半导体物理学(刘恩科)第七版-完整课后题答案

合集下载

半导体物理学(刘恩科第七版)习题答案(比较完全)

半导体物理学(刘恩科第七版)习题答案(比较完全)

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ηηηηηηηη因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===ηsN k k k p k p m dkE d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-==ηηηηη所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:tkhqE f ∆∆== 得qE k t -∆=∆ηsat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππηη补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-=η(, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dkk dE 得 a n k π=(n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAXη=( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX η=-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -==ηη (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-==η能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =第二章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

半导体物理学第七版 完整课后题答案

半导体物理学第七版 完整课后题答案

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)与价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ηηηηηηηη因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===ηsN k k k p k p m dkE d mk k k kV nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-==ηηηηη所以:准动量的定义:2、 晶格常数为0、25nm 的一维晶格,当外加102V/m,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:tkhqE f ∆∆== 得qE k t -∆=∆ηsat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππηη补充题1分别计算Si(100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置与分布图)Si 在(100),(110)与(111)面上的原子分布如图1所示:(a)(100)晶面 (b)(110)晶面(c)(111)晶面补充题2 一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-=η(, 式中a 为 晶格常数,试求 (1)布里渊区边界; (2)能带宽度; (3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π=(n=0,±1,±2…)进一步分析an k π)12(+= ,E(k)有极大值,222)mak E MAXη=( ank π2=时,E(k)有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()mak E k E MINMAX η=-( 214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():((3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -==ηη (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-==η能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1、 实际半导体与理想半导体间的主要区别就是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不就是静止的,而就是在其平衡位置附近振动。

半导体物理学刘恩科第七版课后习题解第1章习题解

半导体物理学刘恩科第七版课后习题解第1章习题解

半导体物理学 第一章习题(公式要正确显示,请安装字体MT extra)1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为: ........................................................................................... 1 2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

(3)1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:220122021202236)(,)(3Ec m k m k k E m k k m k V -=-+= 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化解:10911010314.0=-⨯==ππak(1)J m k m k m k E k E E m k k E E k m dk E d k m kdk dE J m k Ec k k m m m dk E d k k m k k m k dk dE V C g V V V V c C 17312103402120122021210122022202173121034021210202022210120210*02.110108.912)1010054.1(1264)0()43(6)(0,0600610*05.310108.94)1010054.1(4Ec 43038232430)(232------=⨯⨯⨯⨯==-=-===<-===-==⨯⨯⨯⨯===>=+===-+= 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC=== s N k k k p kp m dk E d m k k k k V nV/1095.71010054.14310314.0210625.643043)()()4(6)3(2510349341043222*1----===⨯=⨯⨯⨯=⨯⨯⨯⨯=-=-=∆=-==ππ 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

半导体物理学(刘恩科第七版)课后习题解第四章习题及答案(精)

半导体物理学(刘恩科第七版)课后习题解第四章习题及答案(精)

第四章习题及答案1. 300K时,Ge的本征电阻率为47Ωcm,如电子和空穴迁移率分别为3900cm2/( V.S)和1900cm2/( V.S)。

试求Ge 的载流子浓度。

解:在本征情况下,n=p=ni,由ρ=1/σ=47⨯1.602⨯10-191nqun+pqu=p1niq(un+up)cm-3知ni=ρq(un+up)=⨯(3900+1900)=2.29⨯10132. 试计算本征Si在室温时的电导率,设电子和空穴迁移率分别为1350cm2/( V.S)和500cm2/( V.S)。

当掺入百万分之一的As后,设杂质全部电离,试计算其电导率。

比本征Si的电导率增大了多少倍?解:300K时,un=1350cm2/(V⋅S),up=500cm2/(V⋅S),查表3-2或图3-7可知,室温下Si的本征载流子浓度约为ni=1.0⨯1010cm-3。

本征情况下,σ=nqun+pqup=niq(un+up)=1⨯1010⨯1.602⨯1018-19⨯(1350+500)=3.0⨯1012-6S/cm金钢石结构一个原胞内的等效原子个数为8⨯+6⨯的晶格常数为0.543102nm,则其原子密度为+4=8个,查看附录B知Si。

8(0.543102⨯1011000000-7)3=5⨯1022cm-3掺入百万分之一的As,杂质的浓度为ND=5⨯1022⨯=5⨯1016cm-3,杂质全2ND>>ni,部电离后,这种情况下,查图4-14(a)可知其多子的迁移率为800 cm/( V.S)σ≈NDqun=5⨯10''16⨯1.602⨯10-19⨯800=6.4S/cm比本征情况下增大了σσ'=6.43⨯10-6=2.1⨯10倍63. 电阻率为10Ω.m的p型Si样品,试计算室温时多数载流子和少数载流子浓度。

解:查表4-15(b)可知,室温下,10Ω.m的p型Si样品的掺杂浓度NA约为1.5⨯1015cm-3,查表3-2或图3-7可知,室温下Si的本征载流子浓度约为ni=1.0⨯1010cm-3,NA>>nip≈NA=1.5⨯1015cm-3n=ni2p=(1.0⨯101015)21.5⨯10=6.7⨯10cm4-34. 0.1kg的Ge单晶,掺有3.2⨯10-9kg的Sb,设杂质全部电离,试求该材料的电阻率[μn=0.38m/( V.S),Ge的单晶密度为5.32g/cm,Sb原子量为121.8]。

半导体物理学(第七版)课后习题答案整理版

半导体物理学(第七版)课后习题答案整理版

半导体物理习题解答1-1.(P 32)设晶格常数为a 的一维晶格,导带极小值附近能量E c (k )和价带极大值附近能量E v (k )分别为:E c (k)=0223m k h +022)1(m k k h -和E v (k)= 0226m k h -0223m k h ;m 0为电子惯性质量,k 1=1/2a ;a =0.314nm 。

试求:①禁带宽度;②导带底电子有效质量; ③价带顶电子有效质量;④价带顶电子跃迁到导带底时准动量的变化。

[解] ①禁带宽度Eg根据dk k dEc )(=0232m k h +012)(2m k k h -=0;可求出对应导带能量极小值E min 的k 值:k min =143k , 由题中E C 式可得:E min =E C (K)|k=k min =2104k m h ; 由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0;并且E min =E V (k)|k=k max =02126m k h ;∴Eg =E min -E max =021212m k h =20248a m h =112828227106.1)1014.3(101.948)1062.6(----⨯⨯⨯⨯⨯⨯⨯=0.64eV ②导带底电子有效质量m n0202022382322m h m h m h dkE d C =+=;∴ m n =022283/m dk E d h C= ③价带顶电子有效质量m ’02226m h dk E d V -=,∴0222'61/m dk E d h m Vn-== ④准动量的改变量h △k =h (k min -k max )= ahk h 83431= [毕]1-2.(P 33)晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

[解] 设电场强度为E ,∵F =hdt dk =q E (取绝对值) ∴dt =qEh dk∴t=⎰tdt 0=⎰a qEh 210dk =a qE h 21 代入数据得:t =E⨯⨯⨯⨯⨯⨯--1019-34105.2106.121062.6=E 6103.8-⨯(s )当E =102 V/m 时,t =8.3×10-8(s );E =107V/m 时,t =8.3×10-13(s )。

半导体物理学(刘恩科第七版)课后习题解第三章习题和答案

半导体物理学(刘恩科第七版)课后习题解第三章习题和答案

第三章习题和答案1. 计算能量在E=E c 到2*n 2C L 2m 100E E π+= 之间单位体积中的量子态数。

解:2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。

322233*28100E 21233*22100E 0021233*231000L 8100)(3222)(22)(1Z VZZ )(Z )(22)(2322C22CL E m h E E E m V dE E E m V dE E g Vd dEE g d E E m V E g cn c Cn lm h E C nlm E C nn c n c πππππ=+-=-====-=*++⎰⎰**)()(单位体积内的量子态数)()(21)(,)"(2)()(,)(,)()(2~.2'213''''''2'21'21'21'2222222C a a lt tz y x ac c zla z y t ay x t a xz t y x C C e E E m hk V m m m m k g k k k k k m h E k E k m m k k m m k k m m k m lk m k k h E k E K IC E G si -=⎪⎪⎭⎫ ⎝⎛+∙=+++====+++=*****系中的态密度在等能面仍为球形等能面系中在则:令)(关系为)(半导体的、证明:3. 当E-E F 为1.5k 0T ,4k 0T, 10k 0T 时,分别用费米分布函数和玻耳兹曼分布函数计算电子占据各该能级的概率。

费米能级 费米函数 玻尔兹曼分布函数1.5k 0T 0.182 0.223 4k 0T 0.018 0.0183 10k 0T4. 画出-78o C 、室温(27 o C )、500 o C 三个温度下的费米分布函数曲线,并进行比较。

半导体物理学(刘恩科第七版)课后习题解第1章习题解

半导体物理学第一章习题(公式要正确显示,请安装字体MTextra)1.设晶格常数为a的一维晶格,导带极小值附近能量E c(k)和价带极大值附近能量E V(k)分别为:........................................................................................1...2.晶格常数为0.25nm的一维晶格,当外加102V/m,107V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

...............................................3.1.设晶格常数为a的一维晶格,导带极小值附近能量E c(k)和价带极大值附近能量E V(k)分别为:Ec2222223k(k k)k11,E(k)V3mm6m0002km2m为电子惯性质量,k1,a0.314nm。

试求:a(1)禁带宽度;(2)导带底电子有效质量;(3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化1解:10k 1=109a0.31410(1) 导带:由dE C dk 2 2 k 3m0 2 2 (k mk)1 0得: k3 4 k12 dE 2c 又因为: dk2 2 3m 0 2 2 m 0 2 8 3m0 所以:在 k 3 4 k 处,Ec 取极小值Ec 122 k 14m0 (1.054 1049.110 1031 10 ) 2 3.05 * 10 17J 价带:dEV dk6 2 km 00 得 k0 又因为 2 dE V 2 dk2 6 m0 0, 所以 k 0 处, E 取极大值 V E(k V ) 22k 1 6m 0因此: E g E C ( 3 4 k) 1 E(0) V 22 k 1 4m 0 22 k 1 6m 0 22 k 1 12m 0 (1.054 12 34 10 9.108 10 10 31 10 ) 2 1.02 * 10 17 J *(2)m nC d2 3 2E 8C m 0dk 2 k 34 k 1*(3)mnV d 2 2 EV m 0 62 dkk0 (4)pk准动量的定义:所以:p(k) k 3 4 k 1 ( k) k 0 3 4 k 1 0 3 4 6.625 2 1034 0.314109 3 41.541034 10 107.95 10 25 N /s 23.晶格常数为0.25nm的一维晶格,当外加102V/m,107V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

半导体物理学刘恩科习题答案权威修订版

半导体物理学 刘恩科第七版习题答案---------课后习题解答一些有错误的地方经过了改正和修订!第一章 半导体中的电子状态1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:220122021202236)(,)(3Ec m k m k k E m k k m k V0m 。

试求:为电子惯性质量,nm a ak 314.0,1(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:10911010314.0=ak (1)J m k m k m k E k E E m k k E E k m dk E d k m kdk dE J m k Ec k k m m m dk E d k k m k k m k dk dE V C g V V V V c C 17312103402120122021210122022202173121034021210202022210120210*02.110108.912)1010054.1(1264)0()43(6)(0,0600610*05.310108.94)1010054.1(4Ec 43038232430)(232因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nCs N k k k p k p m dk E d mk k k k V nV/1095.71010054.14310314.0210625.643043)()()4(6)3(251034934104300222*11所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:tkqE f得qE k ts a t s a t 137192821993421911028.810106.1)0(1028.810106.11025.0210625.610106.1)0(第二章 半导体中杂质和缺陷能级7. 锑化铟的禁带宽度Eg=0.18eV ,相对介电常数 r =17,电子的有效质量*n m =0.015m 0, m 0为电子的惯性质量,求①施主杂质的电离能,②施主的弱束缚电子基态轨道半径。

半导体物理学第七版课后答案分解

(完整word版)半导体物理学(刘恩科)第七版课后答案分解亲爱的读者:本文内容由我和我的同事精心收集整理后编辑发布到文库,发布之前我们对文中内容进行详细的校对,但难免会有错误的地方,如果有错误的地方请您评论区留言,我们予以纠正,如果本文档对您有帮助,请您下载收藏以便随时调用。

下面是本文详细内容。

最后最您生活愉快 ~O(∩_∩)O ~第一章1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC=== sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:tkhqE f ∆∆== 得qE k t -∆=∆sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():((1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π=(n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,222)mak E MAX=( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-==能带底部 an k π2=所以m m n2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

(完整word版)半导体物理学(第七版)完整课后答案

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E C (K )=0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:t k hqE f ∆∆== 得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-=(, 式中a 为 晶格常数,试求(1)布里渊区边界;(2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,1,2…)进一步分析an k π)12(+= ,E (k )有极大值,222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:t k hqE f ∆∆== 得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

(2)理想半导体是纯净不含杂质的,实际半导体含有若干杂质。

(3)理想半导体的晶格结构是完整的,实际半导体中存在点缺陷,线缺陷和面缺陷等。

2. 以As 掺入Ge 中为例,说明什么是施主杂质、施主杂质电离过程和n 型半导体。

As 有5个价电子,其中的四个价电子与周围的四个Ge 原子形成共价键,还剩余一个电子,同时As 原子所在处也多余一个正电荷,称为正离子中心,所以,一个As 原子取代一个Ge 原子,其效果是形成一个正电中心和一个多余的电子.多余的电子束缚在正电中心,但这种束缚很弱,很小的能量就可使电子摆脱束缚,成为在晶格中导电的自由电子,而As原子形成一个不能移动的正电中心。

这个过程叫做施主杂质的电离过程。

能够施放电子而在导带中产生电子并形成正电中心,称为施主杂质或N型杂质,掺有施主杂质的半导体叫N型半导体。

3. 以Ga掺入Ge中为例,说明什么是受主杂质、受主杂质电离过程和p型半导体。

Ga有3个价电子,它与周围的四个Ge原子形成共价键,还缺少一个电子,于是在Ge晶体的共价键中产生了一个空穴,而Ga原子接受一个电子后所在处形成一个负离子中心,所以,一个Ga原子取代一个Ge原子,其效果是形成一个负电中心和一个空穴,空穴束缚在Ga原子附近,但这种束缚很弱,很小的能量就可使空穴摆脱束缚,成为在晶格中自由运动的导电空穴,而Ga原子形成一个不能移动的负电中心。

这个过程叫做受主杂质的电离过程,能够接受电子而在价带中产生空穴,并形成负电中心的杂质,称为受主杂质,掺有受主型杂质的半导体叫P 型半导体。

4. 以Si在GaAs中的行为为例,说明IV族杂质在III-V族化合物中可能出现的双性行为。

Si取代GaAs中的Ga原子则起施主作用; Si取代GaAs中的As原子则起受主作用。

导带中电子浓度随硅杂质浓度的增加而增加,当硅杂质浓度增加到一定程度时趋于饱和。

硅先取代Ga原子起施主作用,随着硅浓度的增加,硅取代As原子起受主作用。

5. 举例说明杂质补偿作用。

当半导体中同时存在施主和受主杂质时,若(1) ND >>NA因为受主能级低于施主能级,所以施主杂质的电子首先跃迁到NA个受主能级上,还有ND -NA个电子在施主能级上,杂质全部电离时,跃迁到导带中的导电电子的浓度为n= ND -NA。

即则有效受主浓度为NAeff≈ ND-NA(2)NA >>ND施主能级上的全部电子跃迁到受主能级上,受主能级上还有NA -ND个空穴,它们可接受价带上的NA -ND个电子,在价带中形成的空穴浓度p= NA-ND. 即有效受主浓度为N Aeff ≈ N A -N D (3)N A ≈N D 时,不能向导带和价带提供电子和空穴, 称为杂质的高度补偿 6. 说明类氢模型的优点和不足。

7. 锑化铟的禁带宽度Eg=0.18eV ,相对介电常数εr =17,电子的有效质量*n m =0.015m 0, m 0为电子的惯性质量,求①施主杂质的电离能,②施主的弱束缚电子基态轨道半径。

eV E m m q m E r n r n D 42200*2204*101.7176.130015.0)4(2-⨯=⨯===∆εεπε :解:根据类氢原子模型8. 磷化镓的禁带宽度Eg=2.26eV ,相对介电常数εr =11.1,空穴的有效质量m *p =0.86m 0,m 0为电子的惯性质量,求①受主杂质电离能;②受主束缚的空穴的基态轨道半径。

eV E m m q m E r P r P A 0096.01.116.13086.0)4(22200*2204*=⨯===∆εεπε :解:根据类氢原子模型第三章习题和答案1. 计算能量在E=E c 到2*n 2C L 2m 100E E π+= 之间单位体积中的量子态数。

解nm r m m m q h r nmm q h r nrn r 60053.00*0*20202020=====επεεπεnm r m m m q h r nmm q h r PrP r 68.6053.00*0*2022020=====επεεπε2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。

3. 当E-E F 为1.5k 0T ,4k 0T, 10k 0T 时,分别用费米分布函数和玻耳兹曼分布函数计算电子占据各该能级的概率。

费米能级 费米函数 玻尔兹曼分布函数1.5k 0T 0.182 0.223 4k 0T0.0180.0183322233*28100E 21233*22100E 0021233*231000L 8100)(3222)(22)(1Z VZZ )(Z )(22)(2322C22C L E m h E E E m V dE E E m V dE E g V d dEE g d E E m V E g c nc C n l m h E C n l m E C nn c n c πππππ=+-=-====-=*++⎰⎰** )()(单位体积内的量子态数)()(21)(,)"(2)()(,)(,)()(2~.2'213''''''2'21'21'21'2222222C a a l t tz y x a c c z l a z y t a y x t a x zt yxCC e E E m hk V m m m m k g k k k k k m h E k E k m m k k m m k k m m k m l k m k k h E k E K IC E G si -=⎪⎪⎭⎫ ⎝⎛+∙=+++====+++=*****系中的态密度在等能面仍为球形等能面系中在则:令)(关系为)(半导体的、证明:FE E -T k E E eE f F011)(-+=Tk E E F eE f 0)(--=[]3123221232'2123231'2'''')()2(4)()(111100)()(24)(4)()(~l t n c n c l t t z m m s m V E E h m E sg E g si V E E h m m m dE dz E g dk k k g Vk k g d k dE E E =-==∴-⎥⎥⎦⎤⎢⎢⎣⎡+∙∙==∴∙=∇∙=+**πππ)方向有四个,锗在(旋转椭球,个方向,有六个对称的导带底在对于即状态数。

空间所包含的空间的状态数等于在10k 0T4. 画出-78o C 、室温(27 o C )、500 o C 三个温度下的费米分布函数曲线,并进行比较。

5. 利用表3-2中的m *n ,m *p 数值,计算硅、锗、砷化镓在室温下的N C , N V 以及本征载流子的浓度。

相关文档
最新文档