负反馈放大电路实验报告
负反馈放大电路实验报告

负反馈放大电路实验报告3)闭环电压放大倍数为10so sf-≈=U U Au 。
(2)参考电路1)电压并联负反馈放大电路方框图如图1所示,R 模拟信号源的内阻;R f 为反馈电阻,取值为100 kΩ。
图1 电压并联负反馈放大电路方框图2)两级放大电路的参考电路如图2所示。
图中R g3选择910kΩ,R g1、R g2应大于100kΩ;C 1~C 3容量为10μF ,C e 容量为47μF 。
考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R f ,见图2,理由详见“五 附录-2”。
图2 两级放大电路实验时也可以采用其它电路形式构成两级放大电路。
3.3k Ω(3)实验方法与步骤1)两级放大电路的调试a. 电路图:(具体参数已标明)¸b. 静态工作点的调试实验方法:用数字万用表进行测量相应的静态工作点,基本的直流电路原理。
第一级电路:调整电阻参数, 4.2sR k≈Ω,使得静态工作点满足:I DQ约为2mA,U GDQ < - 4V。
记录并计算电路参数及静态工作点的相关数据(I DQ,U GSQ,U A,U S、U GDQ)。
实验中,静态工作点调整,实际4sR k=Ω第二级电路:通过调节R b2,240b R k ≈Ω,使得静态工作点满足:I CQ 约为2mA ,U CEQ = 2~3V 。
记录电路参数及静态工作点的相关数据(I CQ ,U CEQ )。
实验中,静态工作点调整,实际241b R k =Ωc. 动态参数的调试输入正弦信号U s ,幅度为10mV ,频率为10kHz ,测量并记录电路的电压放大倍数so11U U A u =、so U U Au=、输入电阻R i 和输出电阻R o 。
电压放大倍数:(直接用示波器测量输入输出电压幅值)o1UsUoU1u A输入电阻: 测试电路:¸开关闭合、打开,分别测输出电压1oV和2oV,代入表达式:2112oio oVR RV V=-输出电阻:测试电路:¸记录此时的输出:0.79V olV=1.57(1)=32.960.79o o L o V R R k V '=-⨯Ω=Ω(-1)k2)两级放大电路闭环测试在上述两级放大电路中,引入电压并联负反馈。
负反馈放大器实验报告

负反馈放大电路实验报告一、实验目的1、掌握负反馈四种基本组态的判断方法。
2、巩固学习负反馈放大器分析方法,加深对基本方程的理解。
3、加深理解负反馈对改善放大器性能的影响。
4、分析掌握影响负反馈电路稳定性的原因及消除方法。
二、仪器设备及备用元器件(1)实验仪器序号名称型号备注1 示波器2 数字万用表3 模拟实验板(2)实验材料序号名称说明备注1 三极管2N5551;9012;90132 电阻见附件3 电容见附件三、实验原理与说明负反馈是电子线路中非常重要的技术之一,负反馈虽然降低了电压放大倍数,但是它能够提高电路的电压放大倍数稳定性,改变输入电阻、输出电阻,减小非线性失真以及展宽通频带。
因此,实际应用中,几乎所有的放大器都具有负反馈电路部分。
本实验中的电路由两级共射放大电路组成,在电路中引入了电压串联负反馈,构成负反馈放大电路。
这样电路既可以稳定输出电压,又可以提高输入电阻。
图3.1 电压串联负反馈放大电路加负反馈后,闭环电压放大倍数:AF A A uuf +=1(3.1)深度负反馈时:FA uf 1=(3.2)电压放大倍数的相对变化量:uu ufuf A dAAF A dA ⋅+=11(3.3)通频带:BW AF BW f )1(+≈(3.4)当引入电压串联负反馈时,闭环输入电阻:i f i R AF R )1(+=(3.5)闭环输出电阻:AFR R oof +=1(3.6)改变反馈深度(调整f R 的大小),可使放大器性能指标得到不同程度的改变。
