高考导数题型分析及解题方法

高考导数题型分析及解题方法
高考导数题型分析及解题方法

高考导数题型分析及解题方法

本知识单元考查题型与方法:

※※与切线相关问题(一设切点,二求导数=斜率=21

21

y y x x --,三代切点入切线、曲线联立方程求解);

※※其它问题(一求导数,二解)('x f =0的根—若含字母分类讨论,三列3行n 列的表判单调区间和极值。结合以上所得解题。)

特别强调:恒成立问题转化为求新函数的最值。导函数中证明数列型不等式注意与原函数联系构造,一对多涉及到求和转化。 关注几点:

恒成立:(1)定义域任意x 有()f x >k,则min ()f x >常数k ;

(2)定义域任意x 有()f x

恰成立:(1)对定义域内任意x 有()()f x g x >恒成立,则min ()-()0,f x g x >【】 (2)若对定义域内任意x 有()()f x g x <:恒成立,则max ()-()0f x g x <【】

"

能成立:(1)分别定义在[a,b]和[c,d]上的函数()()f x g x 和,对任意的1[,],x a b ∈存在

2[,],x c d ∈使得12()()f x g x <,则max max ()()f x g x <

(2)分别定义在[a,b]和[c,d]上的函数()()f x g x 和,对任意的1[,],x a b ∈存在2[,],x c d ∈使得12()()f x g x >,则min min ()()f x g x >

一、考纲解读

考查知识题型:导数的概念,导数的几何意义,几种常见函数的导数;

两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值;证明不等式、求参数范围等

二、热点题型分析

题型一:利用导数研究函数的极值、最值。

1.

32

()32f x x x =-+在区间[]1,1-上的最大值是 2 2.已知函数2)()(2

=-==x c x x x f y 在处有极大值,则常数c = 6 ;

3.函数3

31x x y -+=有极小值 -1 ,极大值 3

题型二:利用导数几何意义求切线方程

1.曲线3

4y x x =-在点

()1,3--处的切线方程是 2y x =- 2.若曲线x x x f -=4

)(在P 点处的切线平行于直线03=-y x ,则P 点的坐标为 (1,0)

3.若曲线4

y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 430x y --=

4.求下列直线的方程:

(1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2

x y =过点P(3,5)的切线;

解:(1)

123|y k 23 1)1,1(1x /2/2

3===∴+=∴++=-=-上,在曲线点-x x y x x y P

所以切线方程为02

11=+-+=-y x x y 即, $

(2)显然点P (3,5)不在曲线上,所以可设切点为),(00y x A ,则2

00x y =①又函数的导数为x y 2/

=,

所以过),(00y x A 点的切线的斜率为

/

2|0x y k x x ===,又切线过),(00y x A 、P(3,5)点,所以有

3

52000--=

x y x ②,由①②联

立方程组得,??????====25

5 110

000y x y x 或,即切点为(1,1)时,切线斜率为;2201==x k ;当切点为(5,25)时,切线斜

率为10202==x k ;所以所求的切线有两条,方程分别为2510 12 )5(1025)1(21-=-=-=--=-x y x y x y x y 或即,

或 题型三:利用导数研究函数的单调性,极值、最值

1.已知函数

))1(,1()(,)(2

3f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1 (Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值; (Ⅲ)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围

解:(1)由.23)(,)(2

23b ax x x f c bx ax x x f ++='+++=求导数得

过))1(,1()(f P x f y 上点=的切线方程为: ).1)(23()1(),1)(1()1(-++=+++--'=-x b a c b a y x f f y 即

而过.13)]1(,1[)(+==x y f P x f y 的切线方程为上

故??

?-=-=+??

?-=-=++3023

3

23c a b a c a b a 即

∵124,0)2(,2)(-=+-∴=-'-==b a f x x f y 故时有极值在 ③

由①②③得 a=2,b=-4,c=5 ∴.542)(2

3+-+=x x x x f (2)).2)(23(443)(2+-=-+='x x x x x f

当;

0)(,32

2;0)(,23<'<≤->'-<≤-x f x x f x 时当时

[

13)2()(.0)(,132

=-=∴>'≤

(3)y=f(x)在[-2,1]上单调递增,又

,23)(2

b ax x x f ++='由①知2a+b=0。 依题意)(x f '在[-2,1]上恒有)(x f '≥0,即.032≥+-b bx x

①当

6,03)1()(,16min ≥∴>+-='='≥=

b b b f x f b

x 时;

②当

φ∈∴≥++=-'='-≤=

b b b f x f b

x ,0212)2()(,26min 时;

③当.

60,01212)(,1622min ≤≤≥-='≤≤-b b b x f b 则时

综上所述,参数b 的取值范围是),0[+∞

2.已知三次函数

32

()f x x ax bx c =+++在1x =和1x =-时取极值,且(2)4f -=-. (1) 求函数()y f x =的表达式; (2) 求函数()y f x =的单调区间和极值;

(3) 若函数()()4(0)g x f x m m m =-+>在区间[3,]m n -上的值域为[4,16]-,试求m 、n 应满足的条件. 解:(1) 2()32f x x ax b '=++,

由题意得,1,1-是2

320x ax b ++=的两个根,解得,0,3a b ==-.

