雷达回波识别与分析 ppt课件
雷达系统原理PPT课件

雷达系统原理
什么是雷达系统?
• 雷达是从天线发射称为微波的甚高频无线电波的导航设备。发射 的无线电波经过 目标(如其他船,浮标,小岛等)反射回来,并 通过相同的天线接受后转换为电 信号。再将这些电信号发送给显 示单元进行显示。雷达使在夜晚或大雾的情况下 发现视线以外的 目标成为可能,并可以使船避免一些潜在的危险。 由于天线发射 的同时在旋转,这样就使本船周边的情况便一目了然。 雷达发射 的微波信号被称为脉冲信号,发射和接收这些信号是交替进行的。 一次 360 度的旋转就有上千的脉冲信号被发射和接收。
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
关于 SART雷达应答器
• 根据 GMDSS(全球遇险与安全系统)要求,IMO/SOLAS 类型的 船必须配备 SART。当船遇险时,SART 可以自动发出信号,所以 其他船或飞机就可以确定 遇险船的位置。若本船配备了波段的雷 达,并且 8 英里内有船遇险,SART 可以 指引雷达回波到遇险船。 该信号包括了 12 扫频,并在 9.2 到 9.5GHz 的频段传输。 根据距 离的不同,SART 具有 2 种扫频时间,由慢(7.5μs)到快(0.4μs) 扫描或反 之亦然。当接收到该信号时,屏幕上出现一条总长为 0.64 海里被 12 个点平均的 线。最近的 SART 的光点指示遇险船 的位置。当本船接近 SART 1 海里以内时, 雷达上显示快速闪烁 的扫描信号,并有一根单薄的线连接 12 个光点。
弱反射目标
• 目标反射的回波强度不仅取决于与目标间的距离,目标的高度或 尺寸,还要取决 于目标的材料和特性。具有低发射或入射角的目 标,如 FRP(纤维增强复合材料) 船和木制船发射的都不好。所以, 必须注意 FRP 船,木船或沙,沙洲,泥礁等 物体都是弱反射目 标。 由于与海岸线的距离等,本船在雷达图像上看起来比实际的 海岸线要远,当船周 围有弱反射目标时,应更加谨慎。
雷达地物回波系统分析

雷达地物回波系统分析计算多普勒频率是求衰减落速率(Fading rate )最容易的方法。
为了在一个特定的多普勒频移范围内计算回波信号的幅度,务必将所有具有这些频移的信号相加。
这就需要熟悉散射面上的多普勒频移等值线(等值多普勒频移)。
关于每一种特殊形状的几何体都务必建立起这种多普勒频移等值线。
下面用一个沿地球表面水平运动的简单例子来说明。
它是普通巡航飞行飞机的一个典型实例。
假定飞机沿y 方向飞行,z 代表垂直方向,高度(固定)z = h 。
因此有v =1v vh y x z y x 111R -+=式中,1x ,1y ,1z 为单位矢量。
因而 h y x vy R v r 222++==•R v式中,v r 是相对速度。
等相对速度曲线也就是等多普勒频移曲线。
该曲线的方程为0222222=+--h v v v y x rr 这是双曲线方程。
零相对速度的极限曲线是一条垂直于速度矢量的直线。
图12.7示出这样一组等多普勒频移曲线。
只要把雷达式(12.1)略加整理就可用来计算衰落回波的频谱。
这样,假如W r (f d )是频率f d 与f d +d f d 之间接收到的功率,则雷达方程变为⎰π=积分区R A A G P f f W r t t d d r 402d )4(1d )(σ ⎰⎪⎪⎭⎫ ⎝⎛-π=d r t t df A R A G P f d d )4(d 402σ (12.12)图12.7 在地球平面做水平运动时的多普勒频移等值线 图12.8 计算复数衰落的几何关系图 (引自Ulaby,Moore 与Fung [21]) 上式的积分区是频率f d 与f d +d f d 间被雷达照射到的区域。
在此积分式中,f d 与f d +d f d 之间的面积元用沿着等值多普勒频移曲线的坐标与垂直于等值多普勒频移曲线的坐标来表示。
对每一种特定情况都务必建立这两个坐标。
图12.8示出水平传播的几何形状。
雷达信号处理PPT电子教案第一讲绪论

通过统计检测算法或门限检测 算法,判断是否存在目标。
目标跟踪
对检测到的目标进行跟踪,包 括位置、速度和航迹等信息的 估计。
参数估计
对目标的距离、角度、速度等 参数进行估计,为后续的目标
识别和分类提供依据。
03
雷达信号处理中的关键技术
信号检测与处理
信号检测
在雷达系统中,信号检测是关键的一步,它涉及到对接收到的信号进行判断,确定是否 存在目标以及目标的位置、速度和方向等信息。常用的信号检测方法包括恒虚警率检测、
有重要意义。
风切变检测
雷达能够检测低空风切变等危险气 象条件,为航空安全提供预警。
气候变化研究
雷达观测数据可用于研究气候变化 规律,为环境保护和可持续发展提 供科学依据。
交通管制
01
02
03
空中交通管制
雷达信号处理技术用于监 测空中飞行器的位置、速 度等参数,保障航空安全 和空中交通秩序。
公路交通管理
雷达信号的特性
雷达信号的频率、波形、相位等特性决定了雷达 的探测精度和分辨率。
雷达信号的传播速度受到介质的影响,例如空气 中的传播速度略低于光速。
雷达信号在传播过程中会受到噪声、干扰和多径 效应等因素的影响。
雷达信号处理流程
雷达信号的预处理
包括滤波、放大、混频和模数 转换等步骤,目的是提取出反
射回来的有用信号。
雷达信号处理技术的发展对于提升国家安全和 国防实力具有重要意义,也是当前国内外研究 的热点和重点。
雷达信号处理的历史与发展
01
雷达信号处理技术经历了从模拟信号处理到数字信号处理 的演变。
02
随着计算机技术和数字信号处理理论的不断发展,雷达信 号处理技术也在不断进步和完术正朝着高速、高精度、高分辨率和智 能化方向发展,同时也在不断探索新的理论和方法,以应对更
第七章 雷达回波资料的应用(软件)

混合性降水
混合性降水回波常表现为层状 云降水回波和对流性降水回波的混 合,即在一张回波图上既有对流性 降水回波特征,又有层状云降水回 波待征。
在PPI上,在比较大的范围内,回 波边缘呈现支离破碎,没有明显的边界, 回波中夹杂着一个个结实的团块,好似 一团团棉花絮。 在RHI上,柱状回波高低起伏,高 峰部分常常达到雷阵雨的高度(雷雨的 回波顶通常较高,一般在6-8km以上、 盛夏时的回波顶高可达17-18km),而较 低的平坦部分一般只有连续性降水回波 所具有的高度。
较强的对流云(强雷暴、超级单 体等)除具有以上特征外,还具有 云顶上冲、弯窿、回波墙、悬挂回 波、旁瓣回波、三体散射等特征结 构。
图为强对流的回波RHI图。箭头A所示 为旁瓣回波,箭头B为一体散射回波,箭头 C为云砧,箭头D为穹窿(弱回波区)、箭头E 为悬挂回波、箭头F为回波云墙。
根据对流云强度回波的结构特 征,可分为单一单体、多单体和超 级单体三种。 基于高分辨雷达观测和数值模 拟的研究表明,这三种回波之间存 在着本质的差异。
由单块对流性降水云组成,其 水平尺度和垂直尺度一般为几公里 至几十公里的一个独立完整的气流 循环系统。 其回波表现为由一个主要的强 回波核及其周围与之相关的回波部 分构成的独V回波区域。
下图为单一单体典型回波RHI 图。图上均为一个完整的对流系统 形成的对流云,云体高大,中心强 度大。
二次雷达回波是指那些由 于雷达系统本身的异常或由于 雷达波束在雹暴中多次反射而 产生的相对来说极少出现的一 类回波。
五、雷达回波分析方法简介 雷达回波分析是用好雷达资料 的关键,也是制作短时和临近天气 预报的基础。 雷达回波分析方法大致可分为 形态学分析方法和定量分析方法两 种。
《雷达成像原理》课件

05
雷达成像技术发展与展望
雷达成像技术的发展历程
雷达成像技术的起源
20世纪40年代,雷达技术开始应用于军事 领域,随着技术的发展,人们开始探索雷达 在成像方面的应用。
雷达成像技术的初步发展
20世纪60年代,随着计算机技术和信号处理技术的 发展,雷达成像技术开始进入初步发展阶段,出现 了多种成像模式。
提取雷达图像中的边 缘信息,用于目标识
别和形状分析。
纹理分析
提取雷达图像中的纹 理特征,用于分类和 识别不同的物质或结
构。
04
雷达图像解译
雷达图像的解译方法
直接解译法
01
根据雷达图像的直接特征,如斑点、纹理、色彩等,对目标进
行识别和分类。
间接解译法
02
利用雷达图像的间接特征,如地形、地貌、阴影等,结合地理
03
雷达图像处理
雷达图像预处理
去噪
去除雷达图像中的噪声,提高图像质量。
标定
对雷达图像进行几何校正和辐射校正,以 消除误差。
配准
将多幅雷达图像进行对齐,确保后续处理 的一致性。
滤波
平滑雷达图像,减少随机噪声和斑点效应 。
雷达图像增强
01 对比度增强
提高雷达图像的对比度, 使其更易于观察和理解。
03 直方图均衡化
雷达成像技术的成熟
20世纪80年代以后,随着数字信号处理技 术的广泛应用,雷达成像技术逐渐成熟,分 辨率和成像质量得到显著提高。
雷达成像技术的未来展望
高分辨率成像技术
未来雷达成像技术将进一步提高分辨率,实现更精细的成像效果 ,为各种应用提供更准确的信息。
多模式成像技术
未来雷达成像技术将发展多种模式,包括透射、反射、合成孔径等 多种模式,以满足不同场景的需求。
《现代雷达技术》课件

模拟雷达阶段主要集中在20世纪50年代 ,该阶段的雷达系统采用模拟电路,功 能较为简单。
数字化雷达阶段开始于20世纪70年代, 该阶段的雷达系统开始采用数字信号处 理技术,提高了雷达的性能和精度。
接收机
接收机是雷达系统的另一重要 组成部分,负责接收和处理回
波信号。
接收机的性能指标包括灵敏度 、动态范围、抗干扰能力等, 直接影响雷达的检测精度和可
靠性。
常见的接收机类型包括超外差 式和直接变频式等,根据雷达 系统的需求选择合适的接收机 类型。
接收机的设计需考虑噪声抑制 、信号处理和稳定性等问题, 以确保接收机能够提供高质量 的回波信号。
《现代雷达技术》ppt课件
contents
目录
• 雷达技术概述 • 现代雷达技术发展历程 • 现代雷达系统组成与工作原理 • 现代雷达的主要技术特点 • 现代雷达技术的应用实例 • 现代雷达技术的挑战与未来发展
01
雷达技术概述
雷达的定义与原理
雷达定义
雷达波传播方式
雷达是一种利用无线电波探测目标的 电子设备。
信号处理与数据处理
数据处理负责对目标数据进行进一步的分析和 处理,包括目标检测、跟踪、识别和多目标处
理等。
随着信号处理和数据处理技术的发展,现代雷达系统 不断引入新的算法和技术,以提高雷达的性能和功能
。
信号处理是雷达系统的关键环节,负责对回波 信号进行滤波、放大、变频和检测等处理,提 取出目标信息。
标速度。
合成孔径雷达
利用高速运动平台,通过信号 处理技术形成大孔径天线,提
高分辨率。
雷达基本工作原理ppt课件

工作波长越短,天线水平波束宽度越窄,方位分辨率和测方位进 度越高
4 抗杂波干扰能力的关系
工作波长越短,雨雪海浪等对雷达波德反射越强,干扰越大
29
5.2 脉冲宽度对使用性能影响
1 对最大作用距离的影响
脉冲宽度越大,能量越大,作用距离越大
2 对最小作用距离的关系
固定距标圈 荧光屏边缘
10
1.4 雷达的测距与测向原理
1. 雷达测距原理 Δ t: 往返于天线与目标的时间, C: 电磁波在空间传播速度3×108m/s。
R
=
1 C
×Δ
t
2
2. 雷达测向原理 借助于定向天线 - 扫描.
11
2 雷达基本组成
微波传输线 发射脉冲
发射机
天线
回波 T/R
触发器
接收机
电源
测 (2)
无视线限制
测量目标参数 距离,方位,速度,航向...
导航 (1) 避碰
(2) 定位
7
雷达/ARPA, ECDIS, GPS/DGPS和自动舵构成的自动 船桥系统是未来主要的导航系统
8
1.3雷达考核内容
雷达结构及其工作原理 雷达影像失真的特点及其产生原因 影响雷达正常观测的诸要素 雷达测距/测方位 雷达定位与导航 雷达航标
28
5.1 工作波长对使用性能影响
1 对最大作用距离的影响
正常天气观测较小的物标时,3cm雷达的rmax要比10cm的大 雨雪天,则10cm雷达的rmax要比3cm雷达的大得多
2 对距离分辨率和测距精度的关系
工作波长越短,脉冲前沿越短,测距精度高;脉冲前沿越短,有 利于缩短脉冲宽度,提高距离分辨率
第八章雷达回波分析

第八章雷达产品实际应用个例分析8.1 1992年4月28日Oklahoma州中西部个例在下午和晚上,在Oklahoma的中部和北部出现了强风暴。
刚过17时30分(局地时间),在Dewey 县的最北端(Oklahoma市西北150km),一个风暴发展成为强风暴。
在风暴内部30000英尺的高度,最大的反射率因子超过50dBZ。
同时,在其入流区之上,存在一个较强的中层悬垂回波,说明有较大的冰雹存在。
基于这些雷达特征,于17时45分发布了Dewey 县将出现一次强雷暴过程的警报。
该警报于28分钟后得到证实,出现了2cm 直径的冰雹。
在接下来的2小时内,基于由WSR-88D观测的三维风暴结构,又发布了Dewey 县下游的风暴警报。
摘自文献1 图11图8-1 位于Comanche县中部的一个非龙卷的旋转风暴相对速度的4幅图显示。
时间为1992年4月28日20点19分。
强风暴的警报没有升级为龙卷警报,基于低层的弱旋转特征。
在风暴的中层,较强的旋转很明显。
当风暴继续向着东南方向的Lawton地区(Comanche县境内),WSR-88D探测到位于风暴中层的弱的旋转。
19点55分,又发布强风暴警报。
一个飞行员于大约20点10分在Lawton 地区的北部观测到漏斗云。
然而,风暴中层相对速度数据(图8-1)继续表明一个宽阔的旋转特征只局限于风暴的中层。
因此,预报员决定不把强风暴警报升级为龙卷警报,主要基于WSR-88D的三维速度和反射率因子数据。
20点20分,高尔夫球大小的冰雹降落在Lawton 地区,证实了强风暴的警报,其提前时间(lead time)为25分钟。
从以上可知,WSR-88D不仅在发布警告方面有较好的准确率,而且在决定不发布警报或不升级警报方面也有相当的技巧。
预报员经常面对是否应发布或升级一个强天气警报。
位于Dodge城的区域预报中心有几次近乎的强天气事件,基于WSR-88D数据,没有发布强天气警报。