四、实验要求和任务1、实验前的准备 ⑴ 设备材料的保障(1)检查实验仪器(2)根据自行设计的电路图选择实验器件 (3)检测器件和导线(4)根据自行设计的电路图插接电路⑵ 电路设计如图3.1(完整的计算过程及数据记录)① 确定放大器工作电源(如DC12V ,功率5W 等) ② 确定放大器直流参数(如I CQ1=0.6mA;I CQ2=1mA 等) 例如:在I CQ1=0.6mA 前提下,③ 确定放大器主要参数(如负载为3k Ω;开环电压放大倍数:大于400等)。
负反馈放大电路实验报告

开环时������i = 91kΩ > 90kΩ
以反馈电阻作为负载时的电压放大倍数|������u| = 169.1 > 120
闭环时������usf = −9.38 ≈ −10
经验证,实验数据均能满足参数设计要求。
2.数据比较及误差分析
(1)开环
理论值 仿真值 实测值
Au1 0.79 0.678 -0.76
负反馈放大电路实验报告
班级 姓名 学号
一、 实验目的
1.了解N 沟道结型场效应管的特性和工作原理。 2.熟悉两级放大电路的设计和调试方法。 3.理解负反馈对放大电路性能的影响。 4.学习使用Multisim 分析、测量负反馈放大电路的方法。
二、 实验内容
(一)必做内容 设计和实现一个由共漏放大电路和共射放大电路组成的两级电压并联负反馈放大电路。 1. 测试 N 沟道结型场效应管 2N5486 的特性曲线(只做仿真测试)
Au -149.3 -138 -169.1
Ri 90.8k 93.5k 91.0k
RO 3.29k 2.92k 2.84k
fL / 178Hz /
fH / 4.16MHz /
两级电压放大倍数 Au 的误差较大,其余各动态参数误差较小。影响电路整体放大倍数
的因素较多。
(2)电压并联负反馈
Ausf
Rif
Rof
fL
fH
理论值
-10.0
690
358
/
/
仿真值
-10.0
728
312.6
15Hz
28.4MHz
实测值
-9.39
659
210.4
/
/
闭环中 Rof 的硬件实验值与仿真和理论计算存在较大误差,可能原因包括电阻值偏差,
负反馈放大器实验报告

负反馈放大器实验报告概述:本次实验旨在研究负反馈放大器的工作原理和性能特点。
负反馈放大器是一种常用的电子元件,其通过引入反馈信号来控制放大器的增益,以提高放大器的稳定性、线性度和带宽等性能指标。
本报告将对负反馈放大器的基本原理、实验设备、实验步骤、实验结果及分析进行描述和总结。
一、实验原理负反馈放大器是通过将放大器的输出信号与输入信号之间构成一个反馈电路,利用反馈电流或电压进行联动的一种放大器。
在负反馈放大器中,输出信号被送回到输入端,与输入信号进行比较,通过调整反馈网络的参数,使得输出信号与输入信号之间的差异最小化,从而实现放大器的稳定性和线性度的提高。
二、实验设备本次实验使用的设备有:1. 功率放大器电路板2. 函数信号发生器3. 示波器4. 电流表5. 电压表6. 电阻、电容等元器件三、实验步骤1. 搭建电路:根据实验要求,按照电路图、实验指导书中的指导,搭建负反馈放大器电路。
2. 连接仪器:将函数信号发生器的输出端与负反馈放大器的输入端连接,将负反馈放大器的输出端与示波器的输入端连接,将电流表和电压表分别连接到负反馈放大器的适当位置。
3. 设置参数:根据实验要求,逐步调整函数信号发生器的频率和幅度,记录下输入信号和输出信号的数值。
4. 测量数据:使用示波器、电流表和电压表等仪器,对电路的输入信号、输出信号、电流和电压等进行测量,并记录下来。
5. 分析结果:根据实验数据,计算负反馈放大器的增益、输入输出阻抗、带宽等性能参数,并进行分析。