再由(2)4f -=-可得2c =-.∴3

()32f x x x =--. (2) 2()333(1)(1)f x x x x '=-=+-,

当1x <-时,()0f x '>;当1x =-时,()0f x '=;当11x -<<时,()0f x '<;当1x =时,()0f x '

=; 当1x >时,()0f x '

>.∴函数()f x 在区间(,1]-∞-上是增函数;

在区间[1,]-1

上是减函数;在区间[1,)+∞上是增函数。函数()f x 的极大值是(1)0f -=,极小值是(1)4f =-. (3) 函数()g x 的图象是由()f x 的图象向右平移m 个单位,向上平移4m 个单位得到的, 所以,函数()f x 在区间[3,]n m --上的值域为[44,164]m m ---(0m >). 而(3)20f -=-,∴4420m --=-,即4m =.

于是,函数()f x 在区间[3,4]n --上的值域为[20,0]-.

令()0f x =得1x =-或2x =.由()f x 的单调性知,142n --,即3

6n

综上所述,m 、n 应满足的条件是:4m =,且36n

3.设函数()()()f x x x a x b =--.

(1)若()f x 的图象与直线580x y --=相切,切点横坐标为2,且()f x 在1x =处取极值,求实数,a b 的值;

(2)当b=1时,试证明:不论a 取何实数,函数()f x 总有两个不同的极值点.

解:(1)2

()32().f x x a b x ab '=-++ 由题意(2)5,(1)0f f ''==,代入上式,解之得:a=1,b=1. (2)当b=1时,()0f x '=令得方程232(1)0.x a x a -++= 因

,0)1(42

>+-=?a a 故方程有两个不同实根21,x x . 不妨设21x x <,由))((3)(21'x x x x x f --=可判断)('

x f 的符号如下:

当时,1x x <)('

x f >0;当时,21x x x <<)('

x f <0;当时,2x x >)('

x f >0

因此1x 是极大值点,2x 是极小值点.,当b=1时,不论a 取何实数,函数()f x 总有两个不同的极值点。 题型四:利用导数研究函数的图象

1.如右图:是f (x )的导函数,

)(/

x f 的图象如右图所示,则f (x )的图象只可能是( D )

(A ) (B ) (C ) (D ) ~ 2.函数的图像为14313

+-=

x x y ( A )

3.方程内根的个数为在)2,0(07622

3=+-x x ( B )

A 、0

B 、1

C 、2

D 、3 题型五:利用单调性、极值、最值情况,求参数取值范围

1.设函数.

10,3231

)(223<<+-+-=a b x a ax x x f

(1)求函数)(x f 的单调区间、极值.(2)若当]2,1[++∈a a x 时,恒有a x f ≤'|)(|,试确定a 的取值范围.

解:(1)22

()43f x x ax a '=-+-=(3)()x a x a ---,令()0f x '=得12,3x a x a ==

列表如下: x

(-∞,a ) ;

a (a ,3a ) 3a (3a ,+∞) ()f x '

-

+

-

x y

o 4 -4 2 4 】

2 -2 -2

x y o 4 -4 2 !

-4

2 -2 -2 x y

y 4 -4 2 4 -4

2

-2 -2

6 6

{

6 y

x

-4

-2 o

4 2 2

$

}

()f x

极小

极大

∴()f x 在(a ,3a )上单调递增,在(-∞,a )和(3a ,+∞)上单调递减

x a =时,3

4

()3f x b a =-极小,3x a =时,()f x b =极小

(2)22

()43f x x ax a '=-+-∵01a <<,∴对称轴21x a a =<+,∴()f x '在[a+1,a+2]上单调递减

!

22(1)4(1)321Max

f a a a a a '=-+++-=-,

22min

(2)4(2)344f a a a a a '=-+++-=-

依题|()|f x a '≤?||Max f a '≤,min ||f a '≤ 即|21|,|44|a a a a -≤-≤

解得415a ≤≤,又01a << ∴a 的取值范围是4[,1)5

2.已知函数f (x )=x3+ax2+bx +c 在x =-2

3与x =1时都取得极值(1)求a 、b 的值与函数f (x )的单调区

间(2)若对x 〔-1,2〕,不等式f (x )c2恒成立,求c 的取值范围。 解:(1)f (x )=x3+ax2+bx +c ,f (x )=3x2+2ax +b

由f (23-

)=124a b 093-+=,f (1)=3+2a +b =0得a =1

2-

,b =-2

f

(x )=3x2-x -2=(3x +2)(x -1),函数f (x )的单调区间如下表:

x (-,-23) -2

3

( (-2

3,1)

1 (1,+)

f (x )

- 0 + f (x ) [

极大值

极小值

所以函数f (x )的递增区间是(-,-23)与(1,+),递减区间是(-2

3,1) (2)f (x )=x3-12x2-2x +c ,x 〔-1,2〕,当x =-23时,f (x )=2227+c

为极大值,而f (2)=2+c ,则f (2)=2+c 为最大值。 要使f (x )c2(x 〔-1,2〕)恒成立,只需c2f (2)=2+c ,解得c -1或c 2 题型六:利用导数研究方程的根 ,

1.已知平面向量a =(3,-1). b =(21,23

).

(1)若存在不同时为零的实数k 和t ,使x =a +(t2-3)b ,y =-k a +t b ,x ⊥y , 试求函数关系式k=f(t) ;

(2) 据(1)的结论,讨论关于t 的方程f(t)-k=0的解的情况. 解:(1)∵x ⊥y ,∴x y ?=0 即[a +(t2-3) b ]·(-k a +t b )=0. 整理后得-k 2

a +[t-k(t2-3)] a

b ?+ (t2-3)·2

b =0

∵a b ?=0,2

a =4,2

b =1,∴上式化为-4k+t(t2-3)=0,即k=41

t(t2-3)

(2)讨论方程41t(t2-3)-k=0的解的情况,可以看作曲线f(t)= 41

t(t2-3)与直线y=k 的交点个数. 于是f ′(t)= 43(t2-1)= 43

(t+1)(t-1).

令f ′…

t

(-∞,-1) -1 (-1,1) 1

(1,+ ∞) f ′(t)

+ 0 - …

+ F(t)

极大值

极小值

当t=-1时,f(t)有极大值,f(t)极大值=21

. 当t=1时,f(t)有极小值,f(t)极小值=-21

:

函数f(t)=41

t(t2-3)的图象如图13-2-1所示,

可观察出:

(1)当k >21或k <-21

时,方程f(t)-k=0有且只有一解; (2)当k=21或k=-21

时,方程f(t)-k=0有两解; (3) 当-21<k <21

时,方程f(t)-k=0有三解.

题型七:导数与不等式的综合

1.设

ax x x f a -=>3

)(,0函数在),1[+∞上是单调函数. 【

(1)求实数a 的取值范围;(2)设

x ≥1,)(x f ≥1,且00))((x x f f =,求证:0

0)(x x f =.

解:(1) ,3)(2a x x f y -='='若)(x f 在[)+∞,1上是单调递减函数,则须

,3,02

x a y ><'即这样的实数a 不存在.故)(x f 在[)+∞,1上不可能是单调递减函数.

若)(x f 在[)+∞,1上是单调递增函数,则a ≤2

3x , 由于

[)33,,12

≥+∞∈x x 故.从而0

))(()(000矛盾x x f f x f =< 若

1≤

)

(),())((,)(000000x f x x f x f f x x f <<<即则矛盾,故只有

0)(x x f =成立.

方法2:设

0)(,)(x u f u x f ==则,

,

,0303

0x au u u ax x =-=-∴两式相减得

033

0)()(x u u x a u x -=---

202

00,0)1)((x a u u x x u x =-+++-∴≥1,u ≥1,

30,32020≤<≥++∴a u u x x 又,

12020>-+++∴a u u x x

2.已知a 为实数,函数23

()()()

2f x x x a =++(1)若函数()f x 的图象上有与x 轴平行的切线,求a 的取值范

围(2)若'(1)0f -=,(Ⅰ)求函数()f x 的单调区间

(Ⅱ)证明对任意的

12(1,0)

x x ∈-、,不等式

125

|()()|16f x f x -<

恒成立

解:

3233()22f x x ax x a =++

+,23'()322f x x ax ∴=++

函数()f x 的图象有与x 轴平行的切线,'()0f x ∴=有实数解

2344302a ∴?=-??≥,292a ≥,所以a

的取值范围是3

[22-∞+∞(,)

'(1)0f -=,

33202a ∴-+

=,94a =,2931

'()33()(1)222f x x x x x ∴=++=++ 由'()0,1f x x ><-或

12x >-

;由1

'()0,12f x x <-<<-

()f x ∴的单调递增区间是1(,1),(,)2-∞--+∞;单调减区间为

1(1,)

2-- 易知()f x 的最大值为

25(1)8f -=

,()f x 的极小值为149()216f -=,又27

(0)8f =

()f x ∴在[10]-,上的最大值

278M =

,最小值49

16m =

∴对任意12,(1,0)x x ∈-,恒有

1227495

|()()|81616f x f x M m -<-=

-=

题型八:导数在实际中的应用

1.请您设计一个帐篷。它下部的形状是高为1m 的正六棱柱,上部的形状是侧棱长为3m 的正六棱锥(如右图所示)。试问当帐篷的顶点O 到底面中心1o 的距离为多少时,帐篷的体积最大

}

解:设OO1为x m ,则41<

由题设可得正六棱锥底面边长为:2

2228)1(3x x x -+=--,(单位:m )

故底面正六边形的面积为:

(43

6??

22)28x x -+=)28(2332x x -+?,(单位:2

m )

帐篷的体积为:

)(V 22823

3x x x -+=

)(]1)1(31[+-x )1216(233x x -+=(单位:3m )

求导得

)312(23

V '2x x -=

)(。令0V'=)(x ,解得2-=x (不合题意,舍去),2=x ,

当21<)(x ,)(x V 为增函数;当42<

∴当2=x 时,)(x V 最大。

答:当OO1为2m 时,帐篷的体积最大,最大体积为3163

m 。

2.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/小时)的函数解析

式可以表示为:

313

8(0120).

12800080y x x x =

-+<≤

已知甲、乙两地相距100千米。

(I )当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升 (II )当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少最少为多少升

解:(I )当40x =时,汽车从甲地到乙地行驶了100

2.5

40=小时,

要耗没313(40408) 2.517.5

12800080?-?+?=(升)。

(II )当速度为x 千米/小时时,汽车从甲地到乙地行驶了100

x 小时,设耗油量为()h x 升,

依题意得3213100180015

()(8).(0120),

1280008012804h x x x x x x x =-+=+-<≤

33

2280080'()(0120).

640640x x h x x x x -=-=<≤ 令'()0,h x =得80.x =

当(0,80)x ∈时,'()0,()h x h x <是减函数; 当(80,120)x ∈时,'()0,()h x h x >是增函数。

∴当80x =时,()h x 取到极小值(80)11.25.h = 因为()h x 在(0,120]上只有一个极值,所以它是最小值。

答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升。当汽车以80千米/小时的速度匀

速行驶时,从甲地到乙地耗油最少,最少为11.25升。 题型九:导数与向量的结合

1.设平面向量

3113(

),().2222a b =-=,,若存在不同时为零的两个实数s 、t 及实数k ,使

且b t s k t ⊥+-=-+=,)(2

(1)求函数关系式()S f t =;(2)若函数()S f t =在[)∞+,

1上是单调函数,求k 的取值范围。 解:(1)

).23,21(),21,23(

=-=10a b a b ==?=,

2

22

2223,0000x y x y a t k b sa tb sa t t k b t st sk a b s t k t s f t t kt ⊥?=??+--+=??-+--+?=∴-+-===-又,得

()()

,即()-()。(),故()。

(2)

[)上是单调函数,,)在(且)(∞+-='132t f k t t f

则在[)+∞,1上有00)(≤'≥')(或t f t f 由3)3(3030)(min 2

22≤?≤?≤?≥-?≥'k t k t k k t t f ; 由2

23030)(t k k t t f ≥?≤-?≤'。

因为在t ∈[)+∞,1上2

3t 是增函数,所以不存在k ,使2

3t k ≥在[)+∞,1上恒成立。故k 的取值范围是3≤k 。

高考数学导数的解题技巧

2019年高考数学导数的解题技巧高考导数题主要是考查与函数的综合,考查不等式、导数的应用等知识,难度属于中等难度。 都有什么题型呢? ①应用导数求函数的单调区间,或判定函数的单调性; ②应用导数求函数的极值与最值; ③应用导数解决有关不等式问题。 有没有什么解题技巧啦? 导数的解题技巧还是比较固定的,一般思路为 ①确定函数f(x)的定义域(最容易忽略的,请牢记); ②求方程f′(x)=0的解,这些解和f(x)的间断点把定义域分成若干区间; ③研究各小区间上f′(x)的符号,f′(x)>0时,该区间为增区间,反之则为减区间。 从这两步开始有分类讨论,函数的最值可能会出现极值点处或者端点处,多项式求导一般结合不等式求参数的取值范围,根据题目会有一定的变化,那接下来具体总结一些做题技巧。 技巧破解+例题拆解 1.若题目考察的是导数的概念,则主要考察的是对导数在一点处的定义和导数的几何意义,注意区分导数与△y/△x 之间的区别。

观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子说“乌云跑得飞快。”我加以肯定说“这是乌云滚滚。”当幼儿看到闪电时,我告诉他“这叫电光闪闪。”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。

2020年高考文科数学《导数的综合应用》题型归纳与训练

a - a (- ),( , +∞) 单调递增, 在 (- ( 2020 年高考文科数学《导数的综合应用》题型归纳与训练 【题型归纳】 题型一 含参数的分类讨论 例1 已知函数 f ( x ) = ax 3 - 12 x ,导函数为 f '( x) , (1)求函数 f ( x ) 的单调区间; (2)若 f '(1)= -6, 求函数f ( x ) 在[—1,3]上的最大值和最小值。 【答案】略 【解析】(I ) f '( x ) = 3ax 2 - 12 = 3(ax 2 - 4) ,(下面要解不等式 3(ax 2 - 4) > 0 ,到了分类讨论的时机,分 类标准是零) 当 a ≤ 0时, f '( x ) < 0, f ( x )在(-∞, +∞) 单调递减; 当 a > 0时,当x 变化时, f '( x ), f ( x ) 的变化如下表: x (-∞, - 2 ) 2 2 2 , ) a a 2 a ( 2 a , +∞) f '( x ) + 0 — + f ( x ) 极大值 极小值 此时, f ( x )在(-∞, - 2 2 6 a 2 2 , ) 单调递减; a a (II )由 f '(1) = 3a -12 = -6, 得a = 2. 由(I )知, f ( x )在(-1, 2) 单调递减 ,在( 2 ,3)单调递增。 【易错点】搞不清分类讨论的时机,分类讨论不彻底 【思维点拨】分类讨论的难度是两个, 1)分类讨论的时机,也就是何时分类讨论,先按自然的思路推理, 由于参数的存在,到了不能一概而论的时候,自然地进入分类讨论阶段;(2)分类讨论的标准,要做到不 重复一遗漏。还要注意一点的是,最后注意将结果进行合理的整合。 题型二 已知单调性求参数取值范围问题 例 1 已知函数 f ( x) = 1 3 x 3 + x 2 + ax - 5 , 若函数在[1,+∞) 上是单调增函数,求 a 的取值范围

高考数学导数题型归纳

导数题型归纳 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上, ()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- (1) ()y f x =在区间[]0,3上为“凸函数”, 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < 解法二:分离变量法: ∵ 当0x =时, 2 ()330g x x mx ∴=--=-<恒成立, 当03x <≤时, 2 ()30g x x mx =--<恒成立 等价于233 x m x x x ->=-的最大值(03x <≤)恒成立, 而3 ()h x x x =-(03x <≤)是增函数,则max ()(3)2h x h == (2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2 ()30g x x mx =--< 恒成立 解法三:变更主元法 再等价于2 ()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题) 2 2 (2)0230 11(2)0230 F x x x F x x ?->--+>?????-<-+>??? 例2),10(32 R b a b x a ∈<<+- ],2不等式()f x a '≤恒成立,求a 的取值范围.

高考数学解题技巧大揭秘专题函数导数不等式的综合问题

专题五 函数、导数、不等式的综合问题 1.已知函数f (x )=ln x +k e x (k 为常数,e = 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. (1)求k 的值; (2)求f (x )的单调区间; (3)设g (x )=xf ′(x ),其中f ′(x )为f (x )的导函数,证明:对任意x >0,g (x )<1+e -2 . 解 (1)由f (x )= ln x +k e x , 得f ′(x )=1-k x -xln x xe x ,x ∈(0,+∞), 由于曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. 所以f ′(1)=0,因此k =1. (2)由(1)得f ′(x )= 1 xe x (1-x -xln x ),x ∈(0,+∞), 令h(x )=1-x -xln x ,x ∈(0,+∞), 当x ∈(0,1)时,h(x )>0;当x ∈(1,+∞)时,h(x )<0. 又e x >0,所以x ∈(0,1)时,f ′(x )>0; x ∈(1,+∞)时,f ′(x )<0. 因此f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞). (3)因为g(x )=xf ′(x ), 所以g(x )=1 e x (1-x -xln x ),x ∈(0,+∞), 由(2)得,h(x )=1-x -xln x , 求导得h′(x )=-ln x -2=-(ln x -ln e -2 ). 所以当x ∈(0,e -2 )时,h′(x )>0,函数h(x )单调递增; 当x ∈(e -2 ,+∞)时,h′(x )<0,函数h(x )单调递减. 所以当x ∈(0,+∞)时,h(x )≤h(e -2 )=1+e -2 . 又当x ∈(0,+∞)时,0<1 e x <1, 所以当x ∈(0,+∞)时,1e x h(x )<1+e -2,即g(x )<1+e -2 . 综上所述结论成立.

高考数学导数题型归纳(_好)

导数题型归纳 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数, 4323()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332x mx f x x '=-- 2 ()3g x x mx ∴=-- (1) ()y f x =Q 在区间[]0,3上为“凸函数”, 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < (0)030 2(3)09330g m g m <-? ?<--

高考数学专题导数题的解题技巧

第十讲 导数题的解题技巧 【命题趋向】导数命题趋势: 综观2007年全国各套高考数学试题,我们发现对导数的考查有以下一些知识类型与特点: (1)多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题. (2)求极值, 函数单调性,应用题,与三角函数或向量结合. 分值在12---17分之间,一般为1个选择题或1个填空题,1个解答题. 【考点透视】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. 3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1.(2007年北京卷)()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力. [解答过程] ()2 2 ()2,(1)12 3.f x x f ''=+∴-=-+=Q 故填3. 例2. ( 2006年湖南卷)设函数()1 x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P,则实 数a 的取值范围是 ( ) A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) [考查目的]本题主要考查函数的导数和集合等基础知识的应用能力.

高考数学导数题型归纳(文科)-

文科导数题型归纳 高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); (请同学们参看2010省统测2) 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常 数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- 2()3g x x mx ∴=-- (1) ()y f x =在区间[]0,3上为“凸函数” , 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < (0)030 2(3)09330 g m g m <-? ?<--

导数高考常见题型

导数的应用常见题型 一、常用不等式与常见函数图像 1、1+≥x e x x x ≤+)1ln( 1-ln 1-1x x x ≤≤ 2、常见函数图像 二、选择题中的函数图像问题 (一)新型定义问题 对与实数,a b ,定义运算“*”:a *b=22,,a ab a b b ab a b ì-??í?->?,设()(21)*(1)f x x x =--且关于x 的方程()()f x m m R =?恰有三个互不相等的实数根123,,x x x ,则123x x x 的取值范围为 (二)利用导数确定函数图像 ①已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围为( ) A 、(2,)+? B 、(,2)-? C 、(1,)+? D 、(,1)-? ②设函数()f x =(21)x e x ax a --+,其中a 1,若存在唯一的整数0x ,使得0()f x 0,则a 的取值范围是( ) (A)[-32e ,1) (B)[-32e ,34) (C)[32e ,34) (D)[32e ,1) 三、导数与单调性

实质:导数的正负决定了原函数的单调性 处理思路:①求导,解不等式[0)('0)('<>x f x f 或] ②求解0)('=x f ,分段列表 ③根据)('x f y =的图像确定 (一)分段列表 ①已知函数()f x =2x x e e x --- (Ⅰ)讨论()f x 的单调性; (Ⅱ)设()()()24g x f x bf x =-,当0x >时,()0g x >,求b 的最大值; ②已知函数x x xe e x x f -+-=2)2()(,讨论函数的单调性 ③设函数mx x e x f mx -+=2)( (Ⅰ)证明:)(x f 在(-∞,0)单调递减,在(0,+∞+)单调递增; (Ⅱ)若对于任意]1,0[,21∈x x ,都有1)()(21-≤-e x f x f ,求m 的取值范围 (二)根据导函数图像确定 ①已知函数x x a ax x f ln )1(2 1)(2+-+-=,试讨论函数的单调性 ②已知函数a a ax x x a x x f +--++-=2222ln )(2)(,其中0>a .设)(x g 是)(x f 的导函数,讨论)(x g 的单调性

高中数学高考导数题型分析及解题方法(下载)[1]

导数题型分析及解题方法 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 二、热点题型分析 题型一:利用导数研究函数的极值、最值。 1. 32()32f x x x =-+在区间[]1,1-上的最大值是 2 2.已知函数2) ()(2=-==x c x x x f y 在处有极大值,则常数c = 6 ; 3.函数331x x y -+=有极小值 -1 ,极大值 3 题型二:利用导数几何意义求切线方程 1.曲线34y x x =-在点()1,3--处的切线方程是 2y x =- 2.若曲线x x x f -=4)(在P 点处的切线平行于直线03=-y x ,则P 点的坐标为 (1,0) 3.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 430x y --= 4.求下列直线的方程: (1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2x y =过点P(3,5)的切线; 解:(1) 123|y k 23 1)1,1(1x /2/23===∴+=∴++=-=-上,在曲线点-x x y x x y P 所以切线方程为02 11=+-+=-y x x y 即,

(2)显然点P (3,5)不在曲线上,所以可设切点为),(00y x A ,则200x y =①又函数的导数为x y 2/=, 所以过 ),(00y x A 点的切线的斜率为0/2|0x y k x x ===,又切线过),(00y x A 、P(3,5)点,所以有35 2000--=x y x ②,由①②联立方程组得,??????====255 110000y x y x 或,即切点为(1, 1)时,切线斜率为;2201==x k ;当切点为(5,25)时,切线斜率为10202==x k ;所以所求的切线有两条,方程分别为2510 12 )5(1025)1(21-=-=-=--=-x y x y x y x y 或即,或 题型三:利用导数研究函数的单调性,极值、最值 1.已知函数 ))1(,1()(,)(23f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1 (Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值; (Ⅲ)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围 解:(1)由 .23)(,)(223b ax x x f c bx ax x x f ++='+++=求导数得 过))1(,1()(f P x f y 上点=的切线方程为: ).1)(23()1(),1)(1()1(-++=+++--'=-x b a c b a y x f f y 即 而过.13)]1(,1[)(+==x y f P x f y 的切线方程为上 ①

高考导数题的解题技巧绝版

高考导数题的解题技巧 绝版 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

导数题的解题技巧 导数命题趋势: (1)多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题. (2)求极值,证明不等式, 函数单调性,应用题,与三角函数或向量结合. 【考点透视】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. 3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1.(2007年北京卷)()f x '是31 ()213 f x x x =++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力. [解答过程] ()2 2()2,(1)12 3.f x x f ''=+∴-=-+= 故填3. 例2. ( 2006年湖南卷)设函数()1 x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若 M P,则实数a 的取值范围是 ( )

A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) [考查目的]本题主要考查函数的导数和集合等基础知识的应用能力. [解答过程]由0,,1;, 1. 1 x a x a a x x -<∴<<<<-当a>1时当a<1时 综上可得M P 时, 1.a ∴> 考点2 曲线的切线 (1)关于曲线在某一点的切线 求曲线y=f(x)在某一点P (x,y )的切线,即求出函数y=f(x)在P 点的导数就是曲线在该点的切线的斜率. (2)关于两曲线的公切线 若一直线同时与两曲线相切,则称该直线为两曲线的公切线. 典型例题 例3.(2007年湖南文)已知函数3211 ()32 f x x ax bx =++在区间[11)-,,(13],内各 有一个极值点. (I )求24a b -的最大值; (II )当248a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l 在点A 处穿过函数()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点 A 时,从l 的一侧进入另一侧),求函数()f x 的表达式. 思路启迪:用求导来求得切线斜率. 解答过程:(I )因为函数3211 ()32 f x x ax bx =++在区间[11)-,,(13],内分别有一 个极值点,所以2()f x x ax b '=++0=在[11)-,,(13],内分别有一个实根, 设两实根为12x x ,(12x x <),则2214x x a b -=-,且2104x x <-≤.于是 2044a b <-,20416a b <-≤,且当11x =-, 23x =,即2a =-,3b =-时等号成立.故24a b -的最大值是16.

(完整word版)高考导数题型归纳

高考压轴题:导数题型及解题方法 (自己总结供参考) 一.切线问题 题型1 求曲线)(x f y =在0x x =处的切线方程。 方法:)(0x f '为在0x x =处的切线的斜率。 题型2 过点),(b a 的直线与曲线)(x f y =的相切问题。 方法:设曲线)(x f y =的切点))(,(00x f x ,由b x f x f a x -='-)()()(000求出0x ,进而解决相关问题。 注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。 例 已知函数f (x )=x 3﹣3x . (1)求曲线y=f (x )在点x=2处的切线方程;(答案:0169=--y x ) (2)若过点A )2)(,1(-≠m m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围、 (提示:设曲线)(x f y =上的切点()(,00x f x );建立)(,00x f x 的等式关系。将问题转化为关于m x ,0的方程有三个不同实数根问题。(答案:m 的范围是()2,3--) 练习 1. 已知曲线x x y 33 -= (1)求过点(1,-3)与曲线x x y 33-=相切的直线方程。答案:(03=+y x 或027415=--y x ) (2)证明:过点(-2,5)与曲线x x y 33-=相切的直线有三条。 2.若直线0122=--+e y x e 与曲线x ae y -=1相切,求a 的值. (答案:1) 题型3 求两个曲线)(x f y =、)(x g y =的公切线。 方法:设曲线)(x f y =、)(x g y =的切点分别为()(,11x f x )。()(,22x f x );

(word完整版)高考导数解答题中常见的放缩大法

(高手必备)高考导数大题中最常用的放缩大法 相信不少读者在做高考导数解答题时都有这样的感悟,将复杂的函数求导,再对导函数求导,再求导,然后就没有然后了......如果懂得了最常见的放缩,如:人教版课本中常用的结论 ⑴sin ,(0,)x x x π<∈,变形即为 sin 1x x <,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+⑶ln(1)x x >+⑷ln ,0x x x e x <<>. 将这些不等式简单变形如下: ex x ex e x e x x x x x 1ln ,,1,1ln 11-≥≥+≥-≤≤-那么很多问题将迎刃而解。 例析:(2018年广州一模)x e x x f x x ax x f 2)(,0,1ln )(?≤>++=若对任意的设恒成立,求a 的取值范围。 放缩法:由可得:1+≥x e x 2)1(ln 1ln 2)1(ln )1(ln 1ln ln 22=+-++≥+-=+-=+-+x x x x x x e x x xe x x e x x x x 高考中最常见的放缩法可总结如下,供大家参考。 第一组:对数放缩 (放缩成一次函数)ln 1x x ≤-,ln x x <,()ln 1x x +≤ (放缩成双撇函数)()11ln 12x x x x ??<-> ???,()11ln 012x x x x ??>-<< ??? , ) ln 1x x <>,)ln 01x x ><<, (放缩成二次函数)2ln x x x ≤-,()()21ln 1102 x x x x +≤--<<,()()21ln 102 x x x x +≥-> (放缩成类反比例函数)1ln 1x x ≥-,()()21ln 11x x x x ->>+,()()21ln 011x x x x -<<<+, ()ln 11x x x +≥+,()()2ln 101x x x x +>>+,()()2ln 101x x x x +<<+ 第二组:指数放缩

高中数学导数题型总结

导数 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值围。 例6. 设函数3 2 ()2338f x x ax bx c =+++在1x =及2x =时取得极值。 (1)求a 、b 的值; (2)若对于任意的[03]x ∈, ,都有2 ()f x c <成立,求c 的取值围。 点评:本题考查利用导数求函数的极值。求可导函数()x f 的极值步骤:①求导数()x f '; ②求()0'=x f 的根;③将()0'=x f 的根在数轴上标出,得出单调区间,由()x f '在各区间上取值的正负可确定并求出函数()x f 的极值。

例7. 已知a 为实数,()() ()a x x x f --=42 。求导数()x f ';(2)若()01'=-f ,求() x f 在区间[]2,2-上的最大值和最小值。 解析:(1)()a x ax x x f 442 3 +--=,∴ ()423'2 --=ax x x f 。 (2)()04231'=-+=-a f ,2 1= ∴a 。()()()14343'2 +-=--=∴x x x x x f 令()0'=x f ,即()()0143=+-x x ,解得1-=x 或3 4 =x , 则()x f 和()x f '在区间[] 2,2- ()2 91= -f ,275034-=??? ??f 。所以,()x f 在区间[]2,2-上的最大值为 275034-=?? ? ??f ,最 小值为()2 9 1= -f 。 答案:(1)()423'2 --=ax x x f ;(2)最大值为275034- =?? ? ??f ,最小值为()2 91=-f 。 点评:本题考查可导函数最值的求法。求可导函数()x f 在区间[]b a ,上的最值,要先求出函数()x f 在区间()b a ,上的极值,然后与()a f 和()b f 进行比较,从而得出函数的最大最小值。 考点七:导数的综合性问题。 例8. 设函数3 ()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线 670x y --=垂直,导函数'()f x 的最小值为12-。(1)求a ,b ,c 的值; (2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。

高考导数题型大全及答案.doc

第三讲导数的应用 研热点(聚焦突破)类型一利用导数研究切线问题 导数的几何意义 (1)函数y=f(x)在x=x 0处的导数f′(x )就是曲线y=f(x)在点(x ,f(x ))处的切线的斜率,即k=f′(x ); (2)曲线y=f(x)在点(x 0,f(x ))处的切线方程为y-f(x )=f′(x )(x-x ). [例1] (2012年高考安徽卷改编)设函数f(x)=a e x+ 1 aex+ b(a>0).在点(2,f(2))处的切线方程为y= 3 2 x,求a,b的值.[解析]∵f′(x)= a e x- 1 aex, ∴f′(2)=a e2- 1 ae2= 3 2, 解得 a e2=2或a e2=- 1 2(舍去), 所以a=2 e2,代入原函数可得2+1 2+ b=3, 即b= 1 2, 故 a= 2 e2, b= 1 2. 跟踪训练 已知函数f(x)=x3-x. (1)求曲线y=f(x)的过点(1,0)的切线方程; (2)若过x轴上的点(a,0)可以作曲线y=f(x)的三条切线,求a的取值范围. 解析:(1)由题意得f′(x)=3x2-1.曲线y=f(x)在点M(t,f(t))处的切线方程为y-f(t)=f′(t)(x-t),即y=(3t2-1)·x-2t3,将点(1,0)代入切线方程得2t3-3t2+1=0,解得t=1或-,代入y=(3t2-1)x-2t3得曲线y=f(x)的过点(1,0)的切线方程为y=2x-2或y=-x+. (2)由(1)知若过点(a,0)可作曲线y=f(x)的三条切线,则方程2t3-3at2+a=0有三个相异的实根,记g(t)=2t3-3at2+a. 则g′(t)=6t2-6at=6t(t-a). 当a>0时,函数g(t)的极大值是g(0)=a,极小值是g(a)=-a3+a,要使方程g(t)=0有三个相异的实数根,需使a>0且-a3+a<0,即a>0且a2-1>0,即a>1; 当a=0时,函数g(t)单调递增,方程g(t)=0不可能有三个相异的实数根; 当a<0时,函数g(t)的极大值是g(a)=-a3+a,极小值是g(0)=a,要使方程g(t)=0有三个相异的实数根,需使a<0且-a3+a>0,即a<0且a2-1>0,即a<-1. 综上所述,a的取值范围是(-∞,-1)∪(1,+∞). 类型二利用导数研究函数的单调性 函数的单调性与导数的关系 在区间(a,b)内,如果f′(x)>0,那么函数f(x)在区间(a,b)上单调递增;如果f′(x)<0,那么函数f(x)在区间(a,b)上单调递减. [例2] (2012年高考山东卷改编)已知函数f(x)=(k为常数,e=2.718 28…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x 轴平行.

