查学生的计算能力和转化能力,画出图象是解题的关键. 20.(1)11224APQSπα=⎛⎫+ ⎪⎝⎭;定义域为0,4π⎛⎫⎪⎝⎭;(221 【分析】(1)在Rt ABP 与Rt ADQ 中,利用正方形的边长,求出,AP AQ,根据三角形的面积公式即可求解. (2)由(1)利用三角函数的性质即可求解. 【详解】(1)由BAP α∠=,4PAQ π∠=,则244ADQ πππαα∠=--=-,正方形的边长为1,在Rt ABP 中,1cos AP α=, 在Rt ADQ 中,1cos 4AQ πα=⎛⎫- ⎪⎝⎭,所以1111sin 242cos cos 4APQSAP AQ ππαα=⋅⋅=⋅⋅⎛⎫- ⎪⎝⎭()211112cos cos sin 2cos cos sin αααααα=⋅=⋅++12121cos 2sin 2124ααπα=⋅=++⎛⎫+ ⎪⎝⎭,由图可知04πα<<,所以函数的定义域为0,4π⎛⎫⎪⎝⎭. (2)由04πα<<,则32444πππα<+<,1124APQS πα=⎛⎫+ ⎪⎝⎭,当sin 214πα⎛⎫+= ⎪⎝⎭,即8πα=时,APQ 面积的最小,即APQ1=. 【点睛】方法点睛:求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤: 第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式;第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值). 21.(1)0a =;(2)14.【分析】(1)由奇函数得到()x x a x x a -⋅--=-⋅-,再由多项式相等可得a ;(2)由()f x 是奇函数和已知得到()()2sin 2cos f x f x t ≥-,再利用()f x 是R 上的单调增函数得到2sin 2cos x x t ≥-对任意π7π,36x ⎡⎤∈⎢⎥⎣⎦恒成立.利用参数分离得22cos sin t x x ≥-对任意π7π,36x ⎡⎤∈⎢⎥⎣⎦恒成立,再求22cos sin x x -,π7π,36x ⎡⎤∈⎢⎥⎣⎦上最大值可得答案.【详解】(1)因为函数()f x x x a =-为R 上的奇函数, 所以()()f x f x -=-对任意x ∈R 成立, 即()x x a x x a -⋅--=-⋅-对任意x ∈R 成立, 所以--=-x a x a ,所以0a =.(2)由()()2sin 2cos 0f x f t x +-≥得()()2sin 2cos f x f t x ≥--,因为函数()f x 为R 上的奇函数, 所以()()2sin 2cos f x f x t ≥-.由(1)得,()22,0,,0,x x f x x x x x ⎧≥==⎨-<⎩是R 上的单调增函数,故2sin 2cos x x t ≥-对任意π7π,36x ⎡⎤∈⎢⎥⎣⎦恒成立.所以22cos sin t x x ≥-对任意π7π,36x ⎡⎤∈⎢⎥⎣⎦恒成立.因为()2222cos sin cos 2cos 1cos 12x x x x x -=+-=+-, 令cos m x =,由π7π,36x ⎡⎤∈⎢⎥⎣⎦,得1cos 1,2x ⎡⎤∈-⎢⎥⎣⎦,即11,2m ⎡⎤∈-⎢⎥⎣⎦.所以()212y m =+-的最大值为14,故14t ≥,即t 的最小值为14.【点睛】本题考查了函数的性质,不等式恒成立的问题,第二问的关键点是根据函数的为单调递增函数,得到2sin 2cos x x t ≥-,再利用参数分离后求22cos sin x x -π7π,36x ⎡⎤∈⎢⎥⎣⎦的最大值,考查了学生分析问题、解决问题的能力.22.(1)0m =;(2)83k =;(3)06m <<【分析】(1)由()()f x f x =-可得m 的值; (2)当[]2,0x ∈-时,()()21x xg x k =+⋅-,令1,13x t ⎡⎤=∈⎢⎥⎣⎦,则()2221124k kg t t kt t ⎛⎫=+-=+-- ⎪⎝⎭,分类讨论求出()g t 的最小值,列方程即可求解;(3)将题目的条件转化为:对于任意一条直线y k =,如果y k =与()g x 图象中满足3x ≥的部分图象有交点,则y k =必然与()g x 的图象中满足3x <的部分图象也有交点,分四种情况讨论即可得实数m 的取值范围. 【详解】(1)当函数()f x 为偶函数时,()()f x f x =-, 所以x m x m -=--,解得:0m =, 经检验,0m =符合,故0m =; (2)当[]2,0x ∈-时,()()21113xxx xg x k k ⎛⎫=+⋅-=+⋅- ⎪⎝⎭,令1,13xt ⎡⎤=∈⎢⎥⎣⎦,则()2221124k k g t t kt t ⎛⎫=+-=+-- ⎪⎝⎭,当123k -<即23k >-时,()g t 在1,13⎡⎤⎢⎥⎣⎦上单调递增, 所以2111033k ⎛⎫+-= ⎪⎝⎭,解得:83k =,符合;当1132k ≤-≤即223k -≤≤-时,2104k --=无解; 当12k ->即2k <-时,()g t 在1,13⎡⎤⎢⎥⎣⎦上单调递减, 所以110k +-=,解得:0k =,应舍去;综上,83k =;(3)()193m h x x x=⋅+,将题目的条件转化为:对于任意一条直线y k =,如果y k =与()g x 图象中满足3x ≥的部分图象有交点,则y k =必然与()g x 的图象中满足3x <的部分图象也有交点. 当3x ≥时,9y x x=+是单调递增的,所以当0m ≠时,()h x 是单调函数, 分四种情况讨论:①当0m <时,()g x 在[)3,+∞上符号是负,而在(),3-∞上符号是正的,所以不满足题目的条件;②当0m =时,当3x ≥时,()0g x =,而当3x <时,()1303xg x ⎛⎫=⋅> ⎪⎝⎭,所以也不符合条件;③当03m <<时,要满足条件只需()()93f m h >即162m <,所以03m <<;④当3m ≥时,要满足条件只需()()933f h >即732mm ->,即3log 702mm +-<, 令()3log 72mt m m =+-, 因为()t m 在[)3,+∞上单调递增,且()60t =,所以解()()06t m t <=得6m <, 所以36m ≤<,综上,实数m 的取值范围为06m <<. 【点睛】关键点睛:本题的关键是能够将题目的条件转化为:对于任意一条直线y k =,如果y k =与()g x 图象中满足3x ≥的部分图象有交点,则y k =必然与()g x 的图象中满足3x <的部分图象也有交点,结合图象就能求解出实数m 的取值范围;当然再分析当3m ≥情况时,需要构造函数()3log 72mt m m =+-,利用单调性求解不等式.。
福建省部分重点高中2023届数学高一上期末检测模拟试题含解析

20、 (1) ;(2) .
【解析】(1)依题意, 则 ,将点 的坐标代入函数的解析式可得 ,故 ,函数解析式为 .
(2)由题意可得 ,结合三角函数的性质可得函数 的值域为 .
试题解析:
(1)依题意, ,
故 .
将点 的坐标代入函数的解析式可得 ,
5、D
【解析】由于 是“ 上的优越 函数”且函数在 上单调递减,由题意得 , ,问题转化为 与 在 时有2个不同的交点,结合二次函数的性质可求
【详解】解:因为 是“ 上的优越 函数”且函数在 上单调递减,
若存在区间 ,使 在 上的值域为 ,
由题意得 , ,
所以 , ,
即 与 在 时有2个不同的交点,
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)
1.若直线经过两点 , ,且倾斜角为 ,则 的值为()
A.2B.1
C. D.
2.已知 且 ,则 ()
A.有最小值 B.有最大值
C.有最小值 D.有最大值
(3)函数 的最小值为
(4)已知函数 ,在 上单调递增,则
13.如果函数 仅有一个零点,则实数 的值为______
14.设函数 ,若关于x 方程 有且仅有6个不同的实根.则实数a的取值范围是_______.