四、实验结果与分析通过测量和计算,得到负反馈放大器的增益为10倍,输入输出阻抗分别为10kΩ和1kΩ,带宽为10kHz。
这些数据表明,负反馈放大器在一定频率范围内能够进行有效的信号放大,同时具有较低的输入输出阻抗,能够适应不同的输入和输出设备。
通过分析数据,我们还可以发现在不同频率下,负反馈放大器的增益和带宽存在一定的关系,在较低频率下增益较高,而在较高频率下增益较低。
负反馈放大电路 实验报告

负反馈放大电路实验报告
本实验室使用的负反馈放大电路是LM741。
该IC可用于几乎所有的负反馈放大电路类型,从基本的非线性放大电路到模拟加法器,从积分电路到高电平门控放大器。
实验中使用一台型号为DS2202的示波器,并配备了实验适配器板及常见元器电路,
引入实验台。
同时,示波器上连接着实验板上的LM741电路。
实验运行电路图(忽略电源部分)可见下图:
实验的实质是测量LM741的功率放大特性,在实验之前我们应该熟悉LM741的模拟特性,也就是电路的元件如何产生多义性的电压变化特性。
实验中,数字三端口开关上调节振荡电压,改变输入信号,重复经过LM741的放大过程。
在实验过程中,同时观察和测量示波器上的输出Voltage Voltage电压波形。
操作完成后,由实验台上的数字表可看出,在实验中,示波器上的输出Voltage电压
可以随振荡电压的大小而发生变化,并能够通过增加调节电压去改变电路的功率放大系数,由此可以确定LM741的功率放大特性。
总而言之,本实验证明了LM741的功率放大特性,可以通过增加调节电压,改变电路
的功率放大系数,从而达到调节电路功率放大器的效果。
模电负反馈放大器实验报告

模电负反馈放大器实验报告模拟电子技术是电子工程领域中的重要分支,而模拟电子技术中的负反馈放大器则是一种常见且重要的电路。
本文将介绍我在进行模拟电子实验中所进行的负反馈放大器实验,并进行相关分析和总结。
负反馈放大器是一种通过将一部分输出信号反馈到输入端的放大器电路。
它的作用是通过减小放大器的非线性失真、提高放大器的稳定性和增益一致性等方面的性能。
在实验中,我选取了一种常见的负反馈放大器电路,即电压串联型负反馈放大器。
首先,我搭建了电压串联型负反馈放大器的电路。
该电路由一个放大器和一个负反馈网络组成。
放大器部分采用了一个晶体管作为放大元件,而负反馈网络则由一个电阻和一个电容组成。
这样的电路结构能够实现对输入信号进行放大,并将一部分输出信号反馈到输入端,从而实现负反馈的效果。
接下来,我进行了实验测量。
首先,我通过信号发生器输入一个正弦波信号作为输入信号,然后通过示波器测量了放大器的输入和输出信号。
通过对比输入和输出信号的波形和幅度,我可以得到放大器的增益。
同时,我还测量了放大器的频率响应,以了解放大器在不同频率下的性能。
在实验过程中,我发现负反馈放大器的增益随着频率的增加而减小,这是由于负反馈网络对不同频率的信号有不同的衰减作用所导致的。
同时,我还观察到放大器的输出信号波形相对于输入信号波形发生了一定的变化,这是由于负反馈网络对放大器的非线性失真进行了补偿所导致的。
通过实验测量和观察,我对负反馈放大器的性能有了更深入的了解。
负反馈放大器能够有效地减小放大器的非线性失真,提高放大器的稳定性和增益一致性。
同时,负反馈放大器的频率响应对于不同的应用需求也有一定的影响。
因此,在实际电子电路设计中,我们需要根据具体的应用需求选择合适的负反馈放大器电路结构,并进行相应的参数调整和优化。
总结而言,负反馈放大器是一种重要的模拟电子电路,通过将一部分输出信号反馈到输入端,可以提高放大器的性能。
在本次实验中,我通过搭建电压串联型负反馈放大器电路,并进行实验测量和观察,对负反馈放大器的性能有了更深入的认识。
两级负反馈放大器实验报告(河南机电学校)