2019《导数》题型全归纳

2019届高三理科数学《导数》题型全归纳 学校:___________姓名:___________班级:___________ 一、导数概念 29.函数,若满足,则__________. 二、导数计算(初等函数的导数、运算法则、简单复合函数求导) 1.下列式子不正确的是( ) A. B. C. D. 2.函数的导数为() A. B. C. D. 3.已知函数,则() A. B. C. D. 33.已知函数,为的导函数,则的值为______. 34.已知,则__________. 三、导数几何意义(有关切线方程) 31.若曲线在点处的切线方程为_________. 30.若曲线在点处的切线与曲线相切,则的值是_________. 32.已知,过点作函数图像的切线,则切线方程为__________. 4.已知曲线f(x)=lnx+在点(1,f(1))处的切线的倾斜角为,则a的值为()A. 1 B.﹣4 C.﹣ D.﹣1 1

5.若曲线y=在点P处的切线斜率为﹣4,则点P的坐标是() A.(,2) B.(,2)或(﹣,﹣2) C.(﹣,﹣2) D.(,﹣2) 6.若直线与曲线相切于点,则( ) A. 4 B. 3 C. 2 D. 1 7.如果曲线在点处的切线垂直于直线,那么点的坐标为()A. B. C. D. 8.直线分别与曲线交于,则的最小值为() A. 3 B. 2 C. D. 四、导数应用 (一)导数应用之求函数单调区间问题 9.函数f(x)=x-lnx的单调递减区间为( ) A. (0,1) B. (0,+∞) C. (1,+∞) D. (-∞,0)∪(1,+∞) 10.函数f(x)=2x2-ln x的单调递减区间是( ) A. B.和 C. D.和 11.的单调增区间是 A. B. C. D. 12.函数在区间上( ) A.是减函数 B.是增函数 C.有极小值 D.有极大值 13.已知函数在区间[1,2]上单调递增,则a的取值范围是

高中数学高考导数题型分析及解题方法(下载)

导数题型分析及解题方法 一、考试容 导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 二、热点题型分析 题型一:利用导数研究函数的极值、最值。 1. 32 ()32f x x x =-+在区间[]1,1-上的最大值是 2 2.已知函数2)()(2 =-==x c x x x f y 在处有极大值,则常数c = 6 ; 3.函数3 31x x y -+=有极小值 -1 ,极大值 3 题型二:利用导数几何意义求切线方程 1.曲线3 4y x x =-在点 ()1,3--处的切线方程是 2y x =- 2.若曲线x x x f -=4 )(在P 点处的切线平行于直线03=-y x ,则P 点的坐标为 (1,0) 3.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 430x y --= 4.求下列直线的方程: (1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2 x y =过点P(3,5)的切线; 解:(1) 123|y k 23 1)1,1(1x /2/2 3===∴+=∴++=-=-上,在曲线点-x x y x x y P 所以切线方程为02 11=+-+=-y x x y 即, (2)显然点P (3,5)不在曲线上,所以可设切点为),(00y x A ,则2 00x y =①又函数的导数为x y 2/=, 所以过 ) ,(00y x A 点的切线的斜率为 /2|0x y k x x ===,又切线过),(00y x A 、P(3,5)点,所以有 3 5 2000--= x y x ②,由①②联立方程组得,??????====25 5 110 000y x y x 或,即切点为(1,1)时,切线斜率为 ; 2201==x k ;当切点为(5,25)时,切线斜率为10202==x k ;所以所求的切线有两条,方程分 别为2510 12 )5(1025)1(21-=-=-=--=-x y x y x y x y 或即, 或 题型三:利用导数研究函数的单调性,极值、最值 1.已知函数 ))1(,1()(,)(2 3f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1

导数常见题型与解题方法总结

导数题型总结 1、分离变量-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 2、变更主元-----已知谁的范围就把谁作为主元 3、根分布 4、判别式法-----结合图像分析 5、二次函数区间最值求法-----(1)对称轴(重视单调区间)与定义域的关系 (2)端点处和顶点是最值所在 一、基础题型:函数的单调区间、极值、最值;不等式恒成立 此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 第三种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元)。 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数, 4323()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332x mx f x x '=- - 2()3g x x mx ∴=-- (1) ()y f x =Q 在区间[]0,3上为“凸函数”, 则 2()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x <

高中数学函数与导数常考题型整理归纳

高中数学函数与导数常考题型整理归纳 题型一:利用导数研究函数的性质 利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围. 【例1】已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性; (2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a . 若a ≤0,则f′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈? ?? ??0,1a 时,f ′(x )>0; 当x ∈? ?? ??1a ,+∞时,f ′(x )<0, 所以f (x )在? ????0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. 综上,知当a ≤0时,f (x )在(0,+∞)上单调递增; 当a >0时,f (x )在? ????0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值; 当a >0时,f (x )在x =1a 处取得最大值,最大值为f ? ????1a =ln 1a +a ? ?? ??1-1a =-ln a +a -1. 因此f ? ?? ??1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0. 于是,当0<a <1时,g (a )<0; 当a >1时,g (a )>0. 因此,实数a 的取值范围是(0,1). 【类题通法】(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性. (2)由函数的性质求参数的取值范围,通常根据函数的性质得到参数的不等式,再解出参数的范围.若不等式是初等的一次、二次、指数或对数不等式,则可以直接解不等式得参数的取值范围;若不等式是一个不能直接解出的超越型不等式时,如求解ln a +a -1<0,则需要构造函数来解.

相关文档
最新文档