光催化分解水制氢
光催化分解水制氢

Mo6+-doped TiO2
Y. Yang ,et al J. Photochem Photobio A: Chem. 163 (2004) 517–522
Schottky Barrier from noble metal & n-semiconductor
• Low cost, ease of availability
Photocatalysis goes to TiO2 1 n-type TiO2 electrode 2 platinum black counter electrode
era!!3 ionically conducting separator 4 gas buret
0.41 ? 0.31
2.42 1.70 1.56 2.4 2.82 3.68 3.35
17 ? 30
5.4 10.0 10.2 10.4 9.2 8.9 9.0
eV=1240/λ
光波波长对应的能量
200n2m022年3月226日.2星eV期二
600nm
2.067eV
400nm 800nm
3.1eV 1.55eV
2.2eV), CdS, CdSe, WO3, Cu2O,
Nanjing University of Aeronautics and Astronautics Institute of Nanoscience
主要的优化方法
掺杂(调控能带)(C,N,过渡金属或稀土掺 杂等)
包覆(降低超电势,增加稳定性,提高电 子空穴分离效率,提供析氢活性中心) (贵金属等)
基于MOFs材料光催化分解水制氢的研究进展

受新冠肺炎疫情等影响,全球传统化石能源供应日趋紧张,绿色清洁新型能源的转型发展也越来越紧迫,氢能作为目前最具潜力的清洁能源,在交通、储能、建筑和分布式发电等领域都有着广阔的应用前景,是助力中国“双碳”目标和全球能源生产消费革命、构建低碳高效能源体系的重要抓手。
太阳能是全球分布最广泛均匀的清洁能源,利用太阳能分解水制氢可从源头阻断碳排放,这种绿色环保的技术将会在未来的氢能生产中占据主力位置,是解决能源危机和改善环境的最佳选择之一。
太阳能分解水制氢技术目前研究较多的主要有光催化法制氢、光热分解法制氢和光电化学法制氢,其中,光催化法制氢体系简单、催化剂来源广泛、成本较低,可有效捕获、转换和储存太阳能,被认为是现阶段最具应用发展前景的太阳能制氢技术之一。
光催化剂是光催化分解水制氢体系的核心,通过太阳光激发光催化剂价带(VB)上的电子并跃迁至导带(CB),产生光生电子及空穴,光生电子空穴对分离并迅速转移至光催化剂表面,电子与H+发生还原反应生成H2,空穴则氧化水产生O2。
然而,传统的光催化剂中的电子可能会与空穴发生表面或体相复合,导致光催化反应效率降低,且存在太阳光利用率不高等问题。
若要保证光生电子与空穴的分离效率以及光利用率,使反应尽可能地向生成H2的方向进行,寻找新型高效的光催化剂材料显得尤为重要。
其中,设计制备金属有机框架(MOFs)光催化材料催化分解水制氢是近年热门研究方向之一。
MOFs主要代表类型有:以Zn、Co等过渡金属与咪唑类有机物配位而成的ZIF系列、以Fe、Cr等过渡金属或镧系金属与芳香羧酸类配体配位而成的MIL系列,以及主要以Zr金属与对苯二甲酸配位而成的UiO系列等。
这些MOFs材料在光催化分解水制氢的相关应用研究正逐年上升,但单一MOFs光催化材料仍存在光生电子空穴对分离率较低、稳定性较差等问题,在一定程度上降低了其制氢效率的进一步提升。
美国能源科学部认为太阳能转换氢能效率达到10%以上,太阳能光催化分解水制氢才能实现初步工业化,而MOFs光催化活性离该目标还有一定差距。
光催化分解水制氢制氧

--实验介绍
实验目的
பைடு நூலகம்
了解光催化的作用机理
了解光催化分解水的机理
通过光催化装置制备氢气
通过光催化装置制备氧气
光催化示意图
光催化分解水示意图
实验内容
认识光催化剂及其分类;
认识光催化装置结构、各部分功能
光催化分解水产氢、产氧
产物氢气、氧气的定性和定量检测
操作步骤
光催化分解水制氢(制氧)的装置示意图
光催化分解水产氢(或产氧)与催化剂加 入量、反应时间等的变化曲线;
(1) 连接反应池、玻璃管路; (2) 检查装置气密性; (3) 装填溶液、催化剂; (4) 制备氢气(或氧气) (5) 气体的收集;
(6) 定性(或定量)检测产生的气体;
(7) 检测结束,停止反应,回收催化剂,并 进行反应池的清洗
实验报告要求
催化剂的种类和表征
光催化分解水制氢(制氧)的原理
光催化光解水制氢百科_解释说明