实验六两级阻容耦合反馈放大电路的调试一、实验目的(1)研究负反馈对放大器性能的影响;(2)掌握反馈放大器性能的测试方法。
(3) 加深对负反馈放大器工作原理的理解。
二、实验器材低频信号发生器一台、交流毫伏表一台、示波器一台、直流稳压电源一台、电路板一块、元器件若干。
三、预习要求(1)认真阅读实验内容要求,复习负反馈电路有关内容。
(2)复习负反馈对放大器有哪些影响。
(3)图6-1电路中晶体管β值为100,计算该放大器开环和闭环电压放大倍数。
四、实验原理与参考电路实验电路如图1所示。
图6-1负反馈放大电路放大电路中引入负反馈后的放大倍数称为闭环放大倍数A,而不存在负反馈的放f大电路(又称基本放大电路)的放大倍数称为开环放大倍数A,反馈网络的反馈系数为F,这三者之间的关系为负反馈对放大电路的性能的影响主要体现在输入电阻,输出电阻,频带非线性失真,稳定性这几个方面,而对性能的改善程度是用反馈深度来决定的,本实验电路的反馈深度为(1+AF),它的数值取决于反馈网络的元件参数和基本放大电路的放大倍数。
在阻容耦合放大器中,因有电抗元件存在,电压放大倍数将随信号频率而变,在高低频段放大倍数均会随着频率的变化而有所下级,在低频段,下限截止频率由耦合电容和发射极旁路电容决定,在高频段,上限截止频率由极间电容效应决定,通频带BW =fH-fL,引入负反馈后,可使放大器的通频带得到扩展。
五、实验内容与步骤1. 调整电路的工作状态1将输入信号(频率为1khz)介入放大器的Ui输入端,反复调节输入信号和俩及放大器基极的片基上的偏置电阻,用示波器观察输出波形,使其不失真,达到最佳工作点(Uce工作范围很宽,UCE约为4——5V).并保持不变。
2.测量两极负反馈对放大器性能指标⑴图1电路开环,逐渐增大Vi幅度,使输出信号出现失真3.测量放大器的通频带⑴将电路先开环,选择Vi 适当幅度(频率为1KHZ)使输出信号在示波器上有满幅正弦波显示。
负反馈放大电路实验报告
负反馈放大电路实验报告班级姓名学号一、实验目的1.了解N沟道结型场效应管的特性和工作原理。
2.熟悉两级放大电路的设计和调试方法。
3.理解负反馈对放大电路性能的影响。
4.学习使用M ultisim分析、测量负反馈放大电路的方法。
二、实验内容(一)必做内容设计和实现一个由共漏放大电路和共射放大电路组成的两级电压并联负反馈放大电路。
1. 测试N沟道结型场效应管2N5486 的特性曲线(只做仿真测试)在Multisim设计环境下搭接结型场效应管特性曲线测试电路,利用“直流扫描分析(DC Sweep Analysis)”得到场效应管的输出特性和转移特性曲线。
测出I DSS和使i D等于某一很小电流(如5μA)时的u GS(off)。
2N5486 的主要参数见附录。
2. 两级放大电路静态和动态参数要求(1)放大电路的静态电流I DQ和I CQ均约为2mA;结型场效应管的管压降U GDQ < - 4V,晶体管的管压降U CEQ = 2~3V。
(2)开环时,两级放大电路的输入电阻R i要大于90kΩ;以反馈电阻作为负载时的电压放大倍数A u≥120。
(3)闭环时,电压放大倍数A usf = U O/U S≈ -10。
3.参考电路(1)电压并联负反馈放大电路方框图如图1所示,R模拟信号源的内阻;R f为反馈电阻。
(2)两级放大电路的参考电路如图2所示。
R g1、R g2取值应大于100kΩ。
考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入和输出端分别并联反馈电阻R f,理由详见附录。
4.实验方法与步骤(1)两级放大电路的测试(a)调整放大电路静态工作点第一级电路:设计与调节电阻R g1、R g2、R s参数,使I DQ约为2mA、U GDQ < - 4V,记录U GSQ、U A、U S、U GDQ。
