高考导数题型分析及解题方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考导数题型分析及解题方法
本知识单元考查题型与方法:
※※与切线相关问题(一设切点,二求导数=斜率=21
21
y y x x --,三代切点入切线、曲线联立方程求解);
※※其它问题(一求导数,二解)('x f =0的根—若含字母分类讨论,三列3行n 列的表判单调区间和极值。结合以上所得解题。)
特别强调:恒成立问题转化为求新函数的最值。导函数中证明数列型不等式注意与原函数联系构造,一对多涉及到求和转化。 关注几点:
恒成立:(1)定义域任意x 有()f x >k,则min ()f x >常数k ;
(2)定义域任意x 有()f x 恰成立:(1)对定义域内任意x 有()()f x g x >恒成立,则min ()-()0,f x g x >【】 (2)若对定义域内任意x 有()()f x g x <:恒成立,则max ()-()0f x g x <【】 能成立:(1)分别定义在[a,b]和[c,d]上的函数()()f x g x 和,对任意的1[,],x a b ∈存在 2[,],x c d ∈使得12()()f x g x <,则max max ()()f x g x < (2)分别定义在[a,b]和[c,d]上的函数()()f x g x 和,对任意的1[,],x a b ∈存在2[,],x c d ∈使得12()()f x g x >,则min min ()()f x g x > 一、考纲解读 考查知识题型:导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值;证明不等式、求参数范围等 二、热点题型分析 题型一:利用导数研究函数的极值、最值。 1. 32 ()32f x x x =-+在区间[]1,1-上的最大值是 2 2.已知函数2)()(2 =-==x c x x x f y 在处有极大值,则常数c = 6 ; 3.函数3 31x x y -+=有极小值 -1 ,极大值 3 题型二:利用导数几何意义求切线方程 1.曲线3 4y x x =-在点 ()1,3--处的切线方程是 2y x =- 2.若曲线x x x f -=4 )(在P 点处的切线平行于直线03=-y x ,则P 点的坐标为 (1,0) 3.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 430x y --= 4.求下列直线的方程: (1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2 x y =过点P(3,5)的切线; 解:(1) 123|y k 23 1)1,1(1x /2/2 3===∴+=∴++=-=-上,在曲线点-x x y x x y P 所以切线方程为02 11=+-+=-y x x y 即, (2)显然点P (3,5)不在曲线上,所以可设切点为),(00y x A ,则2 00x y =①又函数的导数为x y 2/ =, 所以过),(00y x A 点的切线的斜率为 / 2|0x y k x x ===,又切线过),(00y x A 、P(3,5)点,所以有 3 52000--= x y x ②,由①②联 立方程组得,⎩⎨⎧⎩⎨⎧====25 5 110 000y x y x 或,即切点为(1,1)时,切线斜率为;2201==x k ;当切点为(5,25)时,切线斜 率为10202==x k ;所以所求的切线有两条,方程分别为2510 12 )5(1025)1(21-=-=-=--=-x y x y x y x y 或即, 或 题型三:利用导数研究函数的单调性,极值、最值 1.已知函数 ))1(,1()(,)(2 3f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1 (Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值; (Ⅲ)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围 解:(1)由 .23)(,)(2 23b ax x x f c bx ax x x f ++='+++=求导数得 过))1(,1()(f P x f y 上点=的切线方程为: ).1)(23()1(),1)(1()1(-++=+++--'=-x b a c b a y x f f y 即 而过.13)]1(,1[)(+==x y f P x f y 的切线方程为上 故⎩⎨ ⎧-=-=+⎩⎨ ⎧-=-=++30233 23c a b a c a b a 即 ∵124,0)2(,2)(-=+-∴=-'-==b a f x x f y 故时有极值在 ③ 由①②③得 a=2,b=-4,c=5 ∴.542)(2 3+-+=x x x x f (2)).2)(23(443)(2+-=-+='x x x x x f 当; 0)(,32 2;0)(,23<'<≤->'-<≤-x f x x f x 时当时 ① ② 13)2()(.0)(,132 =-=∴>'≤ (3)y=f(x)在[-2,1]上单调递增,又 ,23)(2 b ax x x f ++='由①知2a+b=0。 依题意)(x f '在[-2,1]上恒有)(x f '≥0,即.032≥+-b bx x ①当 6,03)1()(,16min ≥∴>+-='='≥= b b b f x f b x 时; ②当 φ∈∴≥++=-'='-≤= b b b f x f b x ,0212)2()(,26min 时; ③当. 60,01212)(,1622min ≤≤≥-='≤≤-b b b x f b 则时 综上所述,参数b 的取值范围是),0[+∞ 2.已知三次函数 32 ()f x x ax bx c =+++在1x =和1x =-时取极值,且(2)4f -=-. (1) 求函数()y f x =的表达式; (2) 求函数()y f x =的单调区间和极值; (3) 若函数()()4(0)g x f x m m m =-+>在区间[3,]m n -上的值域为[4,16]-,试求m 、n 应满足的条件. 解:(1) 2 ()32f x x ax b ' =++, 由题意得,1,1-是2 320x ax b ++=的两个根,解得,0,3a b ==-. 再由(2)4f -=-可得2c =-.∴3 ()32f x x x =--. (2) 2()333(1)(1)f x x x x '=-=+-, 当1x <-时,()0f x '>;当1x =-时,()0f x '=;当11x -<<时,()0f x '<;当1x =时,()0f x ' =; 当1x >时,()0f x ' >.∴函数()f x 在区间(,1]-∞-上是增函数; 在区间[1,]-1 上是减函数;在区间[1,)+∞上是增函数。函数()f x 的极大值是(1)0f -=,极小值是(1)4f =-. (3) 函数()g x 的图象是由()f x 的图象向右平移m 个单位,向上平移4m 个单位得到的, 所以,函数()f x 在区间[3,]n m --上的值域为[44,164]m m ---(0m >). 而(3)20f -=-,∴4420m --=-,即4m =. 于是,函数()f x 在区间[3,4]n --上的值域为[20,0]-. 令()0f x =得1x =-或2x =.由()f x 的单调性知,142n --,即3 6n . 综上所述,m 、n 应满足的条件是:4m =,且36n . 3.设函数()()()f x x x a x b =--. (1)若()f x 的图象与直线580x y --=相切,切点横坐标为2,且()f x 在1x =处取极值,求实数,a b 的值;