光催化光解水制氢百科解释说明引言部分的内容:1.1 概述:光催化光解水制氢是一种利用太阳能将水分子分解成氢气和氧气的现代科学技术。
通过这种方法,不仅可以生产出清洁的燃料氢气,还能同时减少对环境的影响。
光催化光解水制氢被认为是一种可持续发展和环境友好的能源解决方案。
1.2 文章结构:本文主要包含五个部分:引言、光催化光解水制氢的原理与机制、光催化材料在光解水制氢中的应用、光解水制氢过程中面临的挑战和展望以及结论。
文章将从介绍概念开始,然后深入探讨光催化反应的定义与特点、光解水制氢的原理与相关反应以及选择与设计适合于该过程的光催化剂等内容。
随后,会介绍半导体材料在该领域中的应用、复合材料与异质结构设计以及催化剂修饰及载流子传输调控技术等方面。
接下来,我们将重点讨论动力学限制和提高效率的策略、资源与环境可持续性考虑以及商业化应用前景与未来发展方向。
最后,我们将总结本论文的主要研究成果,并展望未来在这一领域的研究方向。
1.3 目的:本文的目的是全面阐述光催化光解水制氢的原理、机制和应用,并分析该过程中所面临的挑战和可能的解决办法。
通过对相关文献和研究成果进行综合整理和分析,希望为读者提供一个深入了解光催化光解水制氢以及其潜在应用价值和发展前景的全面指南。
此外,本文还将探讨存在于该领域中尚未解决问题,并提出未来进一步研究该技术时可能关注的重点方向。
根据以上内容撰写了文章"1. 引言"部分,请您查看并反馈满意度。
2. 光催化光解水制氢的原理与机制2.1 光催化反应的定义与特点光催化反应是指利用光能激发物质中的电子和空穴,在固体表面或溶液中进行化学反应的过程。
相比传统的热催化反应,光催化反应具有以下几个显著特点:首先,光能可以高效提供活性能量,使得部分惰性物质也能够发生反应;其次,光催化反应在温和条件下进行,减少了对环境的热污染;此外,光催化材料具有可再生性和可调控性等优点,在节约资源和环境可持续性方面具有潜力。
光催化分解水制氢ppt课件

纳米材料
Si, GaAs, GaP, CdS,ZnO(unstable) AMWO6(A=Rb,Cs;M=Nb,Ta) SrTiO3, BaTi4O9 K4Nb6O17, K2La2Ti3O10,MTaO3, ZrO2, Ta2O5, TiO2(3.2eV), SnO2(3.6eV), Fe2O3(2.1-
Energy diagram of a PEC cell for the photoelectrolysis of water. The cell is based on
an n-type semiconducting photo-anode.
Nanjing University of Aeronautics and Astronautics Institute of Nanoscience
In a•dTdrainstitiioonnm,etal the high rate of electron–
hole• Nobrleemceotaml bination on resul• Ntosn-metalin a low photo• Sceamti-acolnydsucitosr combination
Doping atoms Ru,Eu,
2021年4月5日星期一
氢的主要来源
电解水制氢(商业化电解水的效率~85%) 热化学法分解水制氢 石油产品催化重整制氢 生物质原料催化重整制氢 生物制氢 硫化氢裂解制氢 光催化分解水制氢
Nanjing University of Aeronautics and Astronautics Institute of Nanoscience
专题 3--光催化分解水制氢研究--20150424