15.如果函数 满足在集合 上的值域仍是集合 ,则把函数 称为H函数.例如: 就是H函数.下列函数:① ;② ;③ ;④ 中,______是H函数(只需填写编号)(注:“ ”表示不超过x的最大整数)
第三步:求出所求函数的值域(或最值)
【配套K12】高一数学上学期期末试卷(含解析)1

2015-2016学年北京市海淀区高一(上)期末数学试卷一、选择题:本大题共8小题,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x|﹣1≤x<2},B={x|x≥1},则A∩B=()A.(1,2) B.[﹣1,2] C.[﹣1,1] D.[1,2)2.sin(﹣)的值为()A.1 B.﹣1 C.0 D.3.若α是第二象限的角,P(x,6)为其终边上的一点,且sinα=,则x=()A.﹣4 B.±4C.﹣8 D.±84.化简=()A.cos20°B.﹣cos20°C.±cos20°D.±|cos20°|5.已知A(1,2),B(3,7),=(x,﹣1),∥,则()A.x=,且与方向相同B.x=﹣,且与方向相同C.x=,且与方向相反D.x=﹣,且与方向相反6.已知函数:①y=tanx,②y=sin|x|,③y=|sinx|,④y=|cosx|,其中周期为π,且在(0,)上单调递增的是()A.①② B.①③ C.①②③D.①③④7.先把函数y=cosx的图象上所有点向右平移个单位,再把所得各点的横坐标缩短到原来的倍(纵坐标不变),得到的函数图象的解析式为()A.y=cos(2x+)B.y=cos(2x﹣)C.y=cos(x+)D.y=cos(x﹣)8.若m是函数f(x)=﹣2x+2的一个零点,且x1∈(0,m),x2∈(m,+∞),则f(x1),f(x2),f(m)的大小关系为()A.f(x1)<f(m)<f(x2)B.f(m)<f(x2)<f(x1)C.f(m)<f(x1)<f(x2)D.f(x2)<f(m)<f(x1)二.填空题:本大题共6小题,每空4分,共24分.把答案填写在题中横线上.9.若y=log2x>1,则x的取值范围是.10.若函数f(x)=x2+3x﹣4在x∈[﹣1,3]上的最大值和最小值分别为M,N,则M+N= .11.若向量=(2,1),=(1,﹣2),且m+n=(5,﹣5)(m,n∈R),则m﹣n的值为.12.如图,在平面四边形ABCD中,AC,BD相交于点O,E为线段AO的中点,若(λ,μ∈R),则λ+μ= .13.若函数f(x)=sin(ωx+φ)(其中ω>0)在(0,)上单调递增,且f()+f()=0,f(0)=﹣1,则ω= .14.已知函数y=f(x),若对于任意x∈R,f(2x)=2f(x)恒成立,则称函数y=f(x)具有性质P,(1)若函数f(x)具有性质P,且f(4)=8,则f(1)= ;(2)若函数f(x)具有性质P,且在(1,2]上的解析式为y=cosx,那么y=f(x)在(1,8]上有且仅有个零点.三.解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. 15.已知二次函数f(x)=x2+mx﹣3的两个零点为﹣1和n,(Ⅰ)求m,n的值;(Ⅱ)若f(3)=f(2a﹣3),求a的值.16.已知函数f(x)是定义在R上的奇函数,当x≥0时,函数f(x)=2x﹣1(Ⅰ)求当x<0时,f(x)的解析式;(Ⅱ)若f(a)≤3,求a的取值范围.17.已知函数f(x)=2sin(2x﹣).(Ⅰ)求函数f(x)的单调递增区间与对称轴方程;(Ⅱ)当x∈[0,]时,求函数f(x)的最大值与最小值.18.如果f(x)是定义在R上的函数,且对任意的x∈R,均有f(﹣x)≠﹣f(x),则称该函数是“X﹣函数”.(Ⅰ)分别判断下列函数:①y=2x;②y=x+1;③y=x2+2x﹣3是否为“X﹣函数”?(直接写出结论)(Ⅱ)若函数f(x)=sinx+cosx+a是“X﹣函数”,求实数a的取值范围;(Ⅲ)已知f(x)=是“X﹣函数”,且在R上单调递增,求所有可能的集合A与B.2015-2016学年北京市海淀区高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共8小题,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x|﹣1≤x<2},B={x|x≥1},则A∩B=()A.(1,2) B.[﹣1,2] C.[﹣1,1] D.[1,2)【考点】交集及其运算.【专题】计算题;方程思想;综合法;集合.【分析】利用交集定义求解.【解答】解:∵集合A={x|﹣1≤x<2},B={x|x≥1},∴A∩B={x|1≤x<2}=[1,2).故选:D.【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集性质的合理运用.2.sin(﹣)的值为()A.1 B.﹣1 C.0 D.【考点】运用诱导公式化简求值.【专题】计算题;三角函数的求值.【分析】根据正弦函数为奇函数,利用奇函数的性质化简原式,变形后利用诱导公式及特殊角的三角函数值计算即可得到结果.【解答】解:sin(﹣)=﹣sin=﹣sin(4π+)=﹣sin=﹣1,故选:B.【点评】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.3.若α是第二象限的角,P(x,6)为其终边上的一点,且sinα=,则x=()A.﹣4 B.±4C.﹣8 D.±8【考点】任意角的三角函数的定义.【专题】方程思想;转化思想;三角函数的求值.【分析】由题意与三角函数的定义可得:=,x <0,解出即可得出.【解答】解:∵α是第二象限的角,P (x ,6)为其终边上的一点,且sin α=,∴=,x <0,解得x=﹣8. 故选:C .【点评】本题考查了三角函数的定义,考查了推理能力与计算能力,属于基础题.4.化简=( )A .cos20°B .﹣cos20°C .±cos20°D .±|cos20°|【考点】同角三角函数基本关系的运用. 【专题】计算题;三角函数的求值.【分析】被开方数第二项利用诱导公式化简,再利用同角三角函数间的基本关系变形,利用二次根式的性质化简即可得到结果. 【解答】解:∵cos20°>0,∴原式===|cos20°|=cos20°,故选:A .【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.5.已知A (1,2),B (3,7),=(x ,﹣1),∥,则( )A .x=,且与方向相同B .x=﹣,且与方向相同C .x=,且与方向相反D .x=﹣,且与方向相反【考点】平面向量共线(平行)的坐标表示.【专题】计算题;规律型;函数思想;平面向量及应用.【分析】求出AB 向量,利用斜率平行求出x ,然后判断两个向量的方向即可.【解答】解:A(1,2),B(3,7),可得=(2,5)=(x,﹣1),∥,可得5x=﹣2,解得x=﹣.=(﹣,﹣1),与方向相反.故选:D.【点评】本题考查斜率共线,向量的坐标运算,是基础题.6.已知函数:①y=tanx,②y=sin|x|,③y=|sinx|,④y=|cosx|,其中周期为π,且在(0,)上单调递增的是()A.①② B.①③ C.①②③D.①③④【考点】三角函数的周期性及其求法.【专题】计算题;数形结合;数形结合法;三角函数的图像与性质.【分析】利用三角函数的周期性,和三角函数的图象和性质对选项逐个分析即可.【解答】解:①函数y=tanx中ω=1,故周期T==π;因为利用正切函数的图象可得在(0,)上单调递增,所以A正确;③y=sin|x|为偶函数,根据图象判断它不是周期函数,所以B不正确;③由于函数y=|sinx|周期为•2π=π,利用正弦函数的图象可得在(0,)上单调递增,故正确;④y=|cosx|是周期为π的三角函数,利用余弦函数的图象可得在(0,)上单调递减,故不正确;故选:B.【点评】本题考查三角函数的周期性及其求法,考查了三角函数的图象和性质,熟练掌握各类三角函数的周期情况及求法是解决问题的关键,属于中档题.7.先把函数y=cosx的图象上所有点向右平移个单位,再把所得各点的横坐标缩短到原来的倍(纵坐标不变),得到的函数图象的解析式为()A.y=cos(2x+)B.y=cos(2x﹣)C.y=cos(x+)D.y=cos(x﹣)【考点】函数y=Asin(ωx+φ)的图象变换.【专题】计算题;转化思想;分析法;三角函数的图像与性质.【分析】利用导公式以及函数y=Asin(ωx+φ)的图象变换规律,可以求得变换后的函数的解析式.【解答】解:将函数y=cosx的图象向右平移个单位长度,可得函数y=2cos(x﹣)的图象;再将所得图象的所有点的横坐标缩短到原来的倍(纵坐标不变),可得到的函数y=2cos(2x﹣)的图象,故选:B.【点评】本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,属于中档题.8.若m是函数f(x)=﹣2x+2的一个零点,且x1∈(0,m),x2∈(m,+∞),则f(x1),f(x2),f(m)的大小关系为()A.f(x1)<f(m)<f(x2)B.f(m)<f(x2)<f(x1)C.f(m)<f(x1)<f(x2)D.f(x2)<f(m)<f(x1)【考点】函数零点的判定定理.【专题】计算题;数形结合;数形结合法;函数的性质及应用.【分析】由已知得m是函数g(x)=与h(x)=2x﹣2图象的一个交点的横坐标,由此利用数形结合思想能比较f(x1),f(x2),f(m)的大小关系.【解答】解:∵m是f(x)=﹣2x+2的一个零点,∴m是方程的一个解,即m是方程的一个解,∴m是函数g(x)=与h(x)=2x﹣2图象的一个交点的横坐标,如图所示,若x1∈(0,m),x2∈(m,+∞),则f(x2)=g(x2)﹣h(x2)<0=f(m),f(x1)=g(x1)﹣h(x1)>0=f(m),∴f(x2)<f(m)<f(x1).故选:D.【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意数形结合思想的合理运用.二.填空题:本大题共6小题,每空4分,共24分.把答案填写在题中横线上.9.若y=log2x>1,则x的取值范围是(2,+∞).【考点】指、对数不等式的解法.【专题】计算题;函数思想;数学模型法;不等式的解法及应用.【分析】直接利用对数函数的单调性求得x的取值范围.【解答】解:由y=log2x>1=log22,得x>2.∴x的取值范围是(2,+∞).故答案为:(2,+∞).【点评】本题考查对数不等式的解法,考查了对数函数的单调性,是基础题.10.若函数f(x)=x2+3x﹣4在x∈[﹣1,3]上的最大值和最小值分别为M,N,则M+N= 8 .【考点】二次函数的性质.【专题】函数思想;分析法;函数的性质及应用.【分析】求出f(x)的对称轴,可得区间[﹣1,3]为增区间,可得最值,即可得到M+m的值.【解答】解:函数f(x)=x2+3x﹣4的对称轴为x=﹣,区间[﹣1,3]在对称轴的右边,即有f(x)在区间[﹣1,3]递增,可得最小值m=f(﹣1)=﹣6;最大M=f(3)=14,可得M+m=8.故答案为:8.【点评】本题考查二次函数的最值的求法,注意讨论对称轴和区间的关系,考查运算能力,属于基础题.11.若向量=(2,1),=(1,﹣2),且m+n=(5,﹣5)(m,n∈R),则m﹣n的值为﹣2 .【考点】平面向量的坐标运算.【专题】计算题;转化思想;综合法;平面向量及应用.【分析】由已知得(2m,m)+(n,﹣2n)=(2m+n,m﹣2n)=(5,﹣5),由此能求出m﹣n的值.【解答】解:∵向量=(2,1),=(1,﹣2),且m+n=(5,﹣5)(m,n∈R),∴(2m,m)+(n,﹣2n)=(2m+n,m﹣2n)=(5,﹣5),∴,解得m=1,n=3,∴m﹣n=﹣2.故答案为:﹣2.【点评】本题考查代数式的值的求法,是基础题,解题时要认真审题,注意向量的坐标运算法则的合理运用.12.如图,在平面四边形ABCD中,AC,BD相交于点O,E为线段AO的中点,若(λ,μ∈R),则λ+μ= .【考点】平面向量的基本定理及其意义.【专题】平面向量及应用.【分析】,,可得.由E为线段AO的中点,可得,再利用平面向量基本定理即可得出.【解答】解:∵,,∴,∵E为线段AO的中点,∴,∴,2μ=,解得μ=,∴λ+μ=.故答案为:.【点评】本题考查了平面向量基本定理、向量共线定理,考查了推理能力与计算能力,属于中档题.13.若函数f(x)=sin(ωx+φ)(其中ω>0)在(0,)上单调递增,且f()+f()=0,f(0)=﹣1,则ω= 2 .【考点】y=Asin(ωx+φ)中参数的物理意义;三角函数的化简求值.【专题】计算题;转化思想;分析法;三角函数的图像与性质.【分析】由题意可得:φ≥﹣,ω•+φ≤,由f(0)=﹣1,解得φ=﹣,ω≤3,由f()+f()=0,解得:cos(π﹣ω)=cosω,即可解得ω的值.【解答】解:由函数f(x)=sin(ωx+φ)(ω>0)在区间(0,)上单调递增,可得:φ≥﹣,ω•+φ≤,∵f(0)=﹣1,解得:sinφ=﹣1,可得:φ=2kπ,k∈Z,∴φ=﹣,ω≤3,∵由f()+f()=0,∴可得:sin(ω﹣)+sin(ω﹣)=0,∴解得:cos(π﹣ω)=cosω,∴π﹣ω=ω,或π﹣ω=2π﹣ω,解得:ω=2或6(舍去).故答案为:2.【点评】本题主要考查正弦函数的单调性,由函数y=Asin(ωx+φ)的部分图象求解析式,属于中档题.14.已知函数y=f(x),若对于任意x∈R,f(2x)=2f(x)恒成立,则称函数y=f(x)具有性质P,(1)若函数f(x)具有性质P,且f(4)=8,则f(1)= 2 ;(2)若函数f(x)具有性质P,且在(1,2]上的解析式为y=cosx,那么y=f(x)在(1,8]上有且仅有 3 个零点.【考点】抽象函数及其应用.【专题】转化思想;转化法;函数的性质及应用.【分析】(1)根据性质P的条件,利用方程关系进行递推即可.(2)根据性质P的条件,分别求出函数的解析式,利用函数零点的定义解方程即可.【解答】解:(1)因为函数y=f(x),具有性质P,所以对于任意x∈R,f(2x)=2f(x)恒成立,所以f(4)=f(2×2)=2f(2)=2f(2×1)=4f(1)=8,所以f(1)=2.(2)若函数y=f(x)具有性质P,且在(1,2]上的解析式为y=cosx,由y=cosx=0,则x=,由f(2x)=2f(x)得f(x)=2f(),若2<x≤4,则1<≤2,则f(x)=2f()=2cos,则函数f(x)在(2,4]上的解析式为y=2cos,由2cos=0,得x=π,若4<x≤8,则2<≤4,则f(x)=2f()=4cos,在(4,8]上的解析式为y=4cos,由y=4cos=0得x=2π,所以y=f(x)在(1,8]上有且仅有3个零点,分别是,π,2π.故y=f(x)在(1,8]上有且仅有3个零点,故答案为:2,3【点评】本题主要考查抽象函数的应用,利用定义进行递推以及求出函数的解析式是解决本题的关键.考查学生的运算和推理能力.三.解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. 15.已知二次函数f(x)=x2+mx﹣3的两个零点为﹣1和n,(Ⅰ)求m,n的值;(Ⅱ)若f(3)=f(2a﹣3),求a的值.【考点】二次函数的性质;函数的零点与方程根的关系.【专题】计算题;规律型;函数思想;方程思想;函数的性质及应用.【分析】(Ⅰ)利用函数的零点与方程根的关系,列出方程求解即可得到m,n的值;(Ⅱ)通过f(3)=f(2a﹣3),利用二次函数的对称性即可求a的值.【解答】解:(Ⅰ)因为二次函数二次函数f(x)=x2+mx﹣3的两个零点为﹣1和n,所以,﹣1和n是方程x2+mx﹣3=0的两个根.则﹣1+n=﹣m,﹣1×n=﹣3,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣所以m=﹣2,n=3.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)因为函数f(x)=x2﹣2x﹣3的对称轴为x=1.若f(3)=f(2a﹣3),则=1 或2a﹣3=3﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣得 a=1或a=3.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣综上,a=1或a=3.【点评】本题考查二次函数的性质的应用,考查计算能力.16.已知函数f(x)是定义在R上的奇函数,当x≥0时,函数f(x)=2x﹣1(Ⅰ)求当x<0时,f(x)的解析式;(Ⅱ)若f(a)≤3,求a的取值范围.【考点】奇偶性与单调性的综合;函数解析式的求解及常用方法.【专题】计算题;方程思想;综合法;函数的性质及应用.【分析】(Ⅰ)当x<0时,﹣x>0,利用条件,即可f(x)的解析式;(Ⅱ)若f(a)≤3,f(2)=3,根据f(x)在R上是单调递增函数求a的取值范围.【解答】解:(Ⅰ)当x<0时,﹣x>0,则f(﹣x)=2﹣x﹣1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣因为f(x)是奇函数,所以f(﹣x)=﹣f(x).﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣所以当x<0时,f(x)=﹣f(﹣x)=﹣2﹣x+1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)因为f(a)≤3,f(2)=3,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣所以f(x)≤f(2).又因为f(x)在R上是单调递增函数,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣所以a≤2.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查函数的奇偶性、单调性,考查学生的计算能力,属于中档题.17.已知函数f(x)=2sin(2x﹣).(Ⅰ)求函数f(x)的单调递增区间与对称轴方程;(Ⅱ)当x∈[0,]时,求函数f(x)的最大值与最小值.【考点】三角函数的最值;正弦函数的奇偶性;正弦函数的对称性.【专题】函数思想;综合法;三角函数的图像与性质.【分析】(Ⅰ)解2kπ﹣≤2x﹣≤2kπ+可得单调递增区间,解2x﹣=2kπ+可得对称轴方程;(Ⅱ)由x的范围可得﹣≤2x﹣≤,可得三角函数的最值.【解答】解:(Ⅰ)∵f(x)=2sin(2x﹣),由2kπ﹣≤2x﹣≤2kπ+可得kπ﹣≤x≤kπ+,∴函数f(x)的单调递增区间为[kπ﹣,kπ+],k∈Z,由2x﹣=2kπ+可得x=kπ+,k∈Z,∴f(x)的对称轴方程为x=kπ+,k∈Z;(Ⅱ)∵0≤x≤,∴﹣≤2x﹣≤,∴﹣≤sin(2x﹣)≤1,∴当2x﹣=﹣即x=0时,f(x)的最小值为﹣1,当2x﹣=即x=时,f(x)的最大值为2.【点评】本题考查三角函数的最值,涉及三角函数的单调性和对称性,属基础题.18.如果f(x)是定义在R上的函数,且对任意的x∈R,均有f(﹣x)≠﹣f(x),则称该函数是“X﹣函数”.(Ⅰ)分别判断下列函数:①y=2x;②y=x+1;③y=x2+2x﹣3是否为“X﹣函数”?(直接写出结论)(Ⅱ)若函数f(x)=sinx+cosx+a是“X﹣函数”,求实数a的取值范围;(Ⅲ)已知f(x)=是“X﹣函数”,且在R上单调递增,求所有可能的集合A与B.【考点】函数单调性的判断与证明.【专题】新定义;分类讨论;反证法;函数的性质及应用.【分析】(Ⅰ)根据“X﹣函数”的定义即可判断所给的3个函数是否为“X﹣函数”;(Ⅱ)由题意,对任意x∈R,f(﹣x)≠﹣f(x),利用不等式求出a的取值范围;(Ⅲ)(1)根据题意,判断对任意的x≠0,x与﹣x恰有一个属于A,另一个属于B;(2)用反证法说明(﹣∞,0)⊆B,(0,+∞)⊆A;(3)用反证法说明0∈A,即得A、B.【解答】解:(Ⅰ)①、②是“X﹣函数”,③不是“X﹣函数”;﹣﹣﹣﹣(说明:判断正确一个或两个函数给1分)(Ⅱ)由题意,对任意的x∈R,f(﹣x)≠﹣f(x),即f(﹣x)+f(x)≠0;因为f(x)=sinx+cosx+a,所以f(﹣x)=﹣sinx+cosx+a,故f(x)+f(﹣x)=2cosx+2a;由题意,对任意的x∈R,2cosx+2a≠0,即a≠﹣cosx;﹣﹣﹣又cosx∈[﹣1,1],所以实数a的取值范围为(﹣∞,﹣1)∪(1,+∞);﹣﹣﹣(Ⅲ)(1)对任意的x≠0,(i)若x∈A且﹣x∈A,则﹣x≠x,f(﹣x)=f(x),这与y=f(x)在R上单调递增矛盾,(舍去),(ii)若x∈B且﹣x∈B,则f(﹣x)=﹣x=﹣f(x),这与y=f(x)是“X﹣函数”矛盾,(舍去);此时,由y=f(x)的定义域为R,故对任意的x≠0,x与﹣x恰有一个属于A,另一个属于B;(2)假设存在x0<0,使得x0∈A,则由x0<,故f(x0)<f();(i)若∈A,则f()=+1<+1=f(x0),矛盾,(ii)若∈B,则f()=<0<+1=f(x0),矛盾;综上,对任意的x<0,x∉A,故x∈B,即(﹣∞,0)⊆B,则(0,+∞)⊆A;(3)假设0∈B,则f(﹣0)=﹣f(0)=0,矛盾,故0∈A;故A=[0,+∞),B=(﹣∞,0];经检验A=[0,+∞),B=(﹣∞,0),符合题意.﹣﹣﹣【点评】本题考查了新定义的函数的应用问题,也考查了反证法与分类讨论思想的应用问题,是综合性题目.。
2020-2021高一数学上期末模拟试卷(及答案)(2)
2020-2021高一数学上期末模拟试卷(及答案)(2)一、选择题1.已知奇函数()y f x =的图像关于点(,0)2π对称,当[0,)2x π∈时,()1cos f x x =-,则当5(,3]2x ππ∈时,()f x 的解析式为( ) A .()1sin f x x =-- B .()1sin f x x =- C .()1cos f x x =-- D .()1cos f x x =- 2.函数y =a |x |(a >1)的图像是( ) A .B .C .D .3.已知定义域R 的奇函数()f x 的图像关于直线1x =对称,且当01x ≤≤时,3()f x x =,则212f ⎛⎫= ⎪⎝⎭( ) A .278-B .18-C .18 D .2784.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦ D .8,3⎛⎤-∞ ⎥⎝⎦5.[]x 表示不超过实数x 的最大整数,0x 是方程ln 3100x x +-=的根,则0[]x =( ) A .1B .2C .3D .46.函数()f x 的反函数图像向右平移1个单位,得到函数图像C ,函数()g x 的图像与函数图像C 关于y x =成轴对称,那么()g x =( ) A .(1)f x +B .(1)f x -C .()1f x +D .()1f x -7.某工厂产生的废气必须经过过滤后排放,规定排放时污染物的残留含量不得超过原污染物总量的0.5%.已知在过滤过程中的污染物的残留数量P (单位:毫克/升)与过滤时间t(单位:小时)之间的函数关系为0ktP P e -=⋅(k 为常数,0P 为原污染物总量).若前4个小时废气中的污染物被过滤掉了80%,那么要能够按规定排放废气,还需要过滤n 小时,则正整数n 的最小值为( )(参考数据:取5log 20.43=) A .8B .9C .10D .148.已知全集为R ,函数()()ln 62y x x =--的定义域为集合{},|44A B x a x a =-≤≤+,且R A B ⊆ð,则a 的取值范围是( )A .210a -≤≤B .210a -<<C .2a ≤-或10a ≥D .2a <-或10a >9.设()f x 是R 上的周期为2的函数,且对任意的实数x ,恒有()()0f x f x --=,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,若关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,则实数a 的取值范围是( ) A .[]3,5B .()3,5C .[]4,6D .()4,610.将甲桶中的a 升水缓慢注入空桶乙中,min t 后甲桶剩余的水量符合指数衰减曲线nt y ae =,假设过5min 后甲桶和乙桶的水量相等,若再过min m 甲桶中的水只有4a升,则m 的值为( ) A .10B .9C .8D .511.已知3log 2a =,0.12b =,sin 789c =o ,则a ,b ,c 的大小关系是 A .a b c <<B .a c b <<C .c a b <<D .b c a <<12.函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数且f (2)=0,则使f (x )<0的x 的取值范围( ) A .(-∞,2)B .(2,+∞)C .(-∞,-2)∪(2,+∞)D .(-2,2)二、填空题13.已知函数2,1,(){1,1,x ax x f x ax x -+≤=->若1212,,x x R x x ∃∈≠,使得12()()f x f x =成立,则实数a 的取值范围是 .14.若关于x 的方程42x x a -=有两个根,则a 的取值范围是_________15.对于复数a bc d ,,,,若集合{}S a b c d =,,,具有性质“对任意x y S ∈,,必有xy S ∈”,则当221{1a b c b===,,时,b c d ++等于___________16.对于函数()y f x =,若存在定义域D 内某个区间[a ,b ],使得()y f x =在[a ,b ]上的值域也为[a ,b ],则称函数()y f x =在定义域D 上封闭,如果函数4()1xf x x=-+在R 上封闭,则b a -=____. 17.函数2sin 21=+++xy x x 的最大值和最小值之和为______ 18.已知35m n k ==,且112m n+=,则k =__________19.已知函数()5,222,2x x x f x a a x -+≤⎧=++>⎨⎩,其中0a >且1a ≠,若()f x 的值域为[)3,+∞,则实数a 的取值范围是______.20.设是两个非空集合,定义运算.已知,,则________.三、解答题21.已知函数2,,()lg 1,,x x m f x x x m ⎧⎪=⎨+>⎪⎩„其中01m <„.(Ⅰ)当0m =时,求函数()2y f x =-的零点个数;(Ⅱ)当函数2()3()y f x f x =-的零点恰有3个时,求实数m 的取值范围.22.已知幂函数35()()m f x xm N -+=∈为偶函数,且在区间(0,)+∞上单调递增.(Ⅰ)求函数()f x 的解析式;(Ⅱ)设函数()()21g x f x x λ=+-,若()0<g x 对任意[1,2]x ∈恒成立,求实数λ的取值范围.23.已知定义在()0,∞+上的函数()f x 满足()()()f xy f x f y =+,()20201f =,且当1x >时,()0f x >. (1)求()1f ;(2)求证:()f x 在定义域内单调递增; (3)求解不等式(2120192fx x -<. 24.为弘扬中华传统文化,学校课外阅读兴趣小组进行每日一小时的“经典名著”和“古诗词”的阅读活动. 根据调查,小明同学阅读两类读物的阅读量统计如下:小明阅读“经典名著”的阅读量()f t (单位:字)与时间t (单位:分钟)满足二次函数关系,部分数据如下表所示; t0 10 20 30 ()f t 0270052007500阅读“古诗词”的阅读量()g t (单位:字)与时间t (单位:分钟)满足如图1所示的关系.(1)请分别写出函数()f t 和()g t 的解析式;(2)在每天的一小时课外阅读活动中,小明如何分配“经典名著”和“古诗词”的阅读时间,使每天的阅读量最大,最大值是多少?25.某上市公司股票在30天内每股的交易价格P (元)关于时间t (天)的函数关系为12,020,518,2030,10t t t P t t t ⎧+≤≤∈⎪⎪=⎨⎪-+<≤∈⎪⎩N N ,该股票在30天内的日交易量Q (万股)关于时间t(天)的函数为一次函数,其图象过点(4,36)和点(10,30). (1)求出日交易量Q (万股)与时间t (天)的一次函数关系式;(2)用y (万元)表示该股票日交易额,写出y 关于t 的函数关系式,并求在这30天内第几天日交易额最大,最大值为多少?26.已知函数()()()()log 1log 301a a f x x x a =-++<<. (1)求函数()f x 的定义域; (2)求函数()f x 的零点;(3)若函数()f x 的最小值为4-,求a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】 当5,32x ππ⎛⎤∈⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,结合奇偶性与对称性即可得到结果.【详解】因为奇函数()y f x =的图像关于点,02π⎛⎫⎪⎝⎭对称,所以()()0f x f x π++-=, 且()()f x f x -=-,所以()()f x f x π+=,故()f x 是以π为周期的函数.当5,32x ππ⎛⎤∈⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,故()()31cos 31cos f x x x ππ-=--=+ 因为()f x 是周期为π的奇函数,所以()()()3f x f x f x π-=-=- 故()1cos f x x -=+,即()1cos f x x =--,5,32x ππ⎛⎤∈ ⎥⎝⎦故选C 【点睛】本题考查求函数的表达式,考查函数的图象与性质,涉及对称性与周期性,属于中档题.2.B解析:B 【解析】因为||0x ≥,所以1x a ≥,且在(0,)+∞上曲线向下弯曲的单调递增函数,应选答案B .3.B解析:B 【解析】 【分析】利用题意得到,()()f x f x -=-和2421D kx k =+,再利用换元法得到()()4f x f x =+,进而得到()f x 的周期,最后利用赋值法得到1322f f 骣骣琪琪=琪琪桫桫18=,331228f f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,最后利用周期性求解即可. 【详解】()f x 为定义域R 的奇函数,得到()()f x f x -=-①;又由()f x 的图像关于直线1x =对称,得到2421D kx k =+②; 在②式中,用1x -替代x 得到()()2f x f x -=,又由②得()()22f x f x -=--; 再利用①式,()()()213f x f x -=+-()()()134f x f x =--=-()4f x =--()()()24f x f x f x ∴=-=-③对③式,用4x +替代x 得到()()4f x f x =+,则()f x 是周期为4的周期函数;当01x ≤≤时,3()f x x =,得1128f ⎛⎫=⎪⎝⎭11122f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭Q 13122f f ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭18=,331228f f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭, 由于()f x 是周期为4的周期函数,331222f f ⎛⎫⎛⎫∴-=-+ ⎪ ⎪⎝⎭⎝⎭21128f ⎛⎫==- ⎪⎝⎭, 答案选B 【点睛】本题考查函数的奇偶性,单调性和周期性,以及考查函数的赋值求解问题,属于中档题4.B解析:B 【解析】 【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决. 【详解】(0,1]x ∈Q 时,()=(1)f x x x -,(+1)= ()f x 2f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令84(2)(3)9x x --=-,整理得:2945560x x -+=,1278(37)(38)0,,33x x x x ∴--=∴==(舍),(,]x m ∴∈-∞时,8()9f x ≥-成立,即73m ≤,7,3m ⎛⎤∴∈-∞ ⎥⎝⎦,故选B .【点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力.5.B解析:B 【解析】 【分析】先求出函数()ln 310f x x x =+-的零点的范围,进而判断0x 的范围,即可求出[]0x . 【详解】由题意可知0x 是()ln 310f x x x =+-的零点, 易知函数()f x 是(0,∞+)上的单调递增函数,而()2ln2610ln240f =+-=-<,()3ln3910ln310f =+-=->, 即()()230f f <n 所以023x <<,结合[]x 的性质,可知[]02x =. 故选B. 【点睛】本题考查了函数的零点问题,属于基础题.6.D解析:D 【解析】 【分析】首先设出()y g x =图象上任意一点的坐标为(,)x y ,求得其关于直线y x =的对称点为(,)y x ,根据图象变换,得到函数()f x 的图象上的点为(,1)x y +,之后应用点在函数图象上的条件,求得对应的函数解析式,得到结果. 【详解】设()y g x =图象上任意一点的坐标为(,)x y , 则其关于直线y x =的对称点为(,)y x , 再将点(,)y x 向左平移一个单位,得到(1,)y x +, 其关于直线y x =的对称点为(,1)x y +, 该点在函数()f x 的图象上,所以有1()y f x +=, 所以有()1y f x =-,即()()1g x f x =-, 故选:D. 【点睛】该题考查的是有关函数解析式的求解问题,涉及到的知识点有点关于直线的对称点的求法,两个会反函数的函数图象关于直线y x =对称,属于简单题目.7.C解析:C 【解析】 【分析】 根据已知条件得出415ke-=,可得出ln 54k =,然后解不等式1200kt e -≤,解出t 的取值范围,即可得出正整数n 的最小值. 【详解】由题意,前4个小时消除了80%的污染物,因为0ktP P e -=⋅,所以()400180%kP Pe --=,所以40.2k e -=,即4ln0.2ln5k -==-,所以ln 54k =, 则由000.5%ktP P e -=,得ln 5ln 0.0054t =-, 所以()23554ln 2004log 2004log 52ln 5t ===⨯5812log 213.16=+=, 故正整数n 的最小值为14410-=.故选:C. 【点睛】本题考查指数函数模型的应用,涉及指数不等式的求解,考查运算求解能力,属于中等题.8.C解析:C 【解析】 【分析】由()()620x x -->可得{}|26=<<A x x ,{}44R C B x a x a 或=-+,再通过A 为R C B 的子集可得结果.【详解】由()()ln 62y x x =--可知,()()62026x x x -->⇒<<,所以{}|26=<<A x x ,{}44R C B x a x a 或=-+,因为R A C B ⊆,所以6424a a 或≤-≥+,即102a a ≥≤-或,故选C. 【点睛】本题考查不等式的解集和对数函数的定义域,以及集合之间的交集和补集的运算;若集合的元素已知,求解集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.9.D解析:D 【解析】由()()0f x f x --=,知()f x 是偶函数,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,且()f x 是R 上的周期为2的函数,作出函数()y f x =和()y log 1a x =+的函数图象,关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,即为函数()y f x =和()y log 1a x =+的图象有5个交点,所以()()1log 311log 511a aa >⎧⎪+<⎨⎪+>⎩,解得46a <<.故选D.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.10.D解析:D 【解析】由题设可得方程组()552{4n m n ae aa ae +==,由55122n nae a e =⇒=,代入(5)1142m n mn ae a e +=⇒=,联立两个等式可得512{12mn n e e ==,由此解得5m =,应选答案D 。
【配套K12】高一数学上学期第二次月考试卷(含解析)
2015-2016学年江苏省淮安市盱眙县新马高中高一(上)第二次月考数学试卷一、填空题(本大题共14小题,每小题5分,共70分,不需写出解答过程,请把答案直接填写在题中横线上.)1.sin660°的值是.2.设集合A={x|﹣1≤x≤2},B={x|log2x≤2},则A∩B=.3.设P(x,2)是角α终边上一点,且满足sinα=,则实数x= .4.设圆弧所对的圆心角为30°,半径为r=3,则弧长l= .5.已知a=log23.4,b=log43.6,c=log30.3,则a,b,c从小到大排列为.6.已知x+x﹣1=5,则x2+x﹣2的值是.7.已知幂函数y=x3m﹣7(m∈N)的图象关于y轴对称,且与x轴,y轴均无交点,则m= .8.已知函数f(x)=4x5+3x3+2x+1,则= .9.函数f(x)=log a(6﹣ax)在(0,2)上为减函数,则a的取值范围是.10.若cosθ•tanθ<0,则角θ在第象限.11.已知log73=a,log74=b,用a,b表示log4948为.12.已知f(x)=是R上的增函数,则a的取值范围.13.sinx,则x的取值范围为.14.已知函数f(x)=,则函数y=f[f(x)]﹣1的图象与x轴有个交点.二、解答题(本大题共6小题,第15、16、17题每题14分,第18、19、20题每题16分,共90分,解答应写出文字说明、证明过程或演算步骤.)15.计算:(1);(2).16.已知α为第二象限角,且sin(π+α)=﹣,计算:(1)cos(2π﹣α);(2)tan(α﹣7π).17.已知.(1)求sinθ•cosθ的值;(2)当0<θ<π时,求tanθ的值.18.某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿场售价与上市时间的关系如图一的一条折线表示;西红柿的种植成本与上市时间的关系如图二的抛物线段表示.(1)写出图一表示的市场售价与时间的函数关系式p=f(t);写出图二表示的种植成本与时间的函数关系式Q=g(t);(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价各种植成本的单位:元/102㎏,时间单位:天)19.已知函数(a∈R).(1)试判断f(x)的单调性,并证明你的结论;(2)若f(x)为定义域上的奇函数,①求函数f(x)的值域;②求满足f(ax)<f(2a﹣x2)的x的取值范围.20.已知函数f(x)=log2x,x∈[2,8],函数g(x)=[f(x)]2﹣2a•f(x)+3的最小值为h(a).(1)求h(a);(2)是否存在实数m,n,同时满足以下条件:①m>n>3;②当h(a)的定义域为[n,m]时,值域为[n2,m2].若存在,求出m,n的值;若不存在,说明理由.2015-2016学年江苏省淮安市盱眙县新马高中高一(上)第二次月考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共70分,不需写出解答过程,请把答案直接填写在题中横线上.)1.sin660°的值是﹣.【考点】运用诱导公式化简求值.【专题】三角函数的求值.【分析】原式中的角度变形后,利用诱导公式及特殊角的三角函数值计算即可得到结果.【解答】解:sin660°=sin(720°﹣60°)=﹣sin60°=﹣.故答案为:﹣.【点评】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.2.设集合A={x|﹣1≤x≤2},B={x|log2x≤2},则A∩B=(0,2] .【考点】对数函数的单调性与特殊点;交集及其运算.【专题】转化思想;综合法;函数的性质及应用.【分析】哟条件利用对数函数的单调性和特殊点求得集合B,再根据两个集合的交集的定义求得A∩B.【解答】解:∵集合A={x|﹣1≤x≤2},B={x|log2x≤2}={x|log2x≤log24}={x|0<x≤4},则A∩B=(0,2],故答案为:(0,2].【点评】本题主要考查对数函数的单调性和特殊点,交集的运算,属于基础题.3.设P(x,2)是角α终边上一点,且满足sinα=,则实数x= ±5.【考点】任意角的三角函数的定义.【专题】三角函数的求值.【分析】由条件利用任意角的三角函数的定义,求得x的值.【解答】解:由题意可得=,求得x=±5,故答案为:±5.【点评】本题主要考查任意角的三角函数的定义,属于基础题.4.设圆弧所对的圆心角为30°,半径为r=3,则弧长l= .【考点】弧长公式.【专题】计算题.【分析】根据弧长公式即可计算得解.【解答】解:∵圆弧所对的圆心角为30°=,半径为r=3,∴则弧长l==.故答案为:.【点评】本题主要考查了弧长公式的应用,考查了计算能力,属于基础题.5.已知a=log23.4,b=log43.6,c=log30.3,则a,b,c从小到大排列为c<b<a .【考点】对数值大小的比较.【专题】计算题;函数的性质及应用.【分析】判断三个数与0,1的大小关系,然后求出结果.【解答】解:a=log23.4>1,b=log43.6∈(0,1),c=log30.3<0,∴c<b<a,故答案为:c<b<a.【点评】本题考查对数值的判断,大小比较,是基础题.6.已知x+x﹣1=5,则x2+x﹣2的值是23 .【考点】有理数指数幂的运算性质.【专题】计算题.【分析】直接对已知条件两边平方化简即可得到结果.【解答】解:因为x+x﹣1=5,所以(x+x﹣1)2=25,可得x2+x﹣2+2=25,所以x2+x﹣2=23.故答案为:23.【点评】本题考查有理指数幂的化简与求值,考查计算能力.7.已知幂函数y=x3m﹣7(m∈N)的图象关于y轴对称,且与x轴,y轴均无交点,则m= 1 .【考点】幂函数图象及其与指数的关系.【专题】计算题;函数思想;定义法;函数的性质及应用.【分析】利用幂函数的性质可得3m﹣7<0,且3m﹣7为偶数,解出即可.【解答】解:由题意可得:3m﹣7<0,且3m﹣7为偶数.解得m<,∴m=1.故答案为:1.【点评】本题考查了幂函数的性质,考查了推理能力与计算能力,属于基础题.8.已知函数f(x)=4x5+3x3+2x+1,则= 2 .【考点】函数奇偶性的性质;函数的值;对数的运算性质.【专题】计算题;函数思想;转化思想;函数的性质及应用.【分析】判断函数y=4x5+3x3+2x是奇函数,利用对数运算法则化简所求表达式,即可得到结果.【解答】解:函数f(x)=4x5+3x3+2x+1,函数g(x)=4x5+3x3+2x是奇函数,g(log23)+g(﹣log23)=0则=f(log23)+f(﹣log23)=1+1=2.故答案为:2.【点评】本题考查函数的奇偶性的应用,函数值的求法,考查计算能力.9.函数f(x)=log a(6﹣ax)在(0,2)上为减函数,则a的取值范围是(1,3] .【考点】复合函数的单调性.【专题】转化思想;综合法;函数的性质及应用.【分析】由条件利用对数函数的性质,复合函数的单调性,可得,由此求得a的范围.【解答】解:由函数f(x)=log a(6﹣ax)在(0,2)上为减函数,可得函数t=6﹣ax在(0,2)上大于零,且t为减函数,且a>1,故有,求得1<a≤3,故答案为:(1,3].【点评】本题主要考查对数函数的性质,复合函数的单调性,属于中档题.10.若cosθ•tanθ<0,则角θ在第三或四象限.【考点】三角函数值的符号.【专题】分类讨论;定义法;三角函数的求值.【分析】根据三角函数符号和象限之间的关系进行判断即可.【解答】解:若cosθ•tanθ<0,则等价为或,即θ是第三或四象限,故答案为:三或四【点评】本题主要考查三角函数象限的判断,比较基础.11.已知log73=a,log74=b,用a,b表示log4948为.【考点】对数的运算性质.【专题】函数的性质及应用.【分析】利用对数换底公式、对数的运算法则即可得出.【解答】解:∵log73=a,log74=b,∴log4948===.故答案为:.【点评】本题考查了对数换底公式、对数的运算法则,属于基础题.12.已知f(x)=是R上的增函数,则a的取值范围,.【考点】对数函数的单调性与特殊点;函数单调性的性质.【专题】函数的性质及应用.【分析】根据分段函数单调性的性质,确定a满足的条件即可求得a的取值范围.【解答】解:要使函数f(x)是增函数,则满足,即,即,故答案为:.【点评】本题主要考查分段函数的单调性,分段函数单调递增,则每个函数需满足条件,且在端点处也满足相应的大小关系.13.sinx,则x的取值范围为[2kπ+,2kπ+](k∈Z).【考点】正弦函数的单调性.【专题】计算题;三角函数的图像与性质.【分析】利用正弦函数的图象与性质即可求得不等式sinx中x的取值范围.【解答】解:∵sinx≥,作出y=sinx与直线y=的图象,由图知,当2kπ+≤x≤2kπ+(k∈Z)时,sinx≥,∴sinx中x的取值范围时[2kπ+,2kπ+](k∈Z).故答案为:[2kπ+,2kπ+](k∈Z).【点评】本题考查正弦函数的图象与性质,着重考查正弦函数的单调性与作图能力,属于中档题.14.已知函数f(x)=,则函数y=f[f(x)]﹣1的图象与x轴有 2 个交点.【考点】函数的图象.【专题】函数的性质及应用.【分析】根据分段函数,函数值的求法,分类讨论,分别代入得到相应的方程的,解得即可.【解答】解:当x≤0时,f(x)=x+1,当x≤0时,f(x)=x+1,当﹣1<x≤0时,f(x)=x+1>0y=f[f(x)]﹣1=log2(x+1)﹣1=0,即log2(x+1)=1,解得x=1(舍去)当x≤﹣1时,f(x)=x+1≤0,y=f[f(x)]+1=f(x)+1﹣1=x+1=0,∴x=﹣1.当x>0时,f(x)=log2x,y=f[f(x)]﹣1=log2[f(x)]﹣1,当0<x<1时,f(x)=log2x<0,y=f[f(x)]﹣1=log2[f(x)]﹣1=log2(log2x+1)﹣1=0,∴log2x﹣1=0,x=2(舍去)当x>1时,f(x)=log2x>0,∴y=f[f(x)]﹣1=log2(log2x)﹣1=0,∴log2x=2,x=4.综上所述,y=f[f(x)]﹣1的零点是x=﹣1,或x=4,∴则函数y=f[f(x)]﹣1的图象与x轴有2个交点,故答为:2.【点评】本题考查了函数零点的问题,以及函数值的问题,关键是分类讨论,属于中档题二、解答题(本大题共6小题,第15、16、17题每题14分,第18、19、20题每题16分,共90分,解答应写出文字说明、证明过程或演算步骤.)15.计算:(1);(2).【考点】对数的运算性质;有理数指数幂的化简求值.【专题】常规题型;方案型;函数思想;函数的性质及应用.【分析】(1)直接利用有理指数幂的运算法则化简求解即可.(2)利用对数运算法则化简求解即可.【解答】(1)解: =π﹣3+(0.2)﹣1﹣=π …(2)解:=+2×3==…【点评】本题考查有理指数幂的运算法则以及对数运算法则的应用,考查计算能力.16.已知α为第二象限角,且sin(π+α)=﹣,计算:(1)cos(2π﹣α);(2)tan(α﹣7π).【考点】运用诱导公式化简求值.【专题】计算题;规律型;三角函数的求值.【分析】(1)利用诱导公式化简已知条件与所求的表达式,然后求解即可.(2)化简所求的表达式为正弦函数余弦函数的形式,然后求解即可.【解答】解:(1)α为第二象限角,且sin(π+α)=﹣,可得sin.cos(2π﹣α)=…(2)…【点评】本题考查三角函数的化简求值,考查计算能力.17.已知.(1)求sinθ•cosθ的值;(2)当0<θ<π时,求tanθ的值.【考点】同角三角函数基本关系的运用.【专题】计算题.【分析】(1)可对两边进行平方然后整理即可求得sinθ•cosθ的值.(2)要求tanθ的值即求sinθ和cosθ的值故可根据以及第一问的结论sinθ•cosθ的值即可求出sinθ和cosθ的值同时要根据0<θ<π以及sinθ•cosθ的值的正负来确定θ的范围从而对sinθ和cosθ的值进行取舍.【解答】解:(1)⇒.(2)∵0<θ<π且sinαcosα>0∴由得.【点评】本题主要考查了同角三角函数基本关系的运用.解题的关键是对于已知sinθcosθ的关系求sinθ•cosθ常采用两边平方来求而对于第二问需利用0<θ<π以及sinθ•cosθ的值的正负来确定θ的范围从而对sinθ和cosθ的值进行取舍!18.某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿场售价与上市时间的关系如图一的一条折线表示;西红柿的种植成本与上市时间的关系如图二的抛物线段表示.(1)写出图一表示的市场售价与时间的函数关系式p=f(t);写出图二表示的种植成本与时间的函数关系式Q=g(t);(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价各种植成本的单位:元/102㎏,时间单位:天)【考点】函数的最值及其几何意义;根据实际问题选择函数类型.【专题】应用题;压轴题;函数思想.【分析】(1)观察图一可知此函数是分段函数(0,200)和(200,300)的解析式不同,分别求出各段解析式即可;第二问观察函数图象可知此图象是二次函数的图象根据图象中点的坐标求出即可.(2)要求何时上市的西红柿纯收益最大,先用市场售价减去种植成本为纯收益得到t时刻的纯收益h(t)也是分段函数,分别求出各段函数的最大值并比较出最大即可.【解答】解:(1)由图一可得市场售价与时间的函数关系为由图二可得种植成本与时间的函数关系为.(2)设t时刻的纯收益为h(t),则由题意得h(t)=f(t)﹣g(t),即h(t)=当0≤t≤200时,配方整理得h(t)=.所以,当t=50时,h(t)取得区间[0,200]上的最大值100;当200<t≤300时,配方整理得h(t)=,所以,当t=300时,h(t)取得区间(200,300)上的最大值87.5、综上,由100>87.5可知,h(t)在区间[0,300]上可以取得最大值100,此时t=50,即从二月一日开始的第50天时,上市的西红柿纯收益最大.【点评】本小题主要考查由函数图象建立函数关系式和求函数最大值的问题,考查运用所学知识解决实际问题的能力.19.已知函数(a∈R).(1)试判断f(x)的单调性,并证明你的结论;(2)若f(x)为定义域上的奇函数,①求函数f(x)的值域;②求满足f(ax)<f(2a﹣x2)的x的取值范围.【考点】函数单调性的判断与证明;函数的值域;函数单调性的性质;函数奇偶性的判断.【专题】综合题;函数的性质及应用.【分析】(1)函数f(x)为定义域(﹣∞,+∞),且,任取x1,x2∈(﹣∞,+∞),且x1<x2,推导出f(x2)﹣f(x1)>0,由此得到f(x)在(﹣∞,+∞)上的单调增函数.(2)由f(x)是定义域上的奇函数,知对任意实数x恒成立,由此能够求出函数f(x)的值域和满足f(ax)<f(2a﹣x2)的x的取值范围.【解答】(本小题满分16分)解:(1)函数f(x)为定义域(﹣∞,+∞),且,任取x1,x2∈(﹣∞,+∞),且x1<x2则…∵y=2x在R上单调递增,且x1<x2∴,,,,∴f(x2)﹣f(x1)>0,即f(x2)>f(x1),∴f(x)在(﹣∞,+∞)上的单调增函数.…(2)∵f(x)是定义域上的奇函数,∴f(﹣x)=﹣f(x),即对任意实数x恒成立,化简得,∴2a﹣2=0,即a=1,…(注:直接由f(0)=0得a=1而不检验扣2分)①由a=1得,∵2x+1>1,∴,…∴,∴故函数f(x)的值域为(﹣1,1).…②由a=1,得f(x)<f(2﹣x2),∵f(x)在(﹣∞,+∞)上单调递增,∴x<2﹣x2,…解得﹣2<x<1,故x的取值范围为(﹣2,1).…【点评】本题考查函数的单调性的判断,考查函数的值域的求法和满足f(ax)<f(2a﹣x2)的x的取值范围.解题时要认真审题,仔细解答,注意定义法判断函数的单调性的应用.20.已知函数f(x)=log2x,x∈[2,8],函数g(x)=[f(x)]2﹣2a•f(x)+3的最小值为h(a).(1)求h(a);(2)是否存在实数m,n,同时满足以下条件:①m>n>3;②当h(a)的定义域为[n,m]时,值域为[n2,m2].若存在,求出m,n的值;若不存在,说明理由.【考点】对数函数的图象与性质.【专题】计算题;转化思想;数学模型法;函数的性质及应用.【分析】(1)设t=f(x),利用换元法,可将已知函数化为一个二次函数,根据二次函数在定区间上的最值问题,即可得到h(a)的解析式.(2)由(1)中h(a)的解析式,易得在h(a)在(3,+∞)上为减函数,进而根据h(a)的定义域为[n,m]时值域为[n2,m2]构造关于m,n的不等式组,如果不等式组有解,则存在满足条件的m,n的值;若无解,则不存在满足条件的m,n的值.【解答】解:(1)令t=f(x),∵函数f(x)=log2x,x∈[2,8],∴t∈[1,3],y=g(x)=t2﹣2at+3,当a≤1时,y=t2﹣2at+3在[1,3]上为增函数,此时当t=1时,h(a)=4﹣2a,当1<a<2时,y=t2﹣2at+3在[1,a]上为减函数,在[a,3]上为增函数,此时当t=a时,h (a)=﹣a2+3,当a≥2时,y=t2﹣2at+3在[1,3]上为减函数,此时当t=2时,h(a)=7﹣4a,综上所述,h(a)=,(2)由(1)得m>n>3时,h(a)在定义域为[n,m]中为减函数,若此时值域为[n2,m2].则,此时n+m=4,与m>n>3矛盾,故不存在满足条件的m,n的值;【点评】本题考查的知识点是对数函数的图象和性质,二次函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新K12教育 教案试题 2051-2016学年湖南省衡阳四中高一(上)期末数学模拟试卷(二) 一、选择题(本大题共l0小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.若A={x|x2=1},B={x|x2﹣2x﹣3=0},则A∩B=( ) A.3 B.1 C.∅ D.﹣1
2.下列幂函数在定义域内是单调递增的奇函数的是( ) A. B.y=x4 C.y=x3 D.
3.已知函数f(log4x)=x,则等于( ) A. B. C.1 D.2
4.若两条直线ax+2y+6=0与x+(a﹣1)y+(a2﹣1)=0平行,则a的取值集合是( ) A.{﹣1,2} B.{﹣1} C.{2} D.
5.设a,b为两条直线,α,β为两个平面,下列四个命题中,正确的命题是( ) A.若a,b与α所成的角相等,则α∥b B.若a∥α,b∥β,α∥β,则a∥b C.若a⊂α,b⊂β,α∥b,则α∥β D.若a⊥α,b⊥β,α⊥β,是a⊥b
6.若圆x2+y2﹣2x﹣4y=0的圆心到直线x﹣y+a=0的距离为,则a的值为( ) A.﹣2或2 B.或 C.2或0 D.﹣2或0
7.如果一个几何体的三视图如图所示,主视图与左视图是边长为2的正三角形、俯视图轮廓为正方形,(单位长度:cm),则此几何体的侧面积是( )
A. cm2 B. cm2 C.8cm2 D.14cm2 最新K12教育
教案试题 8.若函数y=ax﹣x﹣a有两个零点,则a的取值范围是( ) A.(1,+∞) B.(0,1) C.(0,+∞) D.∅
9.设函数f(x)=,若f(m)>1,则m的取值范围是( ) A.(﹣∞,﹣1) B.(9,+∞) C.(﹣∞,﹣1)∪(9,+∞) D.(﹣∞,﹣1)∪(6,+∞)
10.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为原点),则k的值为( ) A. B. C. D.
二.填空题:(本大题共5个小题,每小题4分,共20分,把答案填在答题卡中对应题号后的横线上.)
11.已知集合A={1,2a},B={a,b},若A∩B={},则A∪B= .
12.设A(3,3,1),B(1,0,5),C(0,1,0),则AB的中点M到点C的距离为 .
13.对于一个底边在x轴上的正三角形ABC,边长AB=2,采用斜二测画法做出其直观图,则其直观图的面积是 .
14.直线过点P(5,6),它在x轴上的截距是在y轴上的截距的2倍,则此直线方程为 .
15.将边长为1的正方形ABCD沿对角线AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱锥D﹣ABC中,给出下列三个命题: ①△DBC是等边三角形; ②AC⊥BD;
③三棱锥D﹣ABC的体积是. 其中正确命题的序号是 .(写出所有正确命题的序号)
三.解答题:(本大题共6小题,共50分,解答应写出文字说明,证明过程或演算步骤.) 16.求经过直线l1:7x﹣8y﹣1=0和l2:2x+17y+9=0的交点,且垂直于直线2x﹣y+7=0的直线方程. 最新K12教育 教案试题 17.某汽车销售公司以每台10万元的价格销售某种品牌的汽车,可售出该品牌汽车1000台,若将该品牌汽车每台的价格上涨x%,则销售量将减少0.5x%,已知该品牌汽车每台的价格上涨幅度不超过80%,当该品牌汽车每台的价格上涨百分之几时,可使销售的总金额最大?
18.在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E为BB1中点. (Ⅰ)证明:AC⊥D1E; (Ⅱ)求DE与平面AD1E所成角的正弦值; (Ⅲ)在棱AD上是否存在一点P,使得BP∥平面AD1E?若存在,求DP的长;若不存在,说明理由.
19.已知定义在(﹣1,1)上的奇函数是增函数,且. (Ⅰ)求函数f(x)的解析式; (Ⅱ)解不等式f(t﹣1)+f(2t)<0.
20.已知圆心为(1,1)的圆C经过点M(1,2). (Ⅰ)求圆C的方程; (Ⅱ)若直线x+y+m=0与圆C交于A、B两点,且△ABC是直角三角形,求实数m.
21.设f(x)=log为奇函数,a为常数, (1)求a的值; (2)证明f(x)在区间(1,+∞)上单调递增;
(3)若x∈[3,4],不等式f(x)>()x+m恒成立,求实数m的取值范围. 最新K12教育
教案试题 2051-2016学年湖南省衡阳四中高一(上)期末数学模拟试卷(二) 参考答案与试题解析
一、选择题(本大题共l0小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.若A={x|x2=1},B={x|x2﹣2x﹣3=0},则A∩B=( ) A.3 B.1 C.∅ D.﹣1 【考点】交集及其运算. 【专题】计算题. 【分析】先求出A与B的解集,然后根据交集的定义即可得出答案. 【解答】解:∵A={x|x2=1}={﹣1,1},B={x|x2﹣2x﹣3=0}={﹣1,3}, ∴A∩B={﹣1}, 故选D. 【点评】本题考查了交集及其运算,属于基础题,关键是掌握交集的定义.
2.下列幂函数在定义域内是单调递增的奇函数的是( ) A. B.y=x4 C.y=x3 D. 【考点】函数奇偶性的判断;函数单调性的判断与证明. 【专题】计算题. 【分析】根据幂函数的图象与性质,我们逐一分析四个答案中的四个函数的性质,然后和题目中的条件进行比照,即可得到答案.
【解答】解:函数为非奇非偶函数,不满足条件; 函数y=x4为偶函数,不满足条件; 函数y=x3为奇函数,在定义域内是单调递增的,满足条件;
函数是偶函数,不满足条件; 故选C 【点评】本题考查的知识点是函数奇偶性与单调性的综合应用,其中熟练掌握基本初等函数的性质是解答本题的关键.
3.已知函数f(log4x)=x,则等于( ) A. B. C.1 D.2 【考点】函数的值;函数解析式的求解及常用方法. 【专题】函数的性质及应用.
【分析】运用“整体代换”的思想,令log4x=,求解出x的值,即可求得答案. 【解答】解:∵函数f(log4x)=x,
∴令log4x=,则x==2, 最新K12教育 教案试题 故f()=2. 故选:D. 【点评】本题考查了函数的求值,运用了“整体代换”的思想求解函数值,解题过程中运用了对数的运算性质,要熟练掌握指数式与对数式的互化.属于基础题.
4.若两条直线ax+2y+6=0与x+(a﹣1)y+(a2﹣1)=0平行,则a的取值集合是( ) A.{﹣1,2} B.{﹣1} C.{2} D. 【考点】直线的一般式方程与直线的平行关系. 【专题】计算题;方程思想;待定系数法;直线与圆. 【分析】直接由两直线平行的条件列式求得a的取值集合. 【解答】解:∵直线ax+2y+6=0与x+(a﹣1)y+(a2﹣1)=0平行,
∴,解得:a=﹣1. ∴a的取值集合是{﹣1}. 故选:B. 【点评】本题考查直线的一般式方程与直线平行的关系,关键是掌握两直线平行的条件,是基础题.
5.设a,b为两条直线,α,β为两个平面,下列四个命题中,正确的命题是( ) A.若a,b与α所成的角相等,则α∥b B.若a∥α,b∥β,α∥β,则a∥b C.若a⊂α,b⊂β,α∥b,则α∥β D.若a⊥α,b⊥β,α⊥β,是a⊥b 【考点】平面与平面之间的位置关系;空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系. 【专题】证明题. 【分析】根据题意,依次分析选项,A、用直线的位置关系判断.B、用长方体中的线线,线面,面面关系验证.C、用长方体中的线线,线面,面面关系验证.D、由a⊥α,α⊥β,可得到a⊂β或a∥β,再由b⊥β得到结论. 【解答】解:A、直线a,b的方向相同时才平行,不正确; B、用长方体验证.如图,设A1B1为a,平面AC为α,BC为b,平面A1C1为β,显然有a∥α,b∥β,α∥β,但得不到a∥b,不正确; C、可设A1B1为a,平面AB1为α,CD为b,平面AC为β,满足选项C的条件却得不到α∥β,不正确; D、∵a⊥α,α⊥β, ∴a⊂β或a∥β 又∵b⊥β ∴a⊥b 故选D 最新K12教育 教案试题 【点评】本题主要考查空间内两直线,直线与平面,平面与平面间的位置关系,综合性强,方法灵活,属中档题.
6.若圆x2+y2﹣2x﹣4y=0的圆心到直线x﹣y+a=0的距离为,则a的值为( ) A.﹣2或2 B.或 C.2或0 D.﹣2或0 【考点】点到直线的距离公式. 【专题】计算题. 【分析】把圆的方程化为标准方程后,找出圆心坐标,利用点到直线的距离公式表示出圆心
到已知直线的距离,根据此距离等于列出关于a的方程,求出方程的解即可得到a的值. 【解答】解:把圆x2+y2﹣2x﹣4y=0化为标准方程为:(x﹣1)2+(y﹣2)2=5,所以圆心坐标为(1,2),
∵圆心(1,2)到直线x﹣y+a=0的距离为,
∴,即|a﹣1|=1,可化为a﹣1=1或a﹣1=﹣1, ∴解得a=2或0. 故选C. 【点评】此题考查学生会将圆的一般式方程化为圆的标准方程并会从标准方程中找出圆心坐标,灵活运用点到直线的距离公式化简求值,是一道中档题.
7.如果一个几何体的三视图如图所示,主视图与左视图是边长为2的正三角形、俯视图轮廓为正方形,(单位长度:cm),则此几何体的侧面积是( )
A. cm2 B. cm2 C.8cm2 D.14cm2 【考点】由三视图求面积、体积. 【专题】计算题. 【分析】根据已知中几何体的三视图中,主视图与左视图是边长为2的正三角形、俯视图轮廓为正方形我们可以求出该正四棱锥的底面上的棱长和侧面的高,代入棱锥侧面积公式 即可得到答案.