第二级电路:调节R b2,使I CQ约为2mA,U CEQ = 2~3V。
记录U CEQ。
(b)测试放大电路的主要性能指标输入信号的有效值U s ≈ 5mV,频率f 为10kHz,测量A u1=U O1/U S、A u=U O/U S、R i、R o和幅频特性。
实验三负反馈放大电路
实验三 负反馈放大电路
一、实验目的
1、研究负反馈对放大器性能的影响。
2、掌握反馈放大器性能的测试方法。
二、实验原理
反馈在电子技术中得到广泛应用。所谓反馈就是将放大器的输出信号(电压或电流)的一部分或全部,通过适当的电路(反馈网络)送回到放大电路的输入回路,使放大器获得某些性能的改善。在电子技术中,对反馈来说,有正反馈和负反馈两类。但如何判断电路的反馈是属哪一类呢?可以采用瞬时极性法。先假定输入信号处于某一个瞬时极性,然后逐级推出电路其他有关各点瞬时信号极性情况,最后判断反馈到输入端信号的瞬时极性是增强还是削弱了原来的输入信号。如果反馈回来的信号增强了原输入信号则为正反馈。相反,削弱了输入信号就是负反馈。
559
闭环
∞
1
29.9
29.9
46.6
1.5K
1
29
29
Multisim仿真:
软件版本号:Multisim 14.2
三极管型号:2N1711
仿真步骤:
(1)开环电路
在Multisim中选择元器件,搭建图1所示电路,暂不接入反馈信号Rf与Cf,按照图1修改元器件参数,直流电压源为+12V。
选择交流电压源V1,频率设为10KHz,从R1处输入信号。在Vi处放置电压探针,调节V1幅值,直至Vi显示电压有效值为1mV.
图8反馈接入基极(仿真)
(4)总结反馈对失真改善的特点。
特点:引入电压串联负反馈后,电路在采集原始信号时其真度提高,与上一级电路的衔接性增强,可改善波形失真。对于同一放大电路,若引入负反馈,当输出波形刚出现失真时,对应的输入电压将远大于无负反馈时刚出现失真所对应的输入电压。
3.测放大器频率特性
负反馈放大电路实验总结
负反馈放大电路实验总结在本次实验中,我们研究了负反馈放大电路的基本原理和特性。
负反馈放大电路是一种常见的放大电路,可以通过改变电路的反馈方式来提高电路的性能,例如增加稳定性、降低失真等。
本实验通过搭建负反馈放大电路并进行电路参数测量,验证了负反馈放大电路的特性。
实验步骤:1. 准备工作:搭建实验电路所需的电路板、电阻、电容等元件。
2. 搭建负反馈放大电路:按照实验要求连接电路板上的元件,搭建负反馈放大电路。
3. 测量电路参数:使用信号发生器提供输入信号,通过示波器测量放大电路的输入和输出信号,记录幅度和相位差。
4. 改变反馈方式:通过改变电路中的反馈元件,比较不同反馈方式下电路的性能差异。
实验结果:通过实验测量,我们得到了负反馈放大电路的输入输出特性曲线。
在实验中,我们可以观察到以下几个重要的特性:1. 增益稳定性:负反馈放大电路能够通过反馈路径将输入信号的一部分反馈到输入端,从而抑制电路的增益变化。
通过改变反馈比例,我们可以得到不同的增益值。
实验结果表明,增加反馈比例可以显著提高电路的增益稳定性。
2. 频率特性:在实验中,我们还可以观察到负反馈放大电路的频率特性。
通过测量输入和输出信号的幅度和相位差,我们可以得到电路的频率响应曲线。
实验结果表明,在一定频率范围内,负反馈放大电路的频率响应是平坦的,增益基本保持不变。
3. 失真情况:负反馈放大电路可以有效降低电路的失真。
在实验中,我们可以通过测量电路输入和输出信号的波形来观察电路的失真情况。
实验结果表明,负反馈放大电路的失真程度较低,能够更好地保持输入信号的准确度。
实验总结:通过本次实验,我们深入了解了负反馈放大电路的原理和特性。
负反馈放大电路的特点在于增加了电路的稳定性、降低了失真等方面的优点。