• 将天然气火焰在裂解炉加热到 1400℃,
• 关闭裂解炉使天然气发生裂解反应, 产生氢气和碳黑。
五、制氢技术简介 1、化石燃料制氢
(3) 煤汽化:
C(s)+H2O(g)→ CO(g)+H2(g)
(4) 重油部分氧化
CnHm+O2 → CO(g)+H2(g) CnHm+H2O→ CO(g)+H2(g) H2O+CO → CO2(g)+H2(g)
(5) 其他因素
5、影响光催化效率的主要因素
1、溶液pH值:
2、光强: 功率、距离
3、反应物浓度:Langmuir-Hinshelwood关系式
4、温度
5、无机离子
七、光催化材料研究进展
1、光催化剂概述 常见半导体材料的能带结构
SiC
Evs.SHE(pH= )/eV
ZnS
-1.0
ZrO2
SrTiO3 TiO2 Ta2O5
机会,提高光催化活性。
七、光催化材料研究进展 2、光催化材料种类
(2)、层状铌酸盐、钽酸盐、钛酸盐等:
层状氧化物与以TiO2为代表的体相型光催化剂相比,突出的特点是能利用 层状空间作为合适的反应位点抑制逆反应,提高反应效率。
A、层状钛酸盐:
• 层状含钛复合氧化物是以TiO6八面体为主要结构单元的物质。 • K2La2Ti3O10和K2Ti4O9是层状氧化物光催化剂中较具有代表性的两种。 • K2La2Ti3O10的禁带为3.4-3.5 eV,其层状钙钛矿结构为TiO6八面体通过
设计在可见区内有强吸收半导体材料是高效利用太阳能的关键
3、半导体光催化制氢热力学原理
光解水制氢原理范文

光解水制氢原理范文在光解水制氢过程中,最核心的部分是光催化剂。
光催化剂是一种能够吸收太阳光并将其转化为化学能的物质。
目前常用的光催化剂是二氧化钛(TiO2),其能够吸收紫外光并通过光生电子-空穴对来促进水的分解。
光催化剂的工作原理是通过吸收光子的能量,使得其价带中的电子被激发至导带,形成光生电子-空穴对。
其中的电子可以与水分子中的氢原子结合,产生氢气。
这个过程称为还原反应。
而价带中形成的空穴则经过氧化反应,与水分子中的氧原子结合,产生氧气。
在光解水制氢过程中,光催化剂的性质起着决定性的作用。
首先,光催化剂要有较宽的能带间隙,以便能够吸收可见光和紫外光。
其次,光催化剂应该具备良好的电子传导性和光生电子-空穴对的分离能力,以提高光电转化效率。
此外,光催化剂的稳定性和可再生性也很重要。
除了光催化剂,光解水制氢还需要合适的反应体系。
一般来说,反应体系包括催化剂、电解质和电极。
催化剂的作用是加速反应速率,电解质用于提供离子,而电极则用于收集产生的氢气和氧气。
当前,尽管光催化剂在水分解方面取得了很大进展,但其效率仍然有限。
光电转化效率低主要是由于光催化剂的能带结构和表面缺陷等因素影响。
为了提高效率,研究人员在材料的调控方面进行了很多尝试,如掺杂、纳米结构设计等。
光解水制氢作为一种可持续的能源生产方法,具有广泛的应用前景。
它可以用于制备氢气燃料,驱动燃料电池发电,产生清洁能源。
此外,光解水制氢还可以与其他可再生能源相结合,如风能、地热能等,形成混合能源系统,进一步提高能源利用效率。
可见光催化分解水制氢

参考文献
1. Fujishima A, Honda K., Nature, 1972, 238, 37. 2. Kudo A., Sekizawa M., Chem Commun, 2000, 15, 1371. 3. Tsuji I., Kato H., Kobayashi H. et., J. AM. CHEM. SOC., 2004, 126, 13406. 4. Wang-Jae Chun, Ishikawa A. et., J. Phys. Chem. B, 2003, 107(8), 1798. 5. Kudo A., International Journal of Hydrogen Energy, 2006, 31, 197. 6. Ishikawa A., Takata T., et al., J. Phys. Chem. B, 2004, 108, 2637. 7. Lei Z., You W., et al., Chem Common, 2003, 17, 2142.
•大多数光解水光催化剂仅能吸收紫外线,而紫外线在太阳光中 只占3%左右,最大的太阳光强度在500nm附近。 •就光解水来说,关键在于提高光催化反应的活性及选择性, 并将其激发波长扩展到可见光区,提高对光能的利用率.
光催化剂的结构及工作原理
H2O H2 + 1/2O2 G0 = 238 kJ/mol(E = -Go/nF = -1.23 eV)
J. AM. CHEM. SOC., 2004, 126 (41), 13406.
例三
Diffuse reflection spectra of (AgIn)xZn2(1-x)S2 solid solutions
x:
(a) 0, (b) 0.17, (c) 0.22, (d) 0.29, (e) 0.33, (f) 0.40, (g) 0.5, (h) 1.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Energy band positions for various semiconductors at pH 14, the reduction and oxidation potentials of water vary with -59 mV per pH unit.
光催化分解水制氢
Nanjing University of Aeronautics and Astronautics Institute of Nanoscience
IV-VI PbS PbSe PbTe II-VI CdS CdSe CdTe ZnTe ZnSe ZnS ZnO WO3 TiO2 CuO2
Nanjing University of Aeronautics and Astronautics Institute of Nanoscience
纳米材料
Si, GaAs, GaP, CdS,ZnO(unstable) AMWO6(A=Rb,Cs;M=Nb,Ta) SrTiO3, BaTi4O9 K4Nb6O17, K2La2Ti3O10,MTaO3, ZrO2, Ta2O5, TiO2(3.2eV), SnO2(3.6eV), Fe2O3(2.1-
染料分子或者稀土配合物敏化。
加大电子和空穴的迁移率。金属氧化物的导带和价带分 别和金属的3d轨道、O的2p轨道相关。金属的3d轨道重 叠越多,电子的迁移率越高。O 2p轨道的重叠程度影响 空穴的迁移率。 尽量减少半导体纳米粒子的缺陷,减少电子/空穴对的再 结合位点。 Nanjing University of Aeronautics and Astronautics
0.41 ? 0.31
2.42 1.70 1.56 2.4 2.82 3.68 3.35
17 ? 30
5.4 10.0 10.2 10.4 9.2 8.9 9.0
eV=1240/λ
光波波长对应的能量
200n2m022年3月226日.2星eV期二
600nm
2.067eV
400nm 800nm
3.1eV 1.55eV
在400nm(~3.1eV)以下太阳光强度急剧下 降;
半导体纳米粒子的最佳能隙范围 (1.9~3.1eV)(400-650nm)
Nanjing University of Aeronautics and Astronautics Institute of Nanoscience
Intensity of sunlight versus wavelength for AM1.5 conditions.
2.2eV), CdS, CdSe, WO3, Cu2O,
Nanjing University of Aeronautics and Astronautics Institute of Nanoscience
主要的优化方法
掺杂(调控能带)(C,N,过渡金属或稀土掺 杂等)
包覆(降低超电势,增加稳定性,提高电 子空穴分离效率,提供析氢活性中心) (贵金属等)
Institute of Nanoscience
TiO2粒子中光生电子、空穴的衰减过程示意图
表面复合
-++
A-
hv
+
C
B
体相复合
A-
-
-++
TiO2 粒子
A
Nanjing University of Aeronautics and Astronautics Institute of Nanoscience
Nanjing University of Aeronautics and Astronautics Institute of Nanr reduction
H+/H2
O2/H2O
O2 Water
H2O oxidation
最佳能隙范围
半导体纳米粒子的能隙大于热力学分解电 压(1.23eV)+热动力学损失(~0.4eV)+ 超电势(0.3~0.4),约1.9eV,对应的波长 约为650nm;
-
导带
-
--
-
hv Eg
+
价带 + + ++
D D+
+-
D
TiO2纳米粒子催化性能改进方法
制备更细的纳米粒子,提高比表面积,减 少空穴迁移到表面的距离,减少电子空穴 对再结合的机会;
掺杂过渡金属阳离子(Fe, Cr); 掺杂C, N, S, P, F, Cl
Nanjing University of Aeronautics and Astronautics Institute of Nanoscience
Doping atoms Ru,Eu,
2022年3月22日星期二
氢的主要来源
电解水制氢(商业化电解水的效率~85%) 热化学法分解水制氢 石油产品催化重整制氢 生物质原料催化重整制氢 生物制氢 硫化氢裂解制氢 光催化分解水制氢
Nanjing University of Aeronautics and Astronautics Institute of Nanoscience
纳米粒子光催化分解水的要求
强吸收太阳光(主要可见光) 化学性质稳定 合适的能带适合水的氧化还原 在半导体中电荷能有效转移 氧化还原反应时具有低的超电势 低成本,高效率
Nanjing University of Aeronautics and Astronautics Institute of Nanoscience
Energy diagram of a PEC cell for the photoelectrolysis of water. The cell is based on
半导体光催化分解水热力学原理示意图
H2O H2 + 1/2O2 G0 = 238 kJ/mol(E = -Go/nF = -1.23 eV)
V/NHE
-1.0
Conduction band
e- e- e- e- e-
0.0
Band gap +1.0
+2.0
+3.0
h+ h+ h+ h+ h+
Valence band