高一数学期中考试测试题必修一含答案)

合集下载

2023-2024学年高一(上)期中数学试卷(带解析)

2023-2024学年高一(上)期中数学试卷(带解析)

2023-2024学年高一(上)期中数学试卷一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3} 2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥04.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.37.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.368.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为.14.(5分)已知函数f(x)满足,则函数f(x)的解析式为.15.(5分)已知函数,则f(﹣26)+f(﹣25)+⋯+f(﹣1)+f (1)+⋯+f(26)+f(27)的值为.16.(5分)已知x,y>0且满足x+y=1,若不等式恒成立,记的最小值为n,则m+n的最小值为.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.21.(12分)已知a,b,c是实数,且满足a+b+c=0,证明下列命题:(1)“a=b=c=0”是“ab+bc+ac=0”的充要条件;(2)“abc=1,a≥b≥c”是“”的充分条件.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.2023-2024学年高一(上)期中数学试卷参考答案与试题解析一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3}【分析】结合交集的定义,即可求解.【解答】解:集合A={1,2,3},集合B={x||x﹣1|<1}={x|0<x<2},故A∩B={1}.故选:B.【点评】本题主要考查交集及其运算,属于基础题.2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据题意,解绝对值不等式得1<x<3,结合充要条件的定义加以判断,即可得到本题的答案.【解答】解:根据题意,|x﹣2|<1⇒﹣1<x﹣2<1⇒1<x<3,由|x﹣2|<1可以推出1<x<5,且由1<x<5不能推出|x﹣2|<1.因此,若p:|x﹣2|<1,q:1<x<5,则p是q的充分不必要条件.故选:A.【点评】本题主要考查不等式的性质、充要条件的判断等知识,考查了计算能力、逻辑推理能力,属于基础题.3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥0【分析】根据命题的否定的定义,即可求解.【解答】解:命题“∃x∈(1,+∞),x2+2<0”的否定是:∀x∈(1,+∞),x2+2≥0.故选:D.【点评】本题主要考查特称命题的否定,属于基础题.4.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,【分析】观察函数三要素,逐项判断是否同一函数.【解答】解:由题意得:选项A定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项B定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项C对应法则不同,g(x)=|x|;D项,三要素相同,为同一函数.故选:D.【点评】本题考查同一函数的判断,属于基础题.5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或【分析】由题意可知,a<0,方程ax2+bx+c=0的两个根分别为x1,x2,再结合韦达定理求解即可.【解答】解:根据题意:a<0,方程ax2+bx+c=0的两个根分别为x1,x2,所以,,,,解得,即不等式的解集为{x|}.故选:C.【点评】本题主要考查了韦达定理的应用,考查了一元二次不等式的解法,属于基础题.6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.3【分析】根据函数f(x)的定义可知,在一个坐标系中画出y=﹣x+1,y=x2﹣3x+2,y =x﹣1的图象,取最上面的部分作为函数f(x)的图象,由图象即可求出函数的最小值.【解答】解:根据题意,在同一个直角坐标系中,由﹣x+1=x2﹣3x+2,得x2﹣2x+1=0,解得x=1;由x2﹣3x+2=x﹣1,得x2﹣4x+3=0,解得x=3或x=1,所以f(x)=,同时画出函数y=﹣x+1,y=x2﹣3x+2,y=x﹣1,如图分析:所以函数f(x)的最小值为0.故选:A.【点评】本题考查利用函数的图象求函数的最值,属中档题.7.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.36【分析】由已知结合基本不等式先求出xy的范围,即可求a,然后利用乘1法,结合基本不等式可求b,进而可求a+b.【解答】解:∵xy=2x+y+6+6,当且仅当2x=y,即x=3,y=6时取等号,∴a=18.∵m+n=1,m>0,n>0.则=6,当且仅当n=3m且m+n=1,即m=,n=时取等号,∴,∴b=16;∴a+b=34.故选:C.【点评】本题主要考查了基本不等式在最值求解中的应用,属于基础题.8.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a【分析】由已知结合函数的对称性先求出函数的周期,然后结合对称性及周期性即可求解.【解答】解:根据题意:函数f(x)满足f(x)+f(4﹣x)=4,可得函数f(x)关于点(2,2)成中心对称,函数f(x)满足f(x+2)﹣f(﹣x)=0,所以函数f(x)关于x=1对称,所以函数f(x)既关于x=1成轴对称,同时关于点(2,2)成中心对称,所以f(2)=2,T=4,又因为f(1)=a,所以f(3)=4﹣a,f(4)=f(﹣2)=f(﹣2+4)=f(2)=2,所以f(1)+f(2)+f(3)+f(4)=a+2+4﹣a+2=8,所以f(1)+f(2)+f(3)+⋯+f(51)=12[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2)+f(3)=12×8+a+2+4﹣a=102.故选:C.【点评】本题主要考查了函数的奇偶性,对称性及周期性在函数求值中的应用,属于中档题.二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0【分析】由已知举出反例检验选项A,D;结合不等式的性质检验B,C即可判断.【解答】解:当a=1,b=﹣1时,A显然错误;若,则=<0,所以ab>0,B正确;若,即b﹣a<0,则=>0,所以ab<0,所以b<0<a,C正确;当a=2,b=﹣1时,D显然错误.故选:BC.【点评】本题主要考查了不等式的性质在不等式大小比较中的应用,属于基础题.(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.【分析】根据二次函数的性质检验选项A,结合基本不等式检验选项BCD即可判断.【解答】解:根据题意:选项A,y=x2﹣4x+8,根据二次函数的性质可知,x=2时取最小值4,故选A;,当且仅当时取最小值,不在x∈(1,+∞)范围内,故选项B错误;选项C,=,当且仅当,即x=3时成立,故选项C正确;选项D,,令,原式为,当且仅当t=,即t=2时等式成立,不在范围内,故选项D错误.故选:AC.【点评】本题主要考查了基本不等式及二次函数性质在最值求解中的应用,属于中档题.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件【分析】根据充分必要条件的定义,对各个选项中的两个条件进行正反推理论证,即可得到本题的答案.【解答】解:对于选项A,a>1,b>1⇒a﹣1>0,b﹣1>0⇒(a﹣1)(b﹣1)>0,反之,若(a﹣1)(b﹣1)>0,则可能a=b=0,不能得出a>1,b>1.故“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件,A正确;对于选项B,ax2+ax+1>0在R上恒成立,当a=0时,可得1>0恒成立,而区间(0,4)上没有0,故“0<a<4”不是“ax2+ax+1>0在R上恒成立”的充要条件,B不正确;对于选项C,f(x)=x2﹣ax在(1,+∞)上单调递增,可以推出是a⩽2的子集,故“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的充分不必要条件,C不正确;对于选项D,a3+a2b﹣a2﹣ab+a+b=a2(a+b)﹣a(a+b)+(a+b)=(a+b)(a2﹣a+1),,ab>0⇎(a+b)>0,因此,“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件,D正确.故选:AD.【点评】本题主要考查了充分条件与必要条件的判断、不等式的性质、二次函数的单调性等知识,属于基础题.(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9【分析】将所给等式化简整理,得到(x+y)2=x2y2,结合x,y>0可得x+y=xy,.由此出发对各个选项逐一加以验证,即可得到本题的答案.【解答】解:根据题意,x2+y2+1=(xy﹣1)2,即x2+y2=x2y2﹣2xy,整理得x2+y2+2xy =x2y2,所以x2+y2+2xy=x2y2,即(x+y)2=x2y2,而x、y均为正数,故x+y=xy,可得.对于A,,两边平方得x2y2≥4xy,可得xy≥4,故A错误;对于B,由A的计算可知x+y=xy≥4,当且仅当x=y=2时取到等号,故B正确;对于C,x2+y2=x2y2﹣2xy=(xy﹣1)2+1≥32﹣1=8,当且仅当x=y=2时取到等号,故C正确;对于D,,当且仅当x=2y,即时取到等号,故D正确.故选:BCD.【点评】本题主要考查了不等式的性质、基本不等式及其应用等知识,考查了计算能力、逻辑推理能力,属于中档题.三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为[﹣2,1].【分析】根据函数的解析式,列出使函数解析式有意义的不等式组,求出解集即可.【解答】解:函数∴﹣x2﹣x+2⩾0,解得﹣2⩽x⩽1.∴函数的定义域为[﹣2,1].故答案为:[﹣2,1].【点评】本题主要考查函数定义域的求解,属于基础题.14.(5分)已知函数f (x )满足,则函数f (x )的解析式为.【分析】利用解方程组的方法求函数解析式即可.【解答】解:根据题意:①,令代替x ,可得②,①﹣②×2得:,∴函数f (x )的解析式为.故答案为:.【点评】本题考查求函数解析式,属于基础题.15.(5分)已知函数,则f (﹣26)+f (﹣25)+⋯+f (﹣1)+f(1)+⋯+f (26)+f (27)的值为.【分析】根据已知条件,结合偶函数的性质,即可求解.【解答】解:令函数,可得函数f (x )=g (x )+2,∵函数为奇函数,∴g (﹣x )=﹣g (x )⇒g (﹣x )+g (x )=0,f (﹣26)+f (﹣25)+⋯+f (﹣1)+f (1)+⋯+f (26)+f (27)=g (﹣26)+g (﹣25)+⋯+g (﹣1)+g (1)+⋯+g (26)+g (27)+2×53=g (27)+2×53=.故答案为:.【点评】本题主要考查函数值的求解,属于基础题.16.(5分)已知x ,y >0且满足x +y =1,若不等式恒成立,记的最小值为n ,则m +n 的最小值为.【分析】由恒成立,可知左边的最小值大于等于9,因此求的最小值,结合基本不等式求出m+n的最小值.【解答】解:∵实数x,y>0满足x+y=1,∴x+y+1=2,而=,当时,等号成立,所以,解得m⩾8.而=,令,则原式,当时,等号成立,∴实数n的值为,可得实数m+n的最小值为.故答案为:.【点评】本题主要考查基本不等式及其应用,考查了计算能力、逻辑推理能力,属于基础题.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.【分析】(1)把m=3代入求得B,再由并集运算求解;(2)“x∈A”是“x∈B”的必要不充分条件,得B⫋A,然后分B=∅和B≠∅分别求解m 的范围,取并集得答案.【解答】解:(1)∵集合A={x|x2﹣2x﹣3⩽0},由x2﹣2x﹣3⩽0,即(x+1)(x﹣3)⩽0,解得﹣1⩽x⩽3,∵集合B={x|m﹣1<x<2m+1},当m=3时,即B={x|2<x<7},∴A∪B={x|﹣1⩽x<7}.(2)“x∈A”足“x∈B”的必要不充分条件,可得集合B是集合A的真子集,当m﹣1⩾2m+1⇒m⩽﹣2时,集合B为空集,满足题意;当m﹣1<2m+1⇒m>﹣2时,集合B是集合A的真子集,可得,∴实数m的取值范围为{m|m⩽﹣2或0⩽m⩽1}.【点评】本题考查并集的运算,考查分类讨论思想,是中档题.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.【分析】(1)结合幂函数的性质,以及偶函数的性质,即可求解;(2)结合函数的性质,即可求解.【解答】解:(1)由题意可知,2m2﹣m=1,解得m=或1,又∵函数f(x)关于y轴对称,当,满足题意;当m=1⇒f(x)=x5,此时函数f(x)为奇函数,不满足题意,∴实数m的值为;(2)函数,分析可得该函数在(0,+∞)单调递减,∴由(a﹣1)m<(2a﹣3)m可得:.∴实数a的取值范围为.【点评】本题主要考查函数的性质,是基础题.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.【分析】(1)当x<0时,﹣x>0,代入已知函数解析式,对比函数解析式即可求解a,b;(2)结合奇函数的对称性及二次不等式的求法即可求解.【解答】解:(1)根据题意:当x<0时,﹣x>0,则f(x)=﹣f(﹣x)=﹣[(﹣x)2+2(﹣x)]=﹣x2+2x,故a=﹣1,b=2;(2)当x⩾0时,|f(x)|⩾3可得f(x)⩾3,即x2+2x⩾3⇒x2+2x﹣3⩾0,解得x⩾1,根据奇函数可得:|f(x)|⩾3的解集为{x|x⩾1或x⩽﹣1}.【点评】本题主要考查了奇函数的定义在函数解析式求解中的应用,还考查了奇函数的对称性在不等式求解中的应用,属于中档题.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.【分析】(1)根据单日销售额函数,列方程求出m的值,再利用利润=销售额﹣成本,即可得出日销售利润函数的解析式.(2)利用分段函数求出每个区间上的最大值,比较即可得出结论.【解答】解:(1)根据题意知,单日销售额为f(x)=,因为f(3)=+6+3=+9,解得m=,因为利润=销售额﹣成本,所以日销售利润为P(x)=,化简为P (x )=.(2)根据题意分析:①日销售利润P (x )=+x +3=+(x +1)+2,令t =x +1=2,3,4,所以函数为,分析可得当t =2时,取最大值,其最大值为;②日销售利润P (x )=+2x =+2x =﹣+2x ,该函数单调递增,所以当x =6时,P (x )取最大值,此最大值为15;③日销售利润P (x )=21﹣x ,该函数单调递减,所以当x =7时,P (x )取最大值,此最大值为14;综上知,当x =6时,日销售利润最大,最大值为15千元.【点评】本题考查了分段函数模型应用问题,也考查了运算求解能力,是中档题.21.(12分)已知a ,b ,c 是实数,且满足a +b +c =0,证明下列命题:(1)“a =b =c =0”是“ab +bc +ac =0”的充要条件;(2)“abc =1,a ≥b ≥c ”是“”的充分条件.【分析】(1)根据完全平方公式,等价变形,可证出结论;(2)利用基本不等式,结合不等式的性质加以证明,即可得到本题的答案.【解答】证明:(1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,充分性:若a =b =c =0,则ab +bc +ac =0,充分性成立;必要性:若ab +bc +ac =0,由a +b +c =0,得(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,所以a 2+b 2+c 2=0,可得a =b =c =0,必要性成立.综上所述,a =b =c =0是ab +bc +ac =0的充要条件;(2)由a ⩾b ⩾c ,且abc =1>0,可知a >0,b <0,c <0,由a +b +c =0,得,当且仅当b =c 时等号成立,由,得,a 3⩾4,可知≤a =﹣b ﹣c ≤﹣2c ,解得,因此,abc=1且a⩾b⩾c是的充分条件.【点评】本题主要考查等式的恒等变形、不等式的性质与基本不等式等知识,考查了计算能力、逻辑推理能力,属于基础题.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.【分析】(1)根据题意,由f(0)=1,f(1)=3分析可得f(x)=ax2+(2﹣a)x+1,由二次函数的最小值求出a的值,进而计算可得答案;(2)根据题意,由二次函数的性质分a>0与a<0两种情况讨论,分析g(a)的解析式,综合可得答案.【解答】解:(1)根据题意,函数f(x)=ax2+bx+c满足f(0)=1,f(1)=3,则有f(0)=c=1,f(1)=a+b+c=3,变形可得b=2﹣a,函数f(x)=ax2+(2﹣a)x+1,∵函数f(x)有最小值,∴a>0,函数f(x)的最小值为=,解可得:a=4或1,∴当a=4时,b=﹣2,函数f(x)的解析式为f(x)=4x2﹣2x+1;当a=1时,b=1,函数f(x)的解析式为f(x)=x2+x+1.(2)根据题意,由(1)的结论,f(x)=ax2+(2﹣a)x+1,是二次函数,分2种情况讨论:①当a>0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5,ii.当对称轴时,与a>0矛盾,故当a>0时,函数f(x)在区间[1,2]上的最大值g(a)=2a+5;②当a<0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(1)=3,ii.当对称轴时,函数f(x)在区间[1,2]上的最大值,iii.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5.综上所述,【点评】本题考查函数的最值,涉及二次函数的性质,属于中档题.。

(完整word版)高一数学期中考试试卷及答案

(完整word版)高一数学期中考试试卷及答案

高一数学期中考试试卷及答案(考试时间:120分钟)一、 选择题(10⨯5分)1. 下列四个集合中,是空集的是( )A . }33|{=+x xB . },,|),{(22R y x x y y x ∈-=C . }0|{2≤x xD . },01|{2R x x x x ∈=+- 2. 下面有四个命题:(1)集合N 中最小的数是1;(2)若a -不属于N ,则a 属于N ; (3)若,,N b N a ∈∈则b a +的最小值为2;(4)x x 212=+的解可表示为{}1,1; 其中正确命题的个数为( )A . 0个B . 1个C . 2个D . 3个 3. 若集合{},,M a b c =中的元素是△ABC 的三边长, 则△ABC 一定不是( )A . 锐角三角形B . 直角三角形C . 钝角三角形D . 等腰三角形4. 若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( )A . )2()1()23(f f f <-<-B . )2()23()1(f f f <-<-C . )23()1()2(-<-<f f fD . )1()23()2(-<-<f f f5. 下列函数中,在区间()0,1上是增函数的是( ) A . x y = B . x y -=3C .xy 1=D . 42+-=x y 6. 判断下列各组中的两个函数是同一函数的为( )⑴3)5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x ()F x = ⑸21)52()(-=x x f ,52)(2-=x x f .A . ⑴、⑵B . ⑵、⑶C . ⑷D . ⑶、⑸ 7 . 以下说法正确的是( ).A.正数的n 次方根是正数B.负数的n 次方根是负数C.0的n 次方根是0(其中n>1且n ∈N *) D .负数没有n 次方根8. 若n<m<0,则错误!未找到引用源。

【优质文档】天津市高一数学第一学期期中考试试卷(必修1)及参考答案

【优质文档】天津市高一数学第一学期期中考试试卷(必修1)及参考答案

-1-
必有(

A. h( x) < g( x) < f ( x)
B. h( x) < f ( x) < g( x)
C. f ( x) < g( x) < h( x)
D. f ( x) < h( x) < g( x)
9.已知函数 f (x) 是 R 上的增函数, A(0, 2) ,B (3, 2) 是其图象上的两点, 那么 | f (x 1) | 2
a1
A { a | a 1}
由 Q:∵ g(x)=x 2+(1-a)x-2
B={a|a
a 1 2或 a 1 2
2
2
≥ 5 或 a≤ -3}
A CRB [1, 5]
20.( 18 分)解: ( 1)令 log ax=t 则 x=a t
……………… 4 分
f (t ) f (x)
a a2
(at 1
a t)
B.{ 2}
C.{ 1,0}
D .{ 2,0}
5.已知函数 y log a (2 ax) 在 [0 ,1] 上是 x 的减函数,则 a 的取值范围是(

A.( 0, 1)
B.( 0, 2)
C.( 1, 2)
D. [2 ,+ )
y
1
O1
x
y
1
O1
x
y
1 O1 x
y
1
O1
x
D
A
B
C
6.函数 y
ex ex
-3-
20.已知 a >0 且 a ≠ 1. f log a x
( 1)求 f (x) 的解析式;
a
a2
x 1
x1

高一数学必修期中模拟卷及答案

高一数学必修期中模拟卷及答案

高一数学必修期中模拟卷及答案Last revised by LE LE in 2021高一数学(必修1)期中模拟卷(一)一、选择题:(每小题5分,共12小题,合计60分) 1、 下列几个关系中正确的是( )A 、0{0}∈B 、 0{0}=C 、0{0}⊆D 、{0}∅=2、设:f M N →是集合M 到集合N 的映射,下列说法正确的是( ) A 、 M 中每一个元素在N 中必有输出值。

B 、 N 中每一个元素在M 中必有输入值。

C 、 N 中每一个元素在M 中的输入值是唯一的。

D 、N 是M 中所有元素的输出值的集合。

3、下列函数与y x =有相同图象的一个是( )A 、y =、2x y x=C 、log (0,a x y a a =>且1)a ≠D 、log (0,x a y a a =>且1)a ≠ 4、集合11{|,},{|,}2442k k M x x k Z N x x k Z ==+∈==+∈,则( ) A 、M N = B 、M N ⊆ C 、N M ⊆ D 、M N =∅5、已知53()2f x x ax bx =-++且(5)17f -=,则(5)f 的值为( ) A 、19 B 、 13 C 、 -19 D 、 -136、若0a <,则函数(1)1x y a =--的图象必过点( ) A 、(0,1) B 、(0,0) C 、(0,-1) D 、(1,-1)7、要得到函数(2)1y f x =-+的图象,只需将函数()y f x =的图象( ) A 、 向右平移2个单位,向下平移1个单位。

B 、 向左平移2个单位,向下平移1个单位。

C 、 向右平移2个单位,向上平移1个单位。

D 、 向左平移2个单位,向上平移1个单位。

8、定义集合A 、B 的一种运算:1212{,,}A B x x x x x A x B *==+∈∈其中,若{1,2,3}A =,{1,2}B =,则A B *中的所有元素数字之和为( )A .9 B. 149、已知函数()312f x ax a =+-在区间(-1,1)上存在0x ,使得0()0f x =,则( )A、115a-<< B、15a> C、1a<-或15a> D、1a<-10、对任意实数x规定y取14,1,(5)2x x x-+-三个值中的最小值,则函数y()A、有最大值2,最小值1,B、有最大值2,无最小值,C、有最大值1,无最小值,D、无最大值,无最小值。

最新高一数学必修一期中考试试题及答案(1)

最新高一数学必修一期中考试试题及答案(1)

考试时间:100分钟,满分100分.一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列关系正确的是:A .Q ∈2B .}2{}2|{2==x x x C .},{},{a b b a = D .)}2,1{(∈∅2.已知集合}6,5,4,3,2,1{=U ,}5,4,2{=A ,}5,4,3,1{=B ,则)()(B C A C U U ⋃A .}6,3,2,1{B .}5,4{C .}6,5,4,3,2,1{D .}6,1{ 3.下列函数中,图象过定点)0,1(的是A .xy 2= B .x y 2log = C .21x y = D .2x y =4.若b a ==5log ,3log 22,则59log 2的值是: A .b a -2B .b a -2C .b a 2D .ba25.函数3log )(3-+=x x x f 的零点所在的区间是A .(0,1)B .(1,2)C .(2,3)D .(3,+∞) 6.已知函数ax x x f +=2)(是偶函数,则当]2,1[-∈x 时,)(x f 的值域是: A .]4,1[ B .]4,0[ C .]4,4[- D .]2,0[8.某林场计划第一年造林10 000亩,以后每年比前一年多造林20%,则第四年造林 A .14400亩 B .172800亩 C .17280亩 D .20736亩9.设c b a ,,均为正数,且a a21log 2=,b b 21log 21=⎪⎭⎫ ⎝⎛,c c2log 21=⎪⎭⎫ ⎝⎛.则A .c b a <<B .a b c <<C .b a c <<D .c a b <<10.已知函数()log a f x x =(0,1a a >≠),对于任意的正实数,x y 下列等式成立的是A .()()()f x y f x f y +=B .()()()f x y f x f y +=+C .()()()f xy f x f y =D . ()()()f xy f x f y =+二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卷中的横线上.11.若幂函数()f x 的图象过点2,2⎛⎫⎪ ⎪⎝⎭,则()9f = _________12.函数()f x =的定义域是13. 用二分法求函数)(x f y =在区间]4,2[上零点的近似解,经验证有0)4()2(<⋅f f 。

四川省2024-2025学年高一上学期期中调研测试数学试卷(含解析)

四川省2024-2025学年高一上学期期中调研测试数学试卷(含解析)

四川省2024-2025学年上学期期中调研测试高一数学试卷试卷共4页,19小题,满分150分.考试用时120分钟.注意事项:1.考查范围:必修第一册第一章至第三章第二节.2.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡指定位置上.3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.4.考生必须保持答题卡的整洁.考试结束后,请将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知命题,则命题的否定为A. B. C. D.2.已知集合,若,则的取值范围为A. B. C. D.3.二次函数的部分图象如图所示,则不等式的解集为A. B.,或 C. D.4.若,则的最大值是A.-2B.0C.1D.25.已知函数,则A. B. C.D.:2p x ∀>>p 2x ∀>2x ∀>…2x ∃>2x ∃…{}260A xx ax =++<∣1A ∉a [7,)-+∞(7,)-+∞(,7]-∞-(,7)-∞-()y f x =-()0f x <{23}x x <<∣{2x x <∣3}x >{2}x x <∣{3}x x >∣0x >2(1)8y x x ⎛⎫=-- ⎪⎝⎭23(32)x f x x+-=2621()2(3)x x f x x ++=-2621()2(3)x x f x x -+=-2621()3x x f x x ++=-2621()3x x f x x-+=-6.若函数的部分图象如图所示,则的解析式可能是A. B. C. D.7.若函数在区间上单调递减,在区间上单调递增,则实数的取值范围是A.( B. C. D.[4,14]8.定义,则称与经过变换生成函数.已知,设与经过变换生成函数,若,则在区间[2,9]上的最小值为A.B.4C.D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下面四个命题中错误的是A. B.C.集合 D.10.已知,则下列结论中正确的有A.若,则B.若,则()f x ()f x |1|()||x f x x -=()|||1|x f x x =-|||1|()x f x x-=|||1|()x f x x+=a y x x =+(0,2)21312y x a x ⎛⎫=+-+ ⎪⎝⎭(2,)+∞a ,14]-∞[4,)+∞(4,14)1122()()()()(,)()af x f x f x f x a b bf x ==∈R e 1()f x 2()f x e ()f x 212()100,()g x x g x =-=+1()g x 2()g x e ()g x 99(1)2g =()g x 17819848(2-2,210x x x ∀∈-+>R 30,0x x ∃<>∃,,,A B A B A A B A ⋂=⋃=22,21x x ∀-……,,a b c ∈R 0<<11a b<66ac bc >a b>C.若,则D.11.已知函数为定义在上的偶函数,当时,,则A. B.当时,C.在[a ,0]上单调递增D.的值域为三、填空题:本题共3小题,每小题5分,共15分.12.已知全集,集合,则___________.13.已知若,则__________.14.设,用[x ]表示不超过的最大整数,则称为高斯函数,也叫取整函数,例如:[3.9]=,若函数,则的定义域是__________,值域是__________.(第一空2分,第二空3分)四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数.(1)求的值;(2)计算和,猜想的值并加以证明.16.(15分)设.(1)若,求同时满足条件p ,q 的实数构成的集合;(2)若是的充分条件,求的取值范围.17.(15分)已知函数是定义在上的奇函数,且.(1)求a ,b ,c 的值(2)g (x )=,若,求实数的取值范围.1a b >>11a b a b+>+226(3)a b a b ++-…()f x [,4]a a +[0,4]x a ∈+()f x x =-2a =-[,0]x a ∈()f x x=+()f x ()f x -{}280U x x x =∈-Z ∣…{1,2,3,4,5},{2,5,8}A B ==()U A B ⋃=ð20,()2,0,x f x x x x =->⎪⎩…()3f x =x =x ∈R x []y x =3,[0.9]1-=-()2[]xf x x =()f x 1()2x f x x +=-((3))f f (0)(4)f f +(2)(6)f f -+()(4)(2)f a f a a +-≠2:3180,:80()p x x q ax a --<-<∈R 4a =x p q a 2()4bx cf x ax +=+[2,2]-(1)()f x f x +-=()22244164(1)4x x ax a x --+⎡⎤+++⎣⎦34k kx --()()1212[2,2],[2,0],x x f x g x ∀∈-∀∈-…k18.(17分)已知是定义在上的函数,且.(1)证明:是偶函数;(2)若,都有.(i )证明:在上单调递增;(ii )求不等式的解集.19.(17分)对给定的非空集合,定义集合,,当时,称具有姊妹性质.(1)当时,判断集合是否具有姊妹性质,并说明理由;(2)探讨集合具有姊妹性质时与之间的关系;(3)探究的子集的个数.()f x (,0)(0,)-∞⋃+∞1()x f f x f y y ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭()f x 1x ∀>()0f x >()f x (0,)+∞11(4)25f x f f ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭…*{1,2,,},A n n =∈N {}*,,A xx a n a A n +''==+∈∈N ∣{}*,,A x x a n a A n -''==-∈∈N ∣A A +-⋂≠∅A 1,1n n '==A A n n ',A A A A +-+-⋂⋃四川省2024—2025学年上学期期中调研测试高一数学参考答案及评分细则1.【答案】C【解析】命题为全称量词命题,则该命题的否定为:.故选C.2.【答案】A【解析】由,可得,解得,即实数的取值范围为.故选A.3.【答案】B【解析】等价于,根据函数的图象可得的解集为,或.故选B.4.【答案】D【解析】,当且仅当,即时等号成立,故的最大值是2.故选D.5.【答案】B【解析】令,则,可得,所以.故选B.6.【答案】C【解析】根据函数图象的对称性可知为奇函数,对于A 项,不是奇函数,故排除;对于B 项,可取0,故排除;对于D 项,,故排除.故选C.7.【答案】D【解析】当时,函数在区间上单调递增,不符合题意,舍去;当时,函数在区间上单调递减,在区间,解得;二次函数:2p x ∀>>2x ∃>1A ∉21160a +⋅+…7a -…a [7,)-+∞()0f x <()0f x ->()0f x ->{2x x <∣3}x >22(1)8108102y x x x x ⎛⎫=--=---= ⎪⎝⎭…28x x =12x =y =2(1)8x x ⎛⎫-- ⎪⎝⎭32t x =-32t x -=22336212()32(3)2t t t f t t t -⎛⎫+ ⎪-+⎝⎭==--2621()2(3)x x f x x -+=-()f x |1|()||x f x x -=x ||1|1|(1)201f +==≠0a …ay x x=+(0,2)0a >ay x x=+)+∞24a …开口向上,对称轴为,要想函数在区间上单调递增,则需,解得.综上,实数的取值范围是[4,14].故选D.8.【答案】C【解析】由题意可知,又,解得,所以,因为在时单调递减且为正值,在时单调递减且为正值,所以[2,9]上单调递减,所以当时函数有最小值.故选C.9.【答案】AB (每选对1个得3分)【解析】当时,,故A 错误;,故B 错误;当时,,故C正确;在区间上单调递减,所以,即,故D 正确.故选AB.10.【答案】BCD(每选对1个得2分)【解析】因为,所以,所以,故A 错误;因为,所以,所以,故B 正确;令,则在上单调递增,因为,所以,即,故C 正确:等价于,成立,故D 正确.故选BCD.11.【答案】ACD (每选对1个得2分)【解析】对于A 项,因为是定义在上的偶函数,所以,解得,故A 正确;对于B 项,当时,,则,21312y x a x ⎛⎫=+-+ ⎪⎝⎭1322a x -=-(2,)+∞13222a--…14a …a 212()()()mg x g x ng x ==29999(1)22m g n ===1mn=()g x =y =[2,9]x ∈2100y x =-[2,9]x ∈()g x =9x =(9)g =198=1x =2210x x -+=30,0x x ∀<<A B =,A B A A B A ⋂=⋃=2()1f x x =-[2,)+∞22,()(2)21x f x f x ∀==- (221)x -…0<<0a b <<11a b>66ac bc >60c >a b >1()f x x x=+()f x [1,)+∞1a b >>()()f a f b >11a b a b+>+226(3)a b a b ++-…22(3)(3)0a b -+-…()f x [,4]a a +40a a ++=2a =-[2,0]x ∈-[0,2]x -∈()()f x f x =-=()x x --=+故B 错误;对于C 项,因为与都在上单调递增,所以在上单调递增,故C 正确;对于D 项,因为在[-2,0]上单调递增,且,,所以当时,,由偶函数的对称性可知,的值域为,故D 正确.故选ACD.12.【答案】【解析】由题意知,所以.13.【答案】或3【解析】当,得;当时,由,得(舍去)或.综上,或.14.【答案】(第一空2分,第二空3分)【解析】令,得的定义域是;当时,;当时,当时,;当时,,当时,,当时,当时,.综上,的值域是.15.解:(1)因为,(2分)y =y x =[2,0]-()f x x =+[2,0]-()f x x =+(2)(2)2f -=+-=-(0)f =[2,0]x ∈-()f x ∈-()f x -{0,6,7}{08}{0,1,2,3,4,5,6,7,8},{1,2,3,4,5,8}U x x A B =∈=⋃=Z ∣……Uð(){0,6,7}A B ⋃=13-0x …3=13x =-0x >223x x -=1x =-3x =13x =-3x =(,0)[1,)(0,1)-∞⋃+∞[]0x ≠()2[]xf x x =(,0)[1,)-∞⋃+∞[1,2)x ∈11(),12[]22x f x x x ⎡⎫==∈⎪⎢⎣⎭[2,3)x ∈13(),2[]424x x f x x ⎡⎫==∈⎪⎢⎣⎭ [,1)x n n ∈+11(),2[]222x x n f x x n n +⎡⎫==∈⎪⎢⎣⎭x ∈[1,0)-11()0,2[]22x f x x x ⎛⎤==-∈ ⎥⎝⎦[2,1)x ∈--11(),2[]442x x f x x ⎛⎤==∈ ⎥-⎝⎦x ∈[3,2)--11(),2[]632x x f x x ⎛⎤==∈ ⎥-⎝⎦[(1),)x n n ∈-+-()2[]2(1)x x f x x n ==-∈+1,2(1)2n n ⎛⎤⎥+⎝⎦()f x (0,1)31(3)432f +==-所以.(4分)(2)因为,所以,(6分),(8分)猜想分)证明:.(13分)【评分细则】1.第(2)问没有计算过程不扣分;2.第(2)问证明没有计算过程酌情扣分.16.解:(1)由,解得,所以;(2分)当时,,解得,所以,(4分)所以同时满足条件p ,q 的实数构成的集合即为公共部分的实数构成的集合,即为.(6分)(2)因为是的充分条件,且,若,由,得,则,易知,所以,解得,故;(9分)若,由,得,则,易知,所以,解得,故;(12分)若即为恒成立,则,符合题意.(14分)415((3))(4)422f f f +===-1()2x f x x +=-15(0)(4)222f f +=-+=216117(2)(6)2226244f f -++-+=+=+=---()(4)2(2),(10f a f a a +-=≠14115151524()(4)2242222222a a a a a a a a a f a f a a a a a a a a a +-++-+-++--+-=+=+=+===---------(0)(4)2,(2)(6)2f f f f +=-+=()(4)2f a f a +-=13-23180x x --<36x -<<:36p x -<<4a =480x -<2x <:2q x <x x {32}x x -<<∣p q :36p x -<<0a >80ax -<8x a <8:q x a<8{36}{|}xx x x a-<<⊆<∣86a ...43a (4)03a <…0a <80ax -<8x a >8:q x a>8{36}|{}xx x x a-<<⊆>∣83a -...83a - (8)03a -<…0,80a ax =-<80-<:q x ∈R综上,实数的取值范围是.(15分)【评分细则】1.第(1)问结果没有写成集合形式扣1分;2.第(2)问结果写成集合或不等式形式不扣分.17.解:(1)由题意:,得,所以,得.(2分)又,(4分)比较系数,得解得(5分)(2)由(1)可知.(6分)设,则,因为,所以,所以,所以.所以函数在上单调递增.(9分)又,所以函数在上的值域为.(10分)“若”转化为“当时,恒成立”.若,则在上单调递减,由,解得;(12分)若,则,此时不成立;(13分)若,则在上单调递增,由,解得,舍去.(14a 84,33⎡⎤-⎢⎥⎣⎦()()f x f x -=-()()0f x f x -+=22044bx c bx cax ax -+++=++0c =()()22222222(1)44416(1)()(1)444(1)44(1)4b x bx abx abx b x x f x f x a x ax ax a x ax a x +--+--++-=-==+++⎡⎤⎡⎤++++++⎣⎦⎣⎦4,416,ab b -=-⎧⎨=⎩1,4.a b =⎧⎨=⎩24()4xf x x =+1222x x -<……()()()()()()2212211212222212124444444444x x x x x x f x f x x x x x +-+-=-=++++()()()()122122124444x x x x xx --=++1222x x -<……124x x <()()2212211240,0,440x x x x x x-<->++>()()()()12120f x f x f x f x -<⇒<()f x [2,2]-(2)1,(2)1f f -=-=()f x [2,2]-[1,1]-()()1212[2,2],[2,0],x x f x g x ∀∈-∀∈-...20x -......()341g x k kx =--...0k >()g x [2,0]-min ()(0)341g x g k ==- (5)3k …0k =()4g x =-()1g x …0k <()g x [2,0]-min ()(2)34(2)1g x g k k =-=---…1k …分)综上,,即实数的取值范围是.(15分)【评分细则】1.第(2)问结果写成集合或不等式形式不扣分;2.第(2)问若求出的最大值,不求值域不扣分.18.(1)证明:令,得,故分)令,得,故.(2分)因为是定义在上的函数,令,故,所以是偶函数.(4分)(2)(i )证明:由,得,,若,则,得,此时,即,得分)由于都可取任意正数,即对任意的正数,若,都有,所以在上单调递增.(11分)(ii )解:因为在上单调递增,且为偶函数,故在上单调递减,(12分)由于,则,(14分)故,且,解得且,53k …k 5,3⎡⎫+∞⎪⎢⎣⎭()f x 1x y ==(1)(1)(1)f f f =+(1)0,(1f =1x y ==-(1)(1)(1)0f f f =-+-=(1)0f -=()f x (,0)(0,)-∞⋃+∞1y =-()()(1)()f x f x f f x -=+-=()f x 1()x f f x f y y ⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭1()x f f f x y y ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭1x ∀>0y ∀>110x x y y y --=>1x y y>()0f x >10x f f y y ⎛⎫⎛⎫-> ⎪ ⎪⎝⎭⎝⎭1,(8x f f y y ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭11,0,,x x y y y∀>∀>1,x y y 1x y y>1x f f y y ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭()f x (0,)+∞()f x (0,)+∞()f x ()f x (,0)-∞14(4)55f f f ⎛⎫⎛⎫+= ⎪⎪⎝⎭⎝⎭1425f x f ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭…414525x -+......102x +≠1331010x - (12)x ≠-故不等式的解集为.(17分)【评分细则】1.第(2)问第(i )小问若未说明都可取任意正数,扣1分;2.第(2)问第(ii )小问结果写成集合形式不扣分.3.解:(1)当时,,所以不具有姊妹性质.(4分)(2)由题意,,(7分)若要使集合具有姊妹性质,则需满足,则,所以.(9分)(3)由(2)可知,当时,,集合含有0个元素,此时分别含有个元素,所以含有个元素,的子集的个数为的子集的个数为;(13分)当时,,集合含有个元素,此时分别含有个元素,所以含有个元素,的子集的个数为的子集的个数为.(17分)【评分细则】第(3)问将“”写成“”扣1分,将“”写成“”,再单独讨论“”不扣分.11(4)25f x f f ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭…13113,,102210⎡⎫⎛⎤--⋃-⎪ ⎢⎣⎭⎝⎦1,x y y1,1n n '=={1},{2},{0},A A A A A +-+-===⋂=∅A {}**{1,2,,},,1,2,,,,A n n A n n n n n n +''''=∈=+++∈N N {}*1,2,,,,A n n n n n n -''''=---∈N A A A +-⋂≠∅1n n n ''-+…21n n '-…21n n '-<A A +-⋂=∅A A +-⋂,A A +-n A A +-⋃02n n n +-=A A +-⋂1,A A +-⋃22n 21n n '-…A A +-⋂≠∅A A +-⋂2n n '-,A A +-n A A +-⋃()22n n n n n n ''+--=+A A +-⋂22,n n A A '-+-⋃22n n '+21n n '-<21n n '-…21n n '-…21n n '->21n n '-=。

2024-2025学年高一上学期期中模拟考试数学试题01(人教A版2019必修第一册)含解析

2024-2025学年高一上学期期中模拟考试数学试题01(人教A版2019必修第一册)含解析

2024-2025学年高一数学上学期期中模拟卷01
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教A版2019必修第一册第一章~第三章。

5.难度系数:0.65。

第一部分(选择题共58分)
一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

或C或D
由图知:()040f x x >⇒-<<.故选D.
二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部
选对的得6分,部分选对的得部分分,有选错的得0分.
第二部分(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分。

四、解答题:本题共5小题,共77分。

解答应写出文字说明、证明过程或演算步骤。

15.(13分)
的取值范围为.
16.(15分)
17.(15分)
18.(17分)
19.(17分)。

高一数学a版必修一期中考试试题及答案

高一数学a版必修一期中考试试题及答案

高一数学a版必修一期中考试试题及答案一、选择题(本题共10小题,每小题3分,共30分。

每小题只有一个选项是正确的,请将正确答案的序号填在题后的括号内)1. 下列函数中,不是一次函数的是()A. y = 2x + 3B. y = 3x - 1C. y = x^2 - 4D. y = 5x2. 已知集合A={1, 2, 3},B={2, 3, 4},则A∩B等于()A. {1}B. {2, 3}C. {3}D. {2, 3, 4}3. 若方程x^2 - 5x + 6 = 0的两个根为x1和x2,则x1 + x2等于()A. 5B. 6C. -5D. -64. 函数y = 2x - 1的图象经过点(3, 5),则函数y = -2x + 1的图象经过点()A. (3, -5)B. (-3, 5)C. (-3, -5)D. (3, -1)5. 已知等差数列{an}的公差d=2,且a1=1,则a5等于()A. 9B. 11C. 15D. 176. 函数y = 3x^2 - 6x + 2的顶点坐标是()A. (1, -1)B. (2, -2)C. (1, 1)D. (2, 2)7. 已知a,b,c是三角形的三边长,且a^2 + b^2 = c^2,那么这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定8. 函数y = 1/x的图象是()A. 一条直线B. 两条直线C. 一个抛物线D. 两个分支9. 已知f(x) = x^2 - 6x + 8,那么f(-x)等于()A. x^2 + 6x + 8B. x^2 + 6x - 8C. x^2 - 6x - 8D. -x^2 + 6x + 810. 函数y = x^3 - 3x^2 + 4x - 2的导数是()A. 3x^2 - 6x + 4B. x^2 - 6x + 4C. 3x^2 - 6x + 2D. x^2 - 6x + 2二、填空题(本题共5小题,每小题4分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一年级上学期期中考试数学试题一、选择题(本大题共12小题,每小题5分,共60分。

给出的四个选项中,只有一项是符合题目要求的)1.设全集U={1,2,3,4,5},集合A={1,2},B={2,3},则A ∩C U B A .{}45, B .{}23, C .{}1 D .{}2 2.下列表示错误的是(A )0∉Φ (B ){}12Φ⊆,(C ){}{}21035(,)3,4x y x y x y +=-== (D )若,A B ⊆则A B A ⋂=3.下列四组函数,表示同一函数的是A .f (x )=2x ,g (x )=x B .f (x )=x ,g (x )=2x xC .2(),()2ln f x lnx g x x ==D .33()log (),()x a f x a a g x x =>0,α≠1=4.设1232,2,log (1), 2.(){x x x x f x -<-≥=则f ( f (2) )的值为A .0B .1C .2D .3 5.当0<a <1时,在同一坐标系中,函数xy a -=与log a y x =的图象是6.令0.760.76,0.7,log 6a b c ===,则三个数a 、b 、c 的大小顺序是A .b <c <aB .b <a <cC .c <a <bD .c <b <a 7.函数2()ln f x x x=-的零点所在的大致区间是 A .(1,2) B .(2,3) C .11,e ⎛⎫ ⎪⎝⎭和(3,4) D .(),e +∞ 8.若2log 31x =,则39xx+的值为A .6B .3C .52 D .129.若函数y = f (x )的定义域为[]1,2,则(1)y f x =+的定义域为A .[]2,3B .[]0,1C .[]1,0-D .[]3,2-- 10.已知()f x 是偶函数,当x <0时,()(1)f x x x =+,则当x >0时,()f x = A .(1)x x - B .(1)x x -- C (1)x x + D .(1)x x -+11.设()()f x x R ∈为偶函数,且()f x 在[)0,+∞上是增函数,则(2)f -、()f π-、(3)f 的大小顺序是A .()(3)(2)f f f π->>-B .()(2)(3)f f f π->->C .()(2)f f f π-<(3)<-D .()(2)(3)f f f π-<-<12 已知函数f(x)的图象是连续不断的,x 与f(x)的对应关系见下表,则函数f(x)在区间[1,6](A) 2(B) 3(C) 4(D) 5第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题4分,共16分。

把答案填在答题卡对应题号后的横线上.) 13.函数33x y a-=+恒过定点 。

14.计算4________=15.幂函数253(1)m y m m x--=--在()0,x ∈+∞时为减函数,则m 。

16.函数24y x x =-,其中[]3,3x ∈-,则该函数的值域为 。

三、解答题(本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.) 17.(本题满分10分)已知全集{}{}{}21,2,23,|2|,2,0U U a a A a C A =+-=-=,求a 的值.18.(每小题6分,共12分)不用计算器求下列各式的值。

(1)21023213(2)(9.6)(3)(1.5)48-----+;(2)7log 23log lg 25lg 473+++。

19.(本题满分12分)已知函数22y x bx c =++在3(,)2-∞-上述减函数,在3(,)2-+∞上述增函数,且两个零点12,x x 满足122x x -=,求二次函数的解析式。

20.(本题满分12分)已知()log (1)(0,1)a f x x a a =->≠。

(1)求()f x 得定义域;(2)求使()0f x >成立的x 的取值范围。

21.(本题满分12分)我国是水资源匮乏的国家为鼓励节约用水,某市打算出台一项水费政策措施,规定:每一季度每人用水量不超过5吨时,每吨水费收基本价1.3元;若超过5吨而不超过6吨时,超过部分水费加收200%;若超过6吨而不超过7吨时,超过部分的水费加收400%,如果某人本季度实际用水量为(07)x x ≤≤吨,应交水费为()f x 。

(1)求(4)f 、f (5.5)、f (6.5)的值; (2)试求出函数()f x 的解析式。

22.(本题满分14分)设21()12x xa f x •-=+是R 上的奇函数。

(1)求实数a 的值;(2)判定()f x 在R 上的单调性。

高一数学试题参考答案一、CCDCC DBABA AB二、13.(3,4) 14. 42522a b - 15.2 16.[]4,21-三、17解由0U ∈得2230a a +-=4分由1A ∈得21a -=8分解223021a a a ⎧+-=⎪⎨-=⎪⎩得1a =10分18.(1)原式212329373()1()()482--=--+2132232333()1()()222-⨯⨯-=--+…………………………………3分223331()()222--=--+ 12=…………………………………………………………6分(2)原式3433log lg(254)23=+⨯+……………………………………9分 1243log 3lg102=++1152244=-++=……………………………………………12分 19.解:由已知得:对称轴32x =-,所以342b -=-得6b =………3分故2()26f x x x c =++ 又1x ,2x 是()f x 的两个零点所以1x ,2x 是方程2260x x c ++=的两个根……………………4分 123x x ∴+=-,122cx gx =…………………………………………6分所以122x x -===………………8分得52c =………………………………………………………………11分故25()262f x x x =++……………………………………………12分 20.解:(1)依题意得10x ->…………………………………………1分 解得1x <……………………………………………………2分故所求定义域为{}1x x <……………………………………4分 (2)由()f x >0得log (1)log 1a a x ->……………………………………………………6分 当1a >时,11x ->即0x <…………………………………………8分 当01a <<时,011x <-<即01x <<………………………………10分综上,当1a >时,x 的取值范围是{}0x x <,当01a <<时,x 的取值范围是{}01x x <<………………………………………………………………12分21.解:(1)(4)4 1.3 5.2f =⨯=………………………………………………1分 (5.5)5 1.30.5 3.98.45f =⨯+⨯=………………………………3分 (6.5)5 1.31 3.90.5 6.513.65f =⨯+⨯+⨯=……………………5分 (2)当05x ≤≤时,() 1.3 1.3f x x x =⨯=……………………………………7分 当56x <≤时,() 1.35(5) 3.9 3.913f x x x =⨯+-⨯=-………………9分 当67x ≤<时,() 1.351 3.9(6) 6.5 6.528.6f x x x =⨯+⨯+-⨯=-……11分故 1.3(05)() 3.913(56)6.528.6(67)x x f x x x x x ≤≤⎧⎪=-<≤⎨⎪-<≤⎩………………………………………12分22.(1)法一:函数定义域是R ,因为()f x 是奇函数,所以()()f x f x -=-,即12212121212x x xx x xa a a ---••--==+++………………2分 122xxa a ∴-•=-解得1a =…………………………………………6分法二:由()f x 是奇函数,所以(0)0f =,故1a =,……………3分再由21()12x xf x -=+,验证()()f x f x -=-,来确定1a =的合理性……6分(2)()f x 增函数…………………………………………………………7分法一:因为21()12x xf x x-=+,设设1x ,2x R ∈,且12x x <,得122x x <2。

则12()()f x f x -= (122)12(22)0(21)(21)x x xx -=<++,即12()()f x f x < 所以()f x 说增函数。

……………………………………………………14分法二:由(1)可知212()12121x x x f x -==-++,由于2x 在R 上是增函数, 221x ∴+在R 上是减函数,221x ∴-+在R 上是增函数, ()f x ∴是R 上的增函数。

…………………………………………14分。

相关文档
最新文档