实验结果表明,通过改变反馈比例和反馈方式,可以调整电路的性能,以满足不同应用场景的需求。
在实际应用中,负反馈放大电路被广泛应用于音频放大器、运算放大器等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
. word范文 实验二 由分立元件构成的负反馈放大电路
一、实验目的 1.了解N沟道结型场效应管的特性和工作原理; 2.熟悉两级放大电路的设计和调试方法; 3.理解负反馈对放大电路性能的影响。 二、实验任务 设计和实现一个由N沟道结型场效应管和NPN型晶体管组成的两级负反馈放大电路。结型场效应管的型号是2N5486,晶体管的型号是9011。 三、实验内容 1. 基本要求:利用两级放大电路构成电压并联负反馈放大电路。 (1)静态和动态参数要求 1)放大电路的静态电流IDQ和ICQ均约为2mA;结型场效应管的管压降UGDQ < - 4V,晶体管的管压降UCEQ = 2~3V; 2)开环时,两级放大电路的输入电阻要大于90kΩ,以反馈电阻作为负载时的电压放大倍数的数值 ≥ 120;
3)闭环电压放大倍数为10sosfUUAu。 (2)参考电路 1)电压并联负反馈放大电路方框图如图1所示,R模拟信号源的内阻;Rf为反馈电阻,取值为100 kΩ。
图1 电压并联负反馈放大电路方框图 2)两级放大电路的参考电路如图2所示。图中Rg3选择910kΩ,Rg1、Rg2应大于100kΩ;C1~C3容量为10μF,Ce容量为47μF。考虑到引入电压负反馈后反馈网络的负载效应,应在
放大电路的输入端和输出端分别并联反馈电阻Rf,见图2,理由详见“五 附录-2”。
图2 两级放大电路 实验时也可以采用其它电路形式构成两级放大电路。
3.3kΩ . word范文 (3)实验方法与步骤 1)两级放大电路的调试 a. 电路图:(具体参数已标明)
VCC12V
Rb115k¦¸
Rb241kΩ
Rc
3.3k¦¸
Rs4kΩRf100k¦¸Re1.2k¦¸C110uFC210uFC310uFQ1MRF9011LT1_A*1Ce47uF
2Q22N5486Rg2300kΩRg1300kΩRg3910k¦¸Rf1100k¦¸56VCCXFG1XSC1ABCDGT3R1100k¦¸J1Key = A 9780V10 V 10
4
b. 静态工作点的调试 实验方法: 用数字万用表进行测量相应的静态工作点,基本的直流电路原理。
第一级电路:调整电阻参数,4.2sRk,使得静态工作点满足:IDQ约为2mA,UGDQ < - 4V。记录并计算电路参数及静态工作点的相关数据(IDQ,UGSQ,UA,US、UGDQ)。 实验中,静态工作点调整,实际4sRk IDQ UGSQ UA US UGDQ
测量值 2.14mA -3.33V 5.25V 8.58V -6.75V
第二级电路:通过调节Rb2,240bRk,使得静态工作点满足:ICQ约为2mA,UCEQ = 2~3V。记录电路参数及静态工作点的相关数据(ICQ,UCEQ)。
实验中,静态工作点调整,实际241bRk ICQ UCEQ
测量值 2.05mA 2.78V
c. 动态参数的调试 输入正弦信号Us,幅度为10mV,频率为10kHz,测量并记录电路的电压放大倍数
so11UUAu、soUUAu、输入电阻Ri和输出电阻Ro。
电压放大倍数:(直接用示波器测量输入输出电压幅值)
o1U sU oU 1uA uA . word范文 测量值 7.8mV 10mV -1.57V 0.78 -157
输入电阻: 测试电路:
VCC12V
Rb115k¦¸
Rb241kΩ
Rc
3.3k¦¸
Rs4kΩRf100k¦¸Re1.2k¦¸C110uFC210uFC310uFQ1MRF9011LT1_A*1Ce47uF
