数学人教版九年级上册圆的切线长定理

合集下载

人教版数学九年级上册第24章圆 切线长定理拓展巩固与复习过关

人教版数学九年级上册第24章圆 切线长定理拓展巩固与复习过关

人教版数学九年级上册第24章圆切线长定理拓展巩固与复习过关知识全面设计合理含答案教师必备切线长定理—知识讲解(基础)【学习目标】1.了解切线长定义;理解切线的判定和性质;理解三角形的内切圆及内心的定义;2.掌握切线长定理;利用切线长定理解决相关的计算和证明.【要点梳理】要点一、切线的判定定理和性质定理1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.要点诠释:切线的判定方法:(1)定义:直线和圆有唯一公共点时,这条直线就是圆的切线;(2)定理:和圆心的距离等于半径的直线是圆的切线;(3)判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.(切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可).2.切线的性质定理:圆的切线垂直于过切点的半径.要点诠释:切线的性质:(1)切线和圆只有一个公共点;(2)切线和圆心的距离等于圆的半径;(3)切线垂直于过切点的半径;(4)经过圆心垂直于切线的直线必过切点;(5)经过切点垂直于切线的直线必过圆心.要点二、切线长定理1.切线长:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.要点诠释:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释:切线长定理包含两个结论:线段相等和角相等.3.圆外切四边形的性质:圆外切四边形的两组对边之和相等.要点三、三角形的内切圆1.三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.2.三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).【典型例题】类型一、切线长定理1.如图,PA、PB、DE分别切⊙O于A、B、C,⊙O的半径长为6 cm,PO=10 cm,求△PDE的周长.【答案与解析】连结OA ,则OA ⊥AP .在Rt △POA 中,PA===8(cm ). 由切线长定理,得EA =EC ,CD =BD ,PA =PB , ∴ △PDE 的周长为PE +DE +PD =PE +EC +DC +PD ,=PE +EA +PD +DB =PA +PB =16(cm ).【总结升华】本题考查切线长定理、切线的性质、勾股定理.注意:在有关圆的切线长的计算中,往往利用切线长定理进行线段的转换.【高清ID 号: 356967 关联的位置名称(播放点名称):方法总结及例题1-2】2.(2015•柳州)如图,已知四边形ABCD 是平行四边形,AD 与△ABC 的外接圆△O 恰好相切于点A ,∠DAE=∠ABE,边CD 与△O 相交于点E ,连接AE ,BE . (1)求证:AB=AC ;(2)若过点A 作AH △BE 于H ,求证:BH=CE+EH .【思路点拨】(1)根据圆周角定理证明△ABC=△ACB ,得到答案;(2)作AF △CD 于F ,证明△AEH △△AEF ,得到EH=EF ,根据△ABH △△ACF ,得到答案. 【答案与解析】 证明:(1)∵△ABE=△DAE ,又△EAC=△EBC , △△DAC=△ABC , △AD △BC ,△△DAC=△ACB , △△ABC=△ACB , △AB=AC ;(2)作AF △CD 于F ,△四边形ABCE 是圆内接四边形, △△ABC=△AEF ,又△ABC=△ACB ,22OA OP -22610-△△AEF=△ACB,又△AEB=△ACB,△△AEH=△AEF,在△AEH和△AEF中,,△△AEH△△AEF,△EH=EF,△CE+EH=CF,在△ABH和△ACF中,,△△ABH△△ACF,△BH=CF=CE+EH.【总结升华】本题考查的是切线的性质和平行四边形的性质以及全等三角形的判定和性质,运用性质证明相关的三角形全等是解题的关键,注意圆周角定理和圆内接四边形的性质的运用.举一反三:【变式】(2015•青海)如图,在△ABC中,△B=60°,△O是△ABC的外接圆,过点A作△O的切线,交CO的延长线于点M,CM交△O于点D.(1)求证:AM=AC;(2)若AC=3,求MC的长.【答案】(1)证明:连接OA,△AM是△O的切线,△△OAM=90°,△△B=60°,△△AOC=120°,△OA=OC,△△OCA=△OAC=30°,△△AOM=60°,△△M=30°,△△OCA=△M,△AM=AC;(2)作AG△CM于G,△△OCA=30°,AC=3,△AG=,由勾股定理的,CG=,则MC=2CG=3.类型二、三角形的内切圆3.已知:如图,△ABC的三边BC=a,CA=b,AB=c,它的内切圆O的半径长为r.求△ABC的面积S.【答案与解析】设内切圆与三角形的三边AB、AC、BC分别交于D、E、F,连接OE、 OF、OD、AO、BO、CO.∴△ABC=△AO B+△AO C+△BO C=r(a+b+c).【总结升华】考虑把△ABC的面积分割成3个以圆的半径为高的三角形面积的和,从而求出△ABC的面积.举一反三:【高清ID号:356967 关联的位置名称(播放点名称):切线长定理及例3】【变式】已知如图,△ABC中,∠C=90°,BC=4,AC=3,求△ABC的内切圆⊙O的半径r.【答案】连结OA、OB、OC,∵△ABC中,∠C=90°,BC=4,AC=3,∴AB=5.则S△AOB+S△COB+S△AOC=S△ABC,即类型三、与相切有关的计算与证明4.如图,平行四边形ABCD中,以A为圆心,AB为半径的圆交AD于F,交BC于G,延长BA交圆于E.1211115+4+3=34=12222r r r r⨯⨯⨯⨯⨯,(1)若ED 与⊙A 相切,试判断GD 与⊙A 的位置关系,并证明你的结论; (2)在(1)的条件不变的情况下,若GC =CD =5,求AD 的长.【答案与解析】(1)结论:与相切证明:连接 ∵点、在圆上, ∴∵四边形是平行四边形, ∴∴ ∵,∴,∴ 在和∴,∴∵与相切∴,∴ ∴∴与相切(2)∵,四边形是平行四边形 ∴,,∵,∴,∴∴ ,∴ ∴.【总结升华】本题虽然是圆和平行四边形的位置关系问题,但是依然考察的是如何将所有条件放在最基本的三角形中求解的能力.判断出DG 与圆相切不难,难点在于如何证明.第二问则不难,重点在于如何利用角度的倍分关系来判断直角三角形中的特殊角度,从而求解.切线长定理—巩固练习(基础)【巩固练习】 一、选择题G FEDCBAGD O AG G E AG AE =ABCD AD BC ∥123B ∠=∠∠=∠,AB AG =3B ∠=∠12∠=∠AED ∆AGD ∆12AE AGAD AD =⎧⎪∠=∠⎨⎪=⎩AED AGD ∆∆≌AED AGD ∠=∠ED A 90AED ∠=︒90AGD ∠=︒AG DG ⊥GD A 5GC CD ==ABCD AB DC =45∠=∠5AB AG ==AD BC ∥46∠=∠1562B ∠=∠=∠226∠=∠630∠=︒10AD =654321GF EDC B A1. 下列说法中,不正确的是 ( )A .三角形的内心是三角形三条内角平分线的交点B .锐角三角形、直角三角形、钝角三角形的内心都在三角形内部C .垂直于半径的直线是圆的切线D .三角形的内心到三角形的三边的距离相等2.△ABC 的三边长分别为a 、b 、c ,它的内切圆的半径为r ,则△ABC 的面积为( ) A.(a +b +c )r B.2(a +b +c ) C.(a +b +c )r D.(a +b +c )r3.(2015•黔西南州)如图,点P 在⊙O 外,PA 、PB 分别与⊙O 相切于A 、B 两点,∠P=50°,则∠AOB等于( )A .150°B .130°C .155°D .135°4. 如图所示,⊙O 的外切梯形ABCD 中,如果AD ∥BC ,那么∠DOC 的度数为( )A.70°B.90°C.60°D.45°第4题图 第5题图5.如图,是的切线,切点为A ,PAAPO =30°,则的半径为( )A.16.已知如图所示,等边△ABC 的边长为2cm ,下列以A 为圆心的各圆中, 半径是3cm 的圆是( )2131PA O ⊙O ⊙二、填空题7.如图,⊙I是△ABC的内切圆,切点分别为点D、E、F,若∠DEF=52o,则∠A的度为________.第7题图第8题图第9题图8.如图,一圆内切于四边形ABCD,且AB=16,CD=10,则四边形ABCD的周长为________.9.如图,已知⊙O是△ABC的内切圆,∠BAC=50o,则∠BOC为____________度.10.如图,、分别切⊙于点、,点是⊙上一点,且,则____度.第10题图第11题图11.如图,PA与⊙O相切,切点为A,PO交⊙O于点C,点B是优弧CBA上一点,若∠ABC=32°,则∠P 的度数为 .12.(2015•鄂州)已知点P是半径为1的⊙O外一点,PA切⊙O于点A,且PA=1,AB是⊙O的弦,AB=,连接PB,则PB= .三、解答题13. 已知:如图,AB为⊙O的直径,⊙O过AC的中点D,DE⊥BC于点E.求证:DE为⊙O的切线.PA PB O A B E O60=∠AEB=∠POEDCBA14.已知:如图,点是⊙的直径延长线上一点,点 在⊙上,且求证:是⊙的切线;15.(2014秋•东城区月考)如图所示,PA 、PB 是△O 的切线,切点分别是A 、B ,Q 为△O 上一点,过Q 点作△O 的切线,交PA 、PB 于E 、F 点,已知PA=8cm ,求:△PEF 的周长.【答案与解析】一、选择题 1.【答案】C.【解析】经过半径的外端,并且垂直于这条半径的直线是圆的切线. 2.【答案】A.【解析】连结内心与三个顶点,则△ABC 的面积等于三个三角形的面积之和,所以△ABC 的面积为a ·r +b ·r +c ·r =(a +b +c )r . 3.【答案】B ;【解析】∵PA、PB 是⊙O 的切线, ∴PA⊥OA,PB⊥OB, ∴∠PAO=∠PBO=90°,D O CA B O .OA AB AD ==BD OC21212121∵∠P=50°, ∴∠AOB=130°. 故选B . 4.【答案】B ;【解析】由AD ∥BC ,得∠ADC+∠BCD=180°,又AD 、DC 、BC 与⊙O 相切,所以∠ODC=∠ADC ,∠OCD=∠BCD ,所以∠ODC+∠OCD=×180°=90°,所以∠DOC=90°. 故选B.5.【答案】C ;【解析】连结OA ,则∠OAP=90°,设OA=x,则OP=2x,由勾股定理可求x=2,故选C. 6.【答案】C ;【解析】易求等边△ABC 的高为3cm 等于圆的半径,所以圆A 与BC 相切,故选C. 二、填空题 7.【答案】76°;【解析】连接ID,IF ∵∠DEF=52°, ∴∠DIF=104°,∵D 、F 是切点, ∴DI ⊥AB,IF ⊥AC , ∴∠ADI=∠AFI=90°, ∴∠A=1800-1040=76°.8.【答案】52;【解析】提示:AB+CD=AD+BC. 9.【答案】115°;【解析】∵∠A=500 ∴∠ABC+∠ACB=130°,∵OB,OC 分别平分∠ABC,∠ACB , ∴∠OBC+∠OCB=65°, ∴∠BOC=1800-650=115°.10.【答案】60°;【解析】连结OA 、OB ,则∠AOB=120°,在四边形OAPB 中,∠P=360°-90°-90°-120°=60°. 11.【答案】26°;【解析】连结OA ,则∠AOC=64°,∠P=90°-64°=26°. 12.【答案】1或. 【解析】连接OA , (1)如图1,连接OA ,△PA=AO=1,OA=OB ,PA 是△的切线, △△AOP=45°△OA=OB , △△BOP=△AOP=45°, 在△POA 与△POB 中,,△△POA △△POB , △PB=PA=1;212121(2)如图2,连接OA ,与PB 交于C , △PA 是△O 的切线, △OA △PA , 而PA=AO=,1 △OP=; △AB=, 而OA=OB=1, △AO △BO ,△四边形PABO 是平行四边形, △PB ,AO 互相平分; 设AO 交PB 与点C , 即OC=, △BC=,△PB=.故答案为:1或. 三、解答题13.【答案与解析】如图,连接OD . ∵ D 为AC 中点, O 为AB 中点,∴ OD 为△ABC 的中位线. ∴OD∥BC. ∵ DE⊥BC, ∴∠DEC=90°.∴∠ODE=∠DEC=90°. ∴OD⊥DE 于点D. ∴ DE 为⊙O 的切线. 14.【答案与解析】 连接.∵,∴.∴是等边三角形. ∴.∵,∴. ∴. ∴ .又∵点在⊙上, ∴是⊙的切线 . 15. 【答案与解析】解:△PA 、PB 是△O 的切线,切点分别是A 、B ,Q 为△O 上一点,过Q 点作△O 的切线,交PA 、PB 于E 、F 点,△PA=PB ,EA=EQ ,FB=FQ , △PA=8cm ,△△PEF 的周长为:PE+EF+PF=PA+PB=8+8=16(cm ).OB ,OA AB OA OB ==OA AB OB ==ABO ∆160BAO ∠=∠=︒AB AD =230D ∠=∠=︒1290∠+∠=︒DB BO ⊥B O DB O 231FE DCBA4O切线长定理—知识讲解(提高)【学习目标】1.了解切线长定义;理解切线的判定和性质;理解三角形的内切圆及内心的定义;2.掌握切线长定理;利用切线长定理解决相关的计算和证明.【要点梳理】要点一、切线的判定定理和性质定理1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.要点诠释:切线的判定方法:(1)定义:直线和圆有唯一公共点时,这条直线就是圆的切线;(2)定理:和圆心的距离等于半径的直线是圆的切线;(3)判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.(切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可).2.切线的性质定理:圆的切线垂直于过切点的半径.要点诠释:切线的性质:(1)切线和圆只有一个公共点;(2)切线和圆心的距离等于圆的半径;(3)切线垂直于过切点的半径;(4)经过圆心垂直于切线的直线必过切点;(5)经过切点垂直于切线的直线必过圆心.要点二、切线长定理1.切线长:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.要点诠释:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释:切线长定理包含两个结论:线段相等和角相等.3.圆外切四边形的性质:圆外切四边形的两组对边之和相等.要点三、三角形的内切圆1.三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.2.三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S 为三角形的面积,P 为三角形的周长,r 为内切圆的半径).【典型例题】类型一、切线长定理1. 如图,等腰三角形中,,.以为直径作⊙O 交于点,交于点,,垂足为,交的延长线于点.求证:直线是⊙O 的切线.【答案与解析】如图,连结OD 、,则.∴. ∵ ,∴. ∴是的中点. ∵是的中点, ∴. ∵于F . ∴.ABC 6AC BC ==8AB =BC AB D ACG DF AC ⊥F CB E EF DFGCO B E ACD 90BDC ∠=︒CD AB ⊥AC BC =AD BD =D AB O BC DO AC ∥EF AC ⊥EF DO ⊥∴是⊙O 的切线. 【总结升华】连半径,证垂直.举一反三:【变式】已知:如图,在梯形 ABCD 中,AB ∥DC ,∠B=90°,AD=AB+DC ,AD 是⊙O 的直径.求证:BC 和⊙O 相切.【答案】作OE ⊥BC ,垂足为E , ∵ AB ∥DC ,∠B=90°, ∴ OE ∥AB ∥DC , ∵ OA=OD , ∴ EB=EC ,∴ BC 是⊙O 的切线.2. 已知:如图,AB 是⊙O 的直径,BC 是⊙O 的切线,切点为B ,OC 平行于弦AD ,求证:DC 是⊙O 的切线.【答案与解析】连接OD .∵ OA=OD ,∴∠1=∠2.∵ AD ∥OC , ∴∠1=∠3,∠2=∠4. 因此 ∠3=∠4.又∵ OB=OD ,OC=OC ,∴ △OBC ≌△ODC . ∴∠OBC=∠ODC .∵BC 是⊙O 的切线,∴∠OBC=90°, ∴∠ODC=90°, ∴ DC 是⊙O 的切线.【总结升华】因为AB 是直径,BC 切⊙O 于B ,所以BC ⊥AB .要证明DC 是⊙O 的切线,而DC 和⊙O 有公共点D ,所以可连接OD ,只要证明DC ⊥OD .也就是只要证明∠ODC=∠OBC.而这两个角分别是△ODC 和△OBC 的内角,所以只要证△ODC ≌△OBC .这是不难证明的.EF举一反三:【高清ID 号:356967 关联的位置名称(播放点名称):练习题精讲】【变式】已知:∠MAN=30°,O为边AN上一点,以O 为圆心、2为半径作⊙O,交AN于D、E两点,设AD=,⑴如图⑴当取何值时,⊙O与AM相切;⑵如图⑵当为何值时,⊙O与AM相交于B、C两点,且∠BOC=90°.【答案】(1)设AM与⊙O相切于点B,并连接OB,则OB⊥AB;在△AOB中,∠A=30°,则AO=2OB=4,所以AD=AO-OD,即AD=2.x=AD=2.(2)过O点作OG⊥AM于G∵OB=OC=2,∠BOC=90°,∴BC=,∵OG⊥BC,∴BG=CG=,∴OG=,∵∠A=30°xxx2222MANED O图(1).MA NEDBCO图(2)∴OA=,∴x=AD=2类型二、三角形的内切圆3.(2015•西青区二模)已知四边形ABCD 中,AB∥CD,⊙O 为内切圆,E 为切点. (Ⅰ)如图1,求∠AOD 的度数;(Ⅱ)如图1,若AO=8cm ,DO=6cm ,求AD 、OE 的长;(Ⅲ)如图2,若F 是AD 的中点,在(Ⅱ)中条件下,求FO 的长.【答案与解析】解:(Ⅰ)∵⊙O 为四边形ABCD 的内切圆, ∴AD、AB 、CD 为⊙O 的切线, ∴OD 平分∠ADC,OA 平分∠BAD, 即∠ODA=∠ADC,∠OAD=∠BAC, ∵AB∥CD,∴∠ADC+∠BAC=180°, ∴∠ODA+∠OAD=90°, ∴∠AOD=90°;(Ⅱ)在Rt△AOD 中,∵AO=8cm,DO=6cm , ∴AD==10(cm ),∵AD 切⊙O 于E ,∴OE⊥AD, ∴OE•AD=OD•OA, ∴OE==(cm );(Ⅲ)∵F 是AD 的中点, ∴FO=AD=×10=5(cm ).【总结升华】本题考查了三角形的内切圆与内心,也考查了切线长定理.类型三、与相切有关的计算与证明【高清ID 号: 356967 关联的位置名称(播放点名称):经典例题4】4.(2015•常德)已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为3,∠EAC=60°,求AD的长.【答案与解析】证明:(1)如图1,连接FO,∵F为BC的中点,AO=CO,∴OF∥AB,∵AC是⊙O的直径,∴CE⊥AE,∵OF∥AB,∴OF⊥CE,∴OF所在直线垂直平分CE,∴FC=FE,OE=OC,∴∠FEC=∠FCE,∠0EC=∠0CE,∵∠ACB=90°,即:∠0CE+∠FCE=90°,∴∠0EC+∠FEC=90°,即:∠FEO=90°,∴FE为⊙O的切线;(2)如图2,∵⊙O的半径为3,∴AO=CO=EO=3,∵∠EAC=60°,OA=OE,∴∠EOA=60°,∴∠COD=∠EOA=60°,∵在Rt△OCD中,∠COD=60°,OC=3,∴CD=,∵在Rt△ACD中,∠ACD=90°,CD=,AC=6,∴AD=.【总结升华】本题是一道综合性很强的习题,考查了切线的判定和性质,三角形的中位线的性质,勾股定理,线段垂直平分线的性质等,熟练掌握定理是解题的关键.切线长定理—巩固练习(提高)【巩固练习】一、选择题1.给出下列说法:①任意一个三角形一定有一个外接圆,并且只有一个外接圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;③任意一个三角形一定有一个内切圆,并且只有一个内切圆;④任意一个圆一定有一个外切三角形,并且只有一个外切三角形.其中正确的有 ( )A.1个 B.2个 C.3个 D.4个2.一个直角三角形的斜边长为8,内切圆半径为1,则这个三角形的周长等于 ( )A.21 B.20 C.19 D.18第2题图第3题图第4题图3. 如图,PA、PB分别切⊙O于点A、B,AC是⊙O的直径,连结AB、BC、OP,则与∠PAB相等的角(不包括∠PAB本身)有 ( )A.1个 B.2个 C.3个 D.4个4. 如图,已知△ABC的内切圆⊙O与各边相切于点D、E、F,则点O是△DEF的 ( )A.三条中线的交点 B.三条高的交点C.三条角平分线的交点 D.三条边的垂直平分线的交点5.△ABC中,AB=AC,∠A为锐角,CD为AB边上的高,I为△ACD的内切圆圆心,则∠AIB的度数是()A.120° B.125° C.135° D.150°6.(2015•东西湖区校级模拟)如图,四边形ABCD中,AD平行BC,∠ABC=90°,AD=2,AB=6,以AB为直径的半⊙O 切CD于点E,F为弧BE上一动点,过F点的直线MN为半⊙O的切线,MN交BC于M,交CD于N,则△MCN的周长为()A .9B . 10C . 3D . 2二、填空题 7.如图,P 是⊙O 的直径AB 延长线上的一点,PC 与⊙O 相切于点C ,若∠P=20°,则∠A=___________°.第7题图 第8题图8.如图,巳知AB 是⊙O 的一条直径,延长AB 至C 点,使得AC=3BC ,CD 与⊙O 相切,切点为D .若CD=√3,则线段BC 的长度等于 .9.如图,直径分别为CD 、CE 的两个半圆相切于点C ,大半圆M 的弦AB 与小半圆N 相切于点F ,且AB∥CD,AB=4,设、的长分别为x 、y ,线段ED 的长为z ,则z (x+y )= .10.阅读下面材料:对于平面图形A ,如果存在一个圆,使图形A 上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A 被这个圆所覆盖.如图 (1)中的三角形被一个圆所覆盖,图 (2)中的四边形被两个圆所覆盖.回答下列问题:(1)边长为1 cm 的正方形被一个半径为r 的圆所覆盖,r 的最小值是________ cm;POCBACD CE(2)边长为1 cm的等边三角形被一个半径为r的圆所覆盖,r的最小值是________ cm;(3)边长为2 cm,1 cm的矩形被两个半径都为r的圆所覆盖,r的最小值是________ cm,这两个圆的圆心距是________ cm.11.(2014春•嘉鱼县校级月考)如图,在△ABC中,AB=AC,以AB为直径的半圆O交BC于点D,交AC于点E,连接AD、BE交于点M,过点D作DF△AC于点F,DH△AB于点H交BE于点G,下列结论:①BD=CD,②DF是△O的切线,③△DAC=△BDH,④DG=BM,其中正确的结论的序号是.12.已知:如图,三个半圆以此相外切,它们的圆心都在x轴的正半轴上并与直线y x相切,设半圆C1、半圆C2、半圆C3的半径分别是r1、r2、r3,则当r1=1时,r3= .三、解答题13. 如图,△ABC中,∠ACB=90°,以AC为直径的⊙O,交AB于D,E为BC中点.求证:DE是⊙O切线.14. 如图(1)所示,已知AB为⊙O的直径,PA、PC是⊙O的切线,A、C分别为切点,∠BAC=30°.(1)求∠P的大小;(2)若AB=2,求PA的长(结果保留根号).图(1)15. (2015•杭州模拟)联想三角形内心的概念,我们可引入如下概念.定义:到三角形的两边距离相等的点,叫做此三角形的准内心.举例:如图1,若PD=PE ,则点P 为△ABC 的准内心.应用:如图2,BF 为等边三角形的角平分线,准内心P 在BF 上,且PF=BP ,求证:点P 是△ABC 的内心.探究:已知△ABC 为直角三角形,△C=90°,准内心P 在AC 上,若PC=AP ,求△A 的度数.【答案与解析】一、选择题1.【答案】B ;【解析】②④错误.2.【答案】D ;【解析】∵AD=AF,BD=BE,CE=CF , ∴周长=8,故选D.3.【答案】C ;【解析】∠PAB=∠PBA=∠POA=∠ACB ,有3个.4.【答案】D ;【解析】 点O 是△DEF 的外接圆的圆心(即外心),是三条边的垂直平分线的交点,故选D.5.【答案】C ;6.【答案】A ;21218⨯+⨯=【解析】解:作DH⊥BC于H,如图,∵四边形ABCD中,AD平行BC,∠ABC=90°,∴AB⊥AD,AB⊥BC,∵AB为直径,∴AD和BC为⊙O 切线,∵CD和MN为⊙O 切线,∴DE=DA=2,CE=CB,NE=NF,MB=MF,∵四边形ABHD为矩形,∴BH=AD=2,DH=AB=6,设BC=x,则CH=x﹣2,CD=x+2,在Rt△DCH中,∵CH2+DH2=DC2,∴(x﹣2)2+62=(x+2)2,解得x=4.5,∴CB=CE=4.5,∴△MCN的周长=CN+CM+MN=CN+CM+NF+MF=CN+CM+NF+MB=CE+CB=9.故选A.二、填空题7.【答案】∠A=35°;【解析】由PC与⊙O相切于点C,得∠PCO=90°,而∠P=20°,所以∠POC=70°;因为OA=OC,所以∠A=∠ACO;又∠A+∠ACO=∠POC=70°,故∠A=35°.8.【答案】1;【解析】连结OD,∵CD与⊙O相切,切点为D,∴∠ODC=90°,设⊙O的半径为r,则OC=2r,在Rt△ODC中,有勾股定理得r=1,BC=r=1.9.【答案】8π;【解析】过M作MG⊥AB于G,连MB,NF,如图,而AB=4,∴BG=AG=2,∴MB2﹣MG2=22=4,又∵大半圆M的弦与小半圆N相切于点F,∴NF⊥AB,∵AB∥CD,∴MG=NF,设⊙M,⊙N的半径分别为R,r,∴z(x+y)=(CD﹣CE)(π•R+π•r),=(2R﹣2r)(R+r)•π,=(R2﹣r2)•2π,= 4•2π,=8π.故答案为:8π.10.【答案】 (1); (2); (3); 1. 【解析】图形被圆覆盖,圆一定大于图形的外接圆,它的最小半径就是外接圆半径.(1)正方形的外接圆半径,是对角线的一半,因此r 的最小值是 cm. (2)等边三角形的外接圆半径是其高的,故r 的最小值是 cm. (3)r 的最小值是 cm ,圆心距是1 cm. 11.【答案】 ①①①①;【解析】解:①△AB 为△O 的直径,△△BDA=90°,即AD △BC ,又△AB=AC ,△BD=DC ,△BAD=△DAE ,故①正确;②连接OD ,如图所示:△△BAD=△DAE ,△,△OD △BE ,△AB 是直径,△BE △AC又△DF △AC ,△BE △DF ,△DF △OD ,△DF 是切线.故②正确;③△Rt △ABD 中,DH △AB ,△△DAB=△BDH ,又△△BAD=△DAC ,△△DAC=△BDH .故③正确;④△△DBE=△DAC (同弧所对的圆周角相等),△BDH=△DAC (已证),△△DBE=△BDH△DG=BG ,△△BDH+△HDA=△DBE+△DMB=90°,△△GDM=△DMG△DG=GM△DG=BM ,22332222323322故④正确. 故答案为:①②③④.12.【答案】9.【解析】由三个半圆依次与直线y =x 相切并且圆心都在x 轴上,∴y =x 倾斜角是30°, ∴得OO =2r ,OO 2=2r ,003=2r ,r 1=1,∴r 3=9.故答案为9.三、解答题13. 【答案与解析】连接OD ,CD∵AC 是⊙O 直径∴CD ⊥AB∵E 为BC 中点∴ED=EC∴∠EDC=∠ECD又∵OD=OC∴∠ODC=∠OCD∴∠EDC+∠ODC=∠ECD+∠OCD∴∠ODE=∠OCE=90°∴DE 是⊙O 的切线.14. 【答案与解析】(1)PA 是⊙O 的切线,AB 为⊙O 的直径,∴ PA ⊥AB .∴ ∠BAP =90°∴ ∠BAC =30°.∴ ∠CAP =90°-∠BAC =60°.又∵ PA 、PC 切⊙O 于点A 、C ,∴ PA =PC ,∴ △PAC 为等边三角形,∴ ∠P =60°.(2)连接BC ,如图(2),则∠ACB =90°.在Rt △ACB 中,AB =2,∠BAC =30°,图(2)∴ BC =1.由勾股定理又求得AC =, 由(1)知PA =PC =.15. 【答案与解析】解:应用:△△ABC 是等边三角形,△△ABC=60°,△BF 为角平分线,△△PBE=30°,△PE=PB ,△BF 是等边△ABC 的角平分线,33112333△BF△AC,△PF=BF,△PE=PD=PF,△P是△ABC的内心;探究:根据题意得:PD=PC=AP,在Rt△ADP中,AP=2PD,△△A是锐角,△△A=30°.。

人教版九年级数学上册24.2.2切线长定理教案

人教版九年级数学上册24.2.2切线长定理教案
此外,小组讨论的环节中,我发现学生们在讨论切线长定理的实际应用时,思路不够开阔。这可能是因为他们在日常生活中对几何图形的观察不够细致,或者是缺乏将理论知识应用到实际中的经验。我打算在之后的课程中,增加一些观察和分析实际几何图形的练习,帮助学生培养从生活中发现数学的能力。
在难点解析部分,我发现通证明过程有了更清晰的认识。但仍有学生反映在理解证明思路时感到困难。我考虑在下一节课中,引入更多的辅助手段,如动画演示或实物模型,来帮助学生们更好地理解几何证明的思路。
-证明思路:证明过程中涉及到的几何变换和逻辑推理对学生来说是难点。
-举例:在证明过程中,如何通过构造全等三角形和使用圆的性质来推导切线长定理。
-问题解决:学生在应用切线长定理解决具体问题时,往往难以找到合适的解题切入点。
-举例:在求解切线长或证明线段相等的问题时,学生可能不知道如何利用切线长定理来简化问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了切线长定理的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对切线长定理的理解。我希望大家能够掌握这些知识点,并在解决几何问题时灵活运用。如果有任何疑问或不明白的地方,请随时向我提问。
二、核心素养目标
1.培养学生的几何直观与空间观念:通过切线长定理的学习,使学生能够观察和理解几何图形,发展空间想象力,提高解决几何问题的能力。
2.提升学生的逻辑推理与证明能力:引导学生探索切线长定理的证明过程,训练学生运用逻辑推理、几何论证的方法,培养严谨的数学思维。
3.增强学生的解决问题能力:通过切线长定理在具体题目中的应用,让学生掌握解决问题的方法和策略,提高解题效率,形成良好的数学解题习惯。

第24章圆《切线长定理》课件人教版数学九年级上册

第24章圆《切线长定理》课件人教版数学九年级上册

如图:PA、PB是⊙O的两条切线,A、B为切点。 B
思考:由切线长定理
O。 C
P
可以得出哪些结论?
A
A
c b
r.
r = a+b-c
2
你能推出 这个公式吗?
C
B
a
例:直角三角形的两直角边分别是5cm, 12cm 则其内切圆的半径为
__2_c_m__。
活动三:例题讲解
想一想
A D
1.如图⊙O是△ABC的内切圆。
C
E
o
60°
D
AB
课后作业: 教材 P101-102 习题24.2 ,第6、11、14题
早/起/的/鸟/儿/有/虫/吃
两切线的夹角。
思考:切线与切线长 有何区别?
B
P O
A
PA、PB分别切⊙O于A、B
PA = PB ∠OPA=∠OPB
三、教材P99 1、三角形内切圆圆心有何性质?
2、如何确定三角形内切圆的圆心? 3、画出△ABC的内切圆
三角形内心:三角形内切圆的圆心、三条角形平 分线的交点、内心到三边的距离相等。
切线长定理

了解切线长定理,掌握切线长定理并能用它解决
有关的证明或计算问题;

培养学生操作、观察、交流讨论、合作探究能力,

养成积极主动的良好学习习惯;
渗透数形结合思想,提高综合运用知识分析新问

题,解决问题的能力。
教学重难点
重点:理解切线长定理
难点:与切线长有关的证明 或计算问题,三角形的内切 圆计算问题
B O
A
1、什么叫做圆外一点到圆 的切线长? 2、切线长定理的内容是什么? 3、这个定理是怎样证明的?

人教版数学九年级上册第24章圆《切线长定理》教学设计

人教版数学九年级上册第24章圆《切线长定理》教学设计
2.结合信息技术,利用多媒体和动态几何软件辅助教学,提高学生的学习兴趣和效率。
-使用动态图形展示切线与圆的关系,帮助学生形成直观的认识。
-利用信息技术手段,制作互层次的学生设计不同难度的练习和任务,使每个学生都能在原有基础上得到提高。
-设计探究活动,鼓励学生提出假设,通过实际操作验证假设。
-组织小组讨论,培养学生的合作意识和交流能力。
2.逻辑推理:运用几何知识和逻辑推理方法证明切线长定理。
-引导学生运用已学的几何知识,如圆的性质、直角三角形的性质等,进行逻辑推理。
-培养学生的逻辑思维和分析问题的能力。
3.应用与实践:将切线长定理应用于解决实际问题,提高学生的应用能力。
四、教学内容与过程
(一)导入新课
在导入新课环节,我将利用学生的生活经验和已有知识,激发他们对新知识的兴趣和好奇心。首先,我会提出一个问题:“在日常生活中,你们有没有见过或听说过道路或铁路在接近圆形交叉路口时,为什么会设计成曲线而非直线呢?”通过这个问题,引导学生思考圆与直线的关系,从而自然过渡到切线的概念。
-注意:要求学生在解题过程中注重逻辑推理的严密性和步骤的完整性。
2.实践应用题:选择一个生活中的实际问题,如道路设计、园林规划等,运用切线长定理进行解决,并将解题过程和结果写成小报告。通过这项作业,学生可以更好地理解数学与实际生活的联系,提高解决实际问题的能力。
-提示:鼓励学生使用图形和图表来辅助说明解题思路,使报告更加清晰易懂。
1.切线与半径的垂直关系:通过动态演示切线与半径的垂直关系,引导学生观察和思考,从而得出切线与半径垂直的结论。
2.切线长定理的证明:利用直角三角形的性质,分步骤引导学生完成切线长定理的证明。在此过程中,强调每一步的逻辑推理和几何依据。

人教版数学九年级上册24.2.3切线长定理课件(共26张PPT)

人教版数学九年级上册24.2.3切线长定理课件(共26张PPT)

三角形外心、内心的区别:
名称
外心
内心
图形
性质
三角形的外心到三角形三个 三角形的内心到三角形
顶点的距离相等
三条边的距离相等
位置 外心不一定在三角形内部 内心一定OC=90°+
1 2
∠A
例2 如图, △ABC的内切圆⊙O与BC,CA, AB
分别相交于点D , E , F ,且AB=9,BC =14,
CA =13,求AF,BD,CE的长.
解:设AF=x,则AE=x,
A
CD=CE=AC-AE=13-x,
E
BD=BF=AB-AF=9-x.
F
由BD+CD=BC,可得
(13-x)+(9-x)=14.解得,x=4. B
D
C
因此,AF=4,BD=5,CE=9.
随堂练习 1.如图,△ABC的内切圆⊙O与BC,CA,AB分 别相切于点D,E,F,且AB=11cm,BC=14cm, CA=13cm,则AF的长为( C ) A.3cm B.4cm C.5cm D.9cm
解:∵ 点O是△ABC的内心,
∴∠OBC= 1 ∠ABC= 1 ×50°=25°,
2
2
∴∠OCB= 1 ∠ACB = 1×75°=37.5° ,
2
2
∴∠BOC=180°-25°-37.5°=117.5° B
A O
C
【选自教材P100 练习 第2题】
5. △ABC的内切圆半径为r, △ABC的周长为l,求△ABC的
2.如图,点O是△ABC的内心,若∠BAC=86°, 则∠BOC=( C ) A.172° B.130° C.133° D.100°
3.如图,已知VP、VQ为⊙T的切线,P,Q为

切线长定理 说课课件2023-2024学年人教版数学九年级上册

切线长定理 说课课件2023-2024学年人教版数学九年级上册

• 教材分析:ຫໍສະໝຸດ 教学目标 教学重点了解切线长的定义,掌握切线长定理,并利 用它进行有关的计算。 经历画图、猜想、度量、证明等数学活动过 程,培养学生推理能力和阐述自己的观点的 能力。
理解切线长定理。
教学难点 应用切线长定理解决实际问题
二、学情分析:
通过前一段时间的学习,学生对点和圆的 位置关系、直线和圆的位置关系以及圆的基本 性质有了一个大概的了解,尤其是通过垂径定 理等定理的学习和应用,学生的推理和证明能 力已经得到一定的提高。因此,本课定理的证 明学生不会感到困难,但定理的应用,学生将 会感到一定的困难。


——应用举例,巩固提高


——回顾反思,加强记忆
旧知联想,提出问题
五、教学过程:
(一)旧知联想,提出问题 1、直线和圆有几种位置关系,分别是什么? 2、什么是直线与圆相切? 3、切线的判定定理、性质定理内容是什么? 4、过圆上一点作圆的切线,能作几条?过圆外 一点作圆的切线能作几条?
探究发现,建构知识
文字语言: 图形语言:
例题: 例1 分析以及板书
巩固练习: 见课件 学生板书过程
三、教法分析:
在教学上利用多媒体,采用直观演示、猜 想论证。启发式教学,激发学生的求知欲,引 起学生思维活动。
四、学法指导:
让学生通过自己动手实践,画图、猜想、论 证以及分析归纳,从实践中获取知识,并通过讨 论来加深对知识的理解。
五、教学程序
• 五、教学程序


——旧知联想,提出问题


——新知探究,建构知识
人教版九年级数学(上册)§24.2.2的内容。
说课流程
教材分析 学情分析 教法分析 学法指导 教学过程

人教版九年级数学上册2切线长定理

N
证明:由切线长定理得
D
∴AL=AP,LB=MB,NC=MC,
O
DN=DP
P
∴AL+LB+NC+DN=AP+MB+MC+DP
AL
即 AB+CD=AD+BC
补充:圆的外切四边形的两组对边的和相等.
C M B
练一练
1.如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则 ∠BOC的度数为( ) A.130° B.120° C.110° D.100°
【答案】C 【详解】 解:∵PA、PB分别与⊙O相切于点A、B, ⊙O的切线EF分别交PA、PB于点E、F,切点C在弧AB上, ∴AE=CE,FB=CF,PA=PB=4, ∴△PEF的周长=PE+EF+PF=PA+PB=20. 故选:C.
课后回顾
课后回顾
01
02
03
【答案】C 【详解】 ∵AB、AC是⊙O的两条切线,B、C是切点, ∴∠B=∠C=90°,∠BOC=180°-∠A=110°. 故选C.
练一练
2.如图,PA,PB分别与⊙O相切于A、B两点.直线EF切⊙O于C点, 分别交PA、PB于E、F,且PA=10.则△PEF的周长为( ) A.10 B.15 C.20 D.25
知识回顾
圆的切线的判定定理和性质定理各是什么?
判定定理: 经过半径的外端且垂直于这条半径的直线是圆的切线。
性质定理: 圆的切线垂直于经过切点的半径。
问题1:如何过⊙O外一点P画出⊙O的切线?
连接OP,以OP为直径作圆,与⊙O 交于A、B两点。 连接PA、PB, 则PA、PB即为⊙O切线。
A
O

人教版数学九年级上册24.2.2.3《切线长定理》教学设计

人教版数学九年级上册24.2.2.3《切线长定理》教学设计一. 教材分析人教版数学九年级上册24.2.2.3《切线长定理》是九年级数学中的一个重要知识点。

切线长定理是指:圆的切线长等于半径的长度。

这个定理在几何学中有着广泛的应用,对于培养学生的逻辑思维能力和空间想象力有重要作用。

二. 学情分析九年级的学生已经具备了一定的几何知识,对圆的相关概念和性质有所了解。

但是,对于切线长定理的证明和应用,学生可能还存在一定的困难。

因此,在教学过程中,需要注重引导学生理解切线长定理的证明过程,并通过例题让学生掌握切线长定理的应用。

三. 教学目标1.让学生理解切线长定理的定义和证明过程。

2.培养学生运用切线长定理解决实际问题的能力。

3.提高学生的逻辑思维能力和空间想象力。

四. 教学重难点1.切线长定理的证明过程。

2.切线长定理在实际问题中的应用。

五. 教学方法1.采用问题驱动法,引导学生通过探究问题来理解切线长定理。

2.使用多媒体课件,直观展示切线长定理的证明过程。

3.通过例题和练习题,让学生巩固切线长定理的应用。

六. 教学准备1.多媒体课件。

2.练习题和测试题。

3.黑板和粉笔。

七. 教学过程1.导入(5分钟)利用多媒体课件,展示一些与圆和切线有关的图片,引发学生的兴趣。

然后提出问题:“圆的切线长和半径有什么关系?”让学生思考。

2.呈现(10分钟)讲解切线长定理的定义和证明过程。

首先,解释切线的概念,然后说明切线与半径的关系,最后证明切线长等于半径的长度。

3.操练(10分钟)让学生分组讨论,每组尝试证明一个圆的切线长等于半径的长度。

每组派代表进行讲解,老师点评并给予指导。

4.巩固(10分钟)出示一些练习题,让学生独立完成。

题目包括判断题、选择题和解答题,涵盖切线长定理的证明和应用。

5.拓展(10分钟)让学生思考:切线长定理在实际生活中有哪些应用?可以举例说明。

鼓励学生发表自己的观点和想法。

6.小结(5分钟)对本节课的内容进行简要回顾,强调切线长定理的定义和证明过程,以及其在实际问题中的应用。

人教版九年级数学上册第3课时切线长定理及三角形内切圆


BB
D
CC ☉O就是所求的圆.
24.2.4 切线长定理及三角形内切圆
归纳
1.与三角形三边都相切的圆叫做三角形的内切圆. 2.三角形内切圆的圆心叫做这个三角形的内心. 3.这个三角形叫做这个圆的外切三角形.
A
☉I是△ABC的内切圆,点I是
I
△ABC的内心,△ABC是☉I的外
B
C
切三角形.
24.2.4 切线长定理及三角形内切圆
A.6 3
B.5 3
C.4 3
D.3 3
24.2.4 切线长定理及三角形内切圆
3.如图,在△ABC中,I是内心,∠BAC的平分线和△ABC的外接圆相 交于点D.求证:DI=DB. 证明:连接BI. ∵I是△ABC的内心, ∴∠BAD=∠CAD,∠ABI=∠CBI. ∵∠CBD=∠CAD, ∴∠BAD=∠CBD. ∵∠BID=∠BAD+∠ABI,∠IBD=∠CBI+∠CBD,
24.2.4 切线长定理及三角形内切圆
2.如图,△ABC中,∠B=43°,∠C=61 °,点I是△ABC的内心,求
∠BIC的度数.
解:连接IB,IC. ∵点I是△ABC的内心, ∴BI,CI分别平分∠ABC,∠ACB.
A
I
B
C
在△IBC 中,BIC 180 (IBC ICB)
180 1 (ABC ACB) 180 1 (43 61 ) 128 .
24.2.4 切线长定理及三角形内切圆
随堂练习
1.如图,☉O是△ABC的内切圆,点D、E分别为边AB、AC上的点,
且DE为☉O的切线,若△ABC的周长为25,BC的长是9,则△ADE
的周长是( A )
A.7
B.8

九年级数学_圆的切线长定理课件_人教新课标版

柯 咏

在经过圆外一点的切线上,这一点和切点之间的 线段的长叫做这点到圆的切线长
A
O ·
P
思考: 切线和切线长这两个概念有何区别?
观察与思考: PA、PB有怎样的数量关系? PO与∠APB又有怎样的关系?
A
O
·
P
B
① PA=PB ② PO平分∠APB
连结OA、OB、 ∵PA、PB与⊙O相切,点A、 B是切点
(4)写出图中相等的圆弧 (5)写出图中所有的等腰三角形 △ABP, △AOB (6)若PA=4、PD=2,求半径OA
A O
C D B
P
△AOP≌ △BOP, △AOC≌ △BOC, △ACP≌ △BCP
反思:在解决有关圆 的切线长的问题时, 往往需要我们构建基 本图形。
A

O
P B
(1)分别连结圆心和切点 (2)连结两切点 (3)连结圆心和圆外一点
D O F
·
B
a+ b- c C 解得 r= 2 ab
E
设Rt△ABC的直角边为a、b,斜边为c,则Rt△ABC的
a+ b- c 内切圆的半径 r= 或r= 2
a+b+c
例.如图,△ABC 中,∠C =90º ,它的 内切圆O分别与边AB、 BC、CA相切 B 于点D、E、F,且 BD=12,AD=8, 求⊙O的半径r.
A
D
O E
F
C
基础题:
正方形 1.既有外接圆,又内切圆的平行四边形是______. 2.直角三角形的外接圆半径为5cm,内切圆半径为1cm, 22cm 则此三角形的周长是_______. 3.⊙O是边长为2cm的正方形ABCD的内切圆,EF切⊙O 2cm 于P点,交AB、BC于E、F,则△BEF的周长是_____.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

24.2.2 切线长定理
一、教学目标
知识与技能
1:了解切线长的概念,理解切线长定理,了解三角形的内切圆和三角形的内心的概念,熟练掌握并能应用。

2.应用特殊到一般的研究方法,发现切线长定理,然后根据所学三角形平分线的性质,给出三角形内切圆和三角形内心的概念,最后应用他们解决一些实际问题。

3.经历观察、实验、猜想,证明等数学活动过程,发展合情推理能力和初步演绎推理能力。

过程与方法
通过生活中的实例迁移到切长线的概念和切线长定理,根据三角形角平分线的性质给出三角形的内切圆和三角形的内心概念,并应用解决相关问题.
情感、态度与价值观
学生经历观察、猜想、证明等数学活动,发展合情推理能力和初步演绎推理能力。

学情分析:
学生已经了解并一定程度掌握了切线的判定与性质,为本节课打下了基础,另外,等腰三角形,直角三角形等知识,学生掌握得也还不错。

对于把方程思想用于解决几何问题学生还是有一定难度的,另外,学生对综合运用数学知识解决问题能力较为欠缺。

二、教学重难点
重点:切线长定理及其运用
难点:切线长定理的导出及其证明和运用切线长定理解决一些实际问题
三、教学过程
一、探究切线长概念与性质
1、探究引入
任意画一个圆,并在这个圆所在的平面内任意取一点P.
(1)过点P是否都能作这个圆的切线?
(2)点P在什么位置时,能作并且只能作一条切线?
(3)点P在什么位置时,能作两条切线?
(4)能作多于2条的切线吗?
2、合作探究
观察与思考:
PA、PB有怎样的数量关系?
PO与∠APB又有怎样的关系?
[设计意图]:让学生独立思考,然后再讨论交流,最后请一名学生代表回答,最后教师书写完善的证明过程并得出结论
师生共同总结切线长定理:
从圆外一点可以引入的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。

切线长定理的基本图形的研究PA、PB是⊙O的两条切线,A、B
于C。

(1)写出图中所有的垂直关系
(2)写出图中与∠OAC相等的角
(3)写出图中所有的全等三角形
(4)写出图中相等的圆弧
(5)写出图中所有的等腰三角形
3、拓展:
(1)分别连结圆心和切点
(2)连结两切点
(3)连结圆心和圆外一点
切线长定理为证明线段相等,角相等,弧相等,垂直关系提供了理论依据。

应掌握并能灵活应用。

4、思考(课本):一张三角形的铁皮,如何在它上面截下一块圆形的用料,并且使可能大呢?
圆的面积
教师引导点拔,确定一个圆关键是确定这个圆心和半径,假设符合条件的圆已经作出,,那么它应与三角形的三边相切,这个圆的圆心到三角形的三条边的距离都等于半径,如何找到这个圆心呢?
圆心应当到三边的距离相等,故圆应在三个内角的平分线上,而我们已经知道三个内角的平分线交于一点,如图,分别作出∠B,∠C的平分线BM和CN,设它们相交于点I,那么点I到AB,BC,CA,的距离都相等,以点I为圆心,点I到BC的距离IO为半径作圆,则⊙I与△ABC的三边都相切。

与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形平分线的交点,叫做三角形的内心。

这个三角形叫做圆的外切三角形
三角形的内心就是三角形的三个内角角平分线的交点
三角形的内心到三角形三边的距离相等
三、应用举例
例1:教材97例2如下图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D.E.F,
且AB=9cm,BC=14cm,CA=13cm,求AF,BD,CE的长。

解:设AF=x(cm),则AE=x(cm)
CD=CE=AC-AE=13-x
BD=BF=AB-AF=9-x
由BD+CD=BC可得(13-x)+(9-x)=14
解得x=4
因此AF=4cm
BD=5cm,CE=9cm
你还有其它的思路来解决这个问题吗?
[设计意图]活学活用,让学生体验的成功的喜悦,从而激发学习热情。

四、巩固练习
教材98页练习1.2
五、总结提高
师生共同总结:
(1)通过本节课的学习,你都有哪些收获?
(2)你对本节课的知识还有什么疑惑或者建议?
六、作业布置
教材103页习题24.2第12题
板书设计
24.2.2 切线长定理<3>
一、探究切线长概念与性质
1、探究引入
2、合作探究
3、拓展
4、思考
二,例题讲解
例1
二、课堂练习
三、总结提高
四、布置作业。

相关文档
最新文档