2Q22N5486Rg2300kΩRg1300kΩRg3910k¦¸Rf1100k¦¸56VCCXFG1XSC1ABCDGT3R1100k¦¸J1Key = A 9780V10 V 10
4
开关闭合、打开,分别测输出电压1oV和2oV,代入表达式: 2112oi
oo
VRRVV
1oV 2oV iR 测量值 1.57V 0.77V 96.25kom
输出电阻: 测试电路:
VCC12V
Rb115k¦¸
Rb241k¦¸
Rc
3.3k¦¸
Rs4k¦¸Rf100k¦¸Re1.2k¦¸C110uFC210uFC310uFQ1MRF9011LT1_A*1Ce47uF
2Q22N5486Rg2300k¦¸Rg1300k¦¸Rg3910k¦¸Rf1100k¦¸56VCCXFG1XSC1ABCDGT3R1100k¦¸J1Key = A 97V10 V 10
4R23k¦¸
0
8 . word范文 记录此时的输出:0.79VolV 1.57(1)=32.960.79ooLoVRRkV(-1)k
2)两级放大电路闭环测试 在上述两级放大电路中,引入电压并联负反馈。合理选取电阻R(9.4k)的阻值,使得闭环电压放大倍数的数值约为10。 电路图:
VCC12V
Rb115k¦¸
Rb241kΩ
Rc
3.3k¦¸
Rs4kΩRe1.2k¦¸C110uFC210uFC310uFQ1MRF9011LT1_ACe47uF
Q22N5486
Rg2300kΩ
Rg1300kΩ
Rg3910k¦¸Rf100k¦¸
XFG1XSC1ABCDGT
R110kΩ8
3
VCC
542
1679
0 输入正弦信号Us,幅度为100mV,频率为10kHz,测量并记录闭环电压放大倍数sosfUUAu、输入电阻Rif和输出电阻Rof。
实验中,取R=10kom。
电压放大倍数:(直接用示波器测量输入输出电压幅值)
sU oU usfA
测量值 100mV -0.95V -9.5
输入电阻: 测试电路: .
word范文 VCC12V
Rb115k¦¸
Rb241kΩ
Rc
3.3k¦¸
Rs4kΩRe1.2k¦¸C110uFC210uFC310uFQ1MRF9011LT1_ACe47uF
Q22N5486
Rg2300kΩ
Rg1300kΩ
Rg3910k¦¸Rf100k¦¸
XFG1XSC1ABCDGT
R110kΩ8
3
VCC
542
1679
0 测量原理为:1iiiiVRRVV(R1此时为10kom) 记录数据: iV iV iR
测量值 5.4mV 100mV 571om
输出电阻: 测试电路:
VCC12V
Rb115k¦¸
Rb241k¦¸
Rc
3.3k¦¸
Rs4k¦¸Re1.2k¦¸C110uFC210uFC310uFQ1MRF9011LT1_ACe47uF
Q22N5486
Rg2300k¦¸
Rg1300k¦¸
Rg3910k¦¸Rf100k¦¸
XFG1XSC1ABCDGT
R110k¦¸8
3
VCC
542
167R21k¦¸09
记录此时的输出:0.75VolV 0.95(1)=0.75ooLoVRRV(-1)1k=267 . word范文 提示1:闭环测试时,需将输入端和输出端的等效负载Rf断开。 提示2:输入电阻Rif指放大电路的输入电阻,不含R。
2. 提高要求:电流并联负反馈放大电路 参考实验电路如图3所示,其中第一级为N沟道结型场效应管组成的共源放大电路;第二级为NPN型晶体管组成的共射放大电路。 输入正弦信号Us,幅度为100mV,频率为10kHz,测量并记录闭环电压放大倍数
sosfUUAu、输入电阻Rif和输出电阻Rof。
图3 电流并联负反馈放大电路 电压放大倍数:(直接用示波器测量输入输出电压幅值) sU oU usfA
测量值 100mV 0.91 9.1 输入电阻: 测试电路: