板带轧机电动及液压压下联合控制系统(最新版)

合集下载

第五章 电液伺服系统

第五章 电液伺服系统
第五章 电液伺服系统
5.1 电液位置伺服系统 5.2 电液速度伺服系统 5.3 电液伺服系统在轧钢中的应用
5.1 电液位置伺服系统
系统组成原理图 系统工作原理与方框图 系统的传递函数 液压控制系统技术指标 系统精度分析 系统的校正
系统组成原理图
系统的工作原理(一)
电液伺服阀控缸位置控制系统,两个电 位器组成的电桥测量输入(指令电位器) 与输出(工作台位置)之间的位置偏差 信号(用电压表示)。若反馈信号电位 器的滑臂指示电位与指令电位器的滑臂 指示电位不等时,则生产偏差电压。
系统的传递函数(一)
根据双电位器阀控缸的位置控制的方框图,可 以写出系统的开环传递函数为:
Au ( s ) = Kv s s 2 2ξ sv s 2 2ξ h s ω + 1 ω 2 + ω + 1 ω 2 + ω + 1 sv h a sv h
液压控制系统的技术指标
一个具体的液压控制系统,除了要满足 一些常规的技术指标外,还有控制系统 特有的技术要求,主要表现在: 控制系统的稳定性 控制系统的响应特性 系统的控制精度(误差)
控制系统的稳定性
稳定是一个控制系统正常工作的必要条 件,是首要考虑的指标。稳定性是指系 统在偏离平衡状态后外作用消失,系统 恢复到新的或原来的平衡状态的能力。 判定系统的稳定性,可以用劳斯判据。 对三阶方程 a3 s 3 + a2 s 2 + a1s + a0 = 0 其稳定条 件是 a0 a3 < a1a2 。 另一种则是利用开环对数频率特性。
τ c = RC
速度控制系统的校正(二)
校正后系统的开环方框图为:
速度控制系统的校正(结束)

ACS800多传动在可逆轧机电动压下系统中的应用

ACS800多传动在可逆轧机电动压下系统中的应用
护 了电机 的绝缘 。A S 0 多传动 系 器均 由3 C 80 个逆变 模块 ( C 8 0 14 AS 0—0
统结构 见图l 。 3 1供 电单元 . 机 的控 制 , 由于它 省掉 了矢量 变换 0 1 — )并联 组成,每个逆变模 块 方式 的坐标变 换与 计算 以及 为解耦 50 3 (C 8 0 14 0 1 — )内部有三 块 而简化 异步 电动机 数学模 型 ,没有 AS0—0—503
在功能上分为3 个部分:辅助控制柜
( C )、进 线柜 ( C )、整流 装 AU IU 置。整流装置包括整流柜、回馈柜、
L+

反 桥

M l i r v 多传 动 由供 电单 元 、 u t D i e
传 动单元 、控制单 元组成 。A S 0 C 80 M l i r v 逆变器 内置 了d / t u t D i e u d 滤 波 器 。 由于输 出频 率是 多少 ,逆 变器
变 频器 ,控 制方式 采用 当今最 先进 控制技术 。
2设备选型 .
2 1 晶闸管整 流单元 (S ): . TU
A N 5/ 6 — 0 5 C 6 4 6 4 2 2 — 1
S- 10 V , U 0 N2 2 k A  ̄4 0 V, I ̄ x2 4 A cm = 4 9 c
( C DT )原理、AC 8 0 S0 t频器参 数配置 ,以及利用Dr e n o i d w软件对 实际信 号进行监控和调试 的方法 。实践证 明,AC 80 v Wi S 0
多传动系统功能强大、控制精度 高、响应速度快 ,具备 良 的性 能,维护调试方便 ,是理想的传 动控制系统。 好



轧机液压TCS-AGC控制与实践

轧机液压TCS-AGC控制与实践

轧机液压TCS-AGC控制与实践
李旺太
【期刊名称】《有色金属加工》
【年(卷),期】2011(040)001
【摘要】介绍轧机TCS系统中液压AGC的控制理论,对液压AGc系统中的液压厚度-压力闭环、液压厚度-辊缝闭环、压力AGC控制行系统分析和描述,对PI控制进行理论推理.对我单位CLECIM1700mm粗轧机液压厚度-压力控制环进行描述和分析,本文具有较强的针对性.
【总页数】5页(P58-62)
【作者】李旺太
【作者单位】中国铝业西北铝加工分公司,甘肃陇西748111
【正文语种】中文
【中图分类】TP271
【相关文献】
1.Smith预估控制在冷带轧机液压AGC前馈-反馈控制系统中的应用 [J], 王益群;孙孟辉;张伟;刘建;孙福
2.武钢3000 mm轧机液压自动厚度控制伺服系统的污染控制 [J], 彭熙伟;刘鹏
3.宽厚板轧机液压AGC系统的控制原理及其控制模式分析 [J], 栗昕
4.IMC-PID控制器在轧机液压自动位置控制系统中的应用 [J], 李若茜;凌智;李东海;王京
5.八辊五机架冷连轧机液压压下控制系统控制效能的提高 [J], 王晓晨;杨荃;彭鹏;刘天武;孙文权
因版权原因,仅展示原文概要,查看原文内容请购买。

轧钢机下压机构设计-正文

轧钢机下压机构设计-正文

1 引言轧机的压下装置是轧机的重要结构之一,用于调整辊缝,也称辊缝调整装置,其结构设计的好坏,直接关系着轧件的产量与质量。

压下装置按传动方式可分为手动压下、电动压下和液压压下,手动压下装置一般多用于不经常进行调节、轧件精度要求不严格、以及轧制速度要求不高的中、小型型钢、线材和小型热轧板带轧机上。

电动压下装置适用于板坯轧机、中厚板轧机等要求辊缝调整范围大、压下速度快的情况,主要由压下螺丝、螺母及其传动机构组成。

在中厚板轧机中,工作时要求轧辊快速、大行程、频繁的调整,这就要求压下装置采用惯性小的传动系统,以便频繁的启动、制动,且有较高的传动效率和工作可靠性。

这种快速电动压下装置轧机不能带钢压下,压下电机的功率一般是按空载压下考虑选用,所以常常由于操作失误、压下量过大等原因产生卡钢、“坐辊”或压下螺丝超限提升而发生压下螺丝无法退回的事故,这时上辊不能动,轧机无法正常工作,压下电动机无法提起压下螺丝,为了克服这种卡钢事故,必须增设一套专用的回松机构。

电动压下装置的主要缺点之一是运动部分的惯性大,因而在辊缝调节过程中反应慢、精度低,对现代化的高速度、高精度轧机已不适应,提高压下装置响应速度的主要途径是减少其惯性,而用液压控制可以收到这样的效果。

液压压下装置,就是取消了传统的电动压下机构,其辊缝的调节均由液压缸来完成。

在这一装置中,除液压缸以及与之配套的伺服阀和液压系统外,还包括检测仪表及运算控制系统。

全液压压下装置有以下优点:1、惯性小、动作快,灵敏度高,因此可以得到高精度的板带材,其厚度偏差可以控制到小于成品厚度的1%,而且缩短了板带材的超差部分长度,提高了轧材的成品率,节约金属,提高了产品质量,并降低了成本;2、结构紧凑,降低了机座的总高度,减少了厂房的投资,同时由于采用液压系统,使传动效率大大提高;3、采用液压系统可以使卡钢迅速脱开,这样有利于处理卡钢事故,防止了轧件对轧辊的刮伤、烧伤,再启动时为空载启动,降低了主电机启动电流,并有利于油膜轴承工作;4、可以实现轧辊迅速提升,便于快速换辊,提高了轧机的有效作业率,增加了轧机的产量。

新钢1550mm冷连轧机厚度自动控制系统配置方案

新钢1550mm冷连轧机厚度自动控制系统配置方案
图 2 厚 度 AGC控制原理
4. 3 压力 AGC 压力 AGC控制见图 3。 ¹利用轧制压力根据弹跳方程间接测量带钢厚
度偏差, 以调节辊缝。 º响应快, 但精度低 [ 3] 。
DS2辊缝调节量; Q2轧件塑性系数; C 2轧机刚性数; DH 2来料厚差; H 02设定厚度; H i2测量厚度 图 1 前馈 AGC 控制原理
4. 2 厚度 AGC 厚度 AGC控制见图 2。 ¹利用测厚仪直接测量带钢出口厚度偏差, 从
而调节辊缝。 º响应滞后。
C 2轧机刚性数; Q2轧件塑性系数; Dh2厚差; DS2辊逢差; S2辊逢值; P2轧制压力; h2计算厚度
图 3 压 力 AGC控制原理
4. 4 张力 AGC 张力 AGC控制见图 4。 ¹改变后张力调节厚差。 º调节相邻机架速度差或调节开卷机或卷取机
ºB 方 式。适用范围: 轧制产品厚度小于 014 mm, 且材质较硬; 采用 / 张力极限控制 0方式, 允许 张力 在 15% 范 围内 调 节 以 控 制 厚 度, 如 果 超 过 15% , 还需要通过调整辊缝回到极限范围内, 然后回 到 A方式。
»C方式。适用范围: 在轧制一般低碳产品时, 如果来料平直度不好, 5号机架可作为平整机使用; 用 4号机架前后测厚仪对 4号 机架进行预控 + 监 控, 控制 4号速度; 通过调节 5号机架速度, 保 4号、 5号机架张力恒定; 用 5号机架出口厚度, 修正 5号 机架的设定厚度。
¼2 号 机架预控。根据 1 号机 架后测厚 仪厚 度, 由秒流量相等原则, 计算 1号机架速度调节量。 7. 2 精调 AGC
根据成品带钢厚度、带钢材质由操作员通过选 择开关进行选择。
¹A方式。适用范围: 轧制 产品厚度 大于 014 mm, 且材质较软; 采用 5号机架的预控和监控, 控制 5号机架速度; 通过调节 5号机架辊缝, 保持 4号机 架、5号机架张力恒定。

AGC控制

AGC控制

液压AGC控制技术的分析与应用摘要:综述板带轧钢厚度控制技术的发展和产生厚差的原因(主要有:温度、轧制力等)。

着重介绍了液压厚度自动控制的概念、原理、应用等。

关键词:液压AGC;原理;应用第一章液压AGC概念与原理1.1 液压AGC的概念厚度自动控制是通过测厚仪或传感器(如辊缝仪和压头等)对带钢实际轧出厚度进行连续地测量(或估算),并根据实测值与给定值相比较后的偏差信号,借助于控制回路和装置或计算机的功能程序,改变压下位置、轧制压力、张力、轧制速度等,把厚度控制在允许偏差范围之内的方法。

特制品的厚度自动控制在一定尺寸范围内的系统称为厚度自动控制系统,简称为AGC。

液压AGC就是借助于轧机的液压系统,通过液压伺服阀调节液压缸的油量和压力来控制轧辊的位置,对带钢进行厚度自动控制的系统。

1.2板带轧钢产生厚差的原因带钢厚度精度可分为一批同规格带钢的厚度异板差和每一条带钢的厚度同板差。

为此可将厚度精度分解为带钢头部厚度命中率和带钢全长厚度偏差。

从厚差分布特征来看,产生厚差的原因有以下几种: (1)头尾温差,这主要是由于粗轧末出口速度一般比精轧机入口速度要高,因而造成了带钢头部和尾部在空气中停留时间的不同。

( 2)加热炉内导轨在钢胚表面造成的低温段称为水印,由于此段温度变化率大,厚度变动比较“陡”。

(3)活套起套过猛,对带钢产生冲击,使颈部厚度变薄。

( 4 )咬钢时,由于速度设定不协调加上动态速降造成钢套过大,起套并投入高速控制后由于纠偏过快造成带钢拉钢,这一松一紧使厚度减薄,宽度拉窄。

(5)温度波动造成轧制力以及厚度波动。

(6)油膜轴承的油膜厚度发生变化使实际辊缝变化,从而影响轧件厚度。

(7)轧辊偏心将直接使实际辊缝产生高频周期变化。

为了克服或减轻这些干扰因素对成品厚度的影响,除了改进AGC 系统的结构外,还可以将它与各种先进的智能算法相结合,以提高其精度。

1.3液压AGC基本原理1.3.1液压AGC 的设备及其与工作液压AGC技术是将机械、液压、自动控制以及轧制工艺等专业紧密联系在一起的综合先进技术。

液压AGC原理及其液压缸.docx

© 1994-2009 China Academic Journal Electronic Publishing House. All rights reserved. http:ki.nei液压AGC 原理及其液压缸冶金部自动化所何宜业本文主要介绍了液圧£下的主要优点,滋泾AGC 的原理和压下液压 虹在液压士词中於作用,圧下,衣压红的结构型式及工作状态,压下液压如 的逸用及其设汁』 ::7 "一、液压压下的优点曲于电控技术的不断发展,液压元件 的精度和质屋的不断提高,以及梢密检测 仪表的出现,在现代板带钢生产中越来越 广泛地采用全渋压压下或电动压下加液压 微调的轧机,代替机械-液压同服系统的 轧机。

液压压下和电动压下相比共主要优点 为,1・以惯性小的液压缸作为执行元 件,比电动机■机械传动质量小。

2.快速性好(特别是调节量小的情 况下更明显),比一般电动压下快10倍以 上。

.3・压下加速度很大,最大可达200〜 400mm/s 2,也即是系统频带宽10〜 20H z ,而•电动压下一般为0.5〜2H“4・精度高,产品头尾差小(武钢热 轧产品厚度为3mm 的带钢,电动压下自由 轧钢时头尾差为0.4mm,上电动AGC 后 头尾差为0.2mm,电动AGC 再加液压AGC 轧钢,头尾差为0.05mm )。

5・电动压下诚速机构有间隙,一般 为20〜50从,液压压下液压缸不存在这一 问题。

・352・6・消耗功率小,效率高。

而电动压 下的老轧机压下系统的效率只有10〜15% 左右,根本不能带钢压下。

7・轧机结构简单,重駅轻。

8・液压压下可起过载保护作用,避 免出现断耦事故。

二、液压缸在液压微调中的作用在全液压压下和液压微调的轧机中, 液电缸作为一个传递动力(轧制力)和调 节整缝(改变位置)的执行元件存在于系 统中,它既是执行盘又是被调节虽。

在电液随动系统中,通过电液随动控 制系统控制液压缸,使得轧机刚度很快而 容易地随着轧制工艺的要求而改变,即所 谓变刚度轧机。

毕业论文2150F2精轧机主传动系统设计说明

2150F2精轧机主传动系统设计摘要本次毕业设计的设计对象是2150F2精轧机主传动系统。

轧钢机主传动系统主要由电动机、减速器、齿轮座、连接轴以与联轴节等组成。

对于2150精轧机来说,其轧制要求有较高的精度,板型要有较高的平整度,就要对轧机的各个部件进行精准的设计。

该论文主要以轧机的主传动为主题展开,对轧机主传动的设计就要求对于涉与到传动件的各个部件如电动机、减速器、齿轮座、连接轴、联轴器等进行设计计算,需要对轧机的轧制力、传动力矩和传动功率进行计算,对主电机容量进行选择,对设计好的主减速机的齿轮、轴以与联接轴进行强度校核,直到满足要求。

本文通过几次反复的计算已满足要求。

设计好轧机的尺寸结构以后需要对润滑方式的进行选择,并对轧机的经济性、环保性进行评估。

当各个方面都满足时才是一个合格的设计。

关键词:主传动;设计;校核;减速机;润滑;环保The Design Of The Main Driver Of 2150F2Finishing millABSTRACTThe design of this graduation project is the main drive structure of 2150F2finishing mill. The main drive system of a rolling mill is mainly composed of an electric motor,a reduced, a gear seat,a connecting shaft and a coupling. For the 2150 finishing mill,its rollingrequirements have higher precision,the flatness of the plate must be higher, so it is necessary to carry out precisedesign of each part of the rolling mill.This paper mainly to themaindrive for the theme, design of the m ain drive requires eachcomponent to involvetransmission parts suchas motor, reducer, gear seat and a connecting shaft, coupling des ign and calculation, calculation of rolling force of rolling mill, the required driving torque andthetransmissionpower, the selection of the main thecapacity of motor, reducer design ofthe gear shaft and the connecting shaft and check the strength ,until the meet therequirem ents. After designing the size structure of rolling mill, it is necessary to select the lubrication mode, and evaluate the economi c and environmental protection of the rolling mill. When all aspe cts are satisfied, it is a qualified design.Key words: main drive; design; check; reducer;lubrication; environ mental protection目录摘要IABSTRACTII1 绪论 01.1 轧钢生产的国外发展概况01.2 热带钢连轧机的现状与发展趋势11.3 实习厂情况介绍21.3.1 生产主要设备21.3.2 产品品种21.3.3 本热轧带钢的生产工艺流程22 方案设计52.1 对2150F2精轧机主传动方案进行综合评价与比较 (5)2.1.1 概述52.1.2 方案评价与比较52.2 确定合理的主传动设计方案62.2.1 确定方案62.2.2 轧钢机主传动装置各部分的作用和类型63 主电机容量的选择103.1 轧制力计算103.1.1 设计参数103.1.2 轧辊基本尺寸103.1.3 变形阻力的计算113.1.4 平均单位压力的计算123.1.5 轧制力的计算133.2 传动力矩和传动功率的计算133.2.1 传动力矩133.2.2 电机功率的计算143.3 主电机容量的选择153.3.1 选择电动机容量153.3.2 电机容量校核154 主要零部件强度计算174.1 主减速机齿轮强度的计算 (17)4.1.1 齿轮材料、热处理方式、精度等级和齿数174.1.2 按齿面接触疲劳强度设计174.1.3 按齿根弯曲疲劳强度设计194.1.4 确定齿轮几何尺寸224.1.5 齿根弯曲疲劳强度校核224.2 主减速机轴的强度计算244.2.1 按扭转强度条件初估轴径244.2.2 按弯扭合成强度校核轴的强度245 联接轴计算295.1 相关尺寸295.2 开口式扁头受力分析和强度计算295.3 叉头受力分析和强度计算305.4 万向接轴的许用应力 (31)5.5 轴体切应力的计算 (31)5.6 轴体的许用切应力 (31)6 润滑方式的选择327 安装、试车规程的制定337.1 安装规程的制定337.1.1 轧机安装的工艺流程图337.1.2 施工准备347.1.3 基础验收347.1.4 基准线和基准点设置347.1.5 垫板设置347.2 试车规程的制定357.2.1试车准备357.2.3 安全措施358 环保性与经济性分析378.1 环保性分析378.2 经济性分析37结束语40致41参考文献421 绪论1.1 轧钢生产的国外发展概况中国轧钢生产水平与世界主要生产钢的发达国家比较,技术还相对落后很多。

万能轧机简介(下)


GM-AGC控制模型
特点二:全液压式的辊缝调节系统
PLC中输入产品数据
AGC中进行辊缝值计算 ,将产品数据转换成机 架数据
HPC根据AGC中的辊缝 值,控制伺服阀驱动液 压缸对辊子进行精确位 置控制和力控制
下 辊 轴 向 调 整 装 置 示 意 图
万能轧机区设备
4、万能轧机 闭口开轭式,两个铸造的闭式牌坊由拉杆连接,牌坊内衬有滑块。 可生产H型钢、工字钢和T型钢 ,更换成二辊辊系时可生产普通 型钢。轧边机为闭口式二辊轧机。 轧辊及导卫的更换是自动进行的。 水平辊和立辊的控制是通过液压系统和垫片来实现的。 液压系统提供:-轧制时设定理想的辊缝 -当发生事故时进行释放压力保护 -对轧机进行过载保护 -校正轧辊的轧制压力 -把轧辊的调整系统进行复位 -探测轧辊的弹跳值
特点二全液压式的辊缝调节系统hgcgmagc控制模型万能轧机agc技术可以看成为板带轧机agc的移植但由于h型钢的翼缘和腹板尺寸测量比较困难所以只采用gmagc它是以厚度计模型为基础在控制中实ห้องสมุดไป่ตู้出轧制力和辊缝值间接计算出轧件出口厚度再求出与目标厚度之差以此为根据改变辊缝值使轧出厚度恒定
液压AGC系统的核心 任务就是通过补偿轧机 的弹跳和调整压下系统 的位置来保持带载辊缝 和轧件出口厚度的恒定 。
万能轧机组技术参数
项目 参数 功率 主电机 转速 额定转矩 喷嘴压力 冷却水 水平辊流量 立辊流量 万能总流量 水平辊压下系统 立辊侧向压下系 统 工作行程 单位 kW rpm kNm MPa m3/h m3/h m3/h mm 万能粗轧机 4000 0~65/190 1616 5 85 85 2×85 2×155/2×155 轧边机 1500 0~100/275 394 5 85 85 2×85 120 万能精轧机 4000 0~65/1902 1616 5 85 85 2×85 2×155/2×155

第三章轧辊调整平衡及换辊装置


轧辊调整、平衡及换辊装置
采用电动压下和液压压下相结合的压下方式。 在现代的冷连轧机组中,几乎全部采用液压压下装置
轧辊调整、平衡及换辊装置
2、慢速电动压下装置主要结构形式 由于慢速电动压下的传动速比高达1500~2000,同时又要求 频繁的带钢压下,因此,这种压下装置设计比较复杂,常用的 慢速电动压下机构有以下三种形式。 一种是由电动机通过两级蜗轮蜗杆传动的减速器来带动压下 螺丝的压下装置,如图3—7所示。它是由两台电动机传动的, 两台电动机1之间是用电磁离合器3连接在一起的。当打开离合 器3之后可以进行压下螺丝的单独调整,以保证上轧辊调整水平。 这种压下装置的特点是:传速比大、结构紧凑。但传动效率低、 造价球面蜗杆设计及制造工艺技术不 断的发展与完善,这种普通的蜗轮蜗杆机构已逐步被球面蜗轮 蜗杆机构所代替。这样一来不但传动效率大大提高,而且传动 平稳、寿命长,承载能力高。
轧辊调整、平衡及换辊装置
第二种是用圆柱齿轮与蜗轮蜗杆联合减速的压下传动装置,如 图3—8所示。它也是由双电动机1带动的,圆柱齿轮可用两级 也有用一级的。在两个电动机之间用电磁离合器3连接着,其目 的是用来单独调节其中一个压下螺丝的。为了使传动装置的结构 紧凑,可将圆柱齿轮与蜗轮杆机构均放在同一个箱体内。这种装 置的特点是:由于采用了圆柱齿轮,因此传动效率提高了,成本 下降了,所以这种装置在生产中较前一方案应用更为广泛,通常 多用热轧板带轧机上。
轧辊调整、平衡及换辊装置
3.3轧辊辊缝的对称调整装置
轧辊调整、平衡及换辊装置
轧辊辊缝对称调整是指轧制线固定下来, 上、下工作辊中心线同时分开或同时靠 近。图3—3为德国德马克公司高速线材 轧机精轧机组的斜楔式摇臂调整机构。
轧辊调整、平衡及换辊装置
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors.
(安全管理)
单位:___________________
姓名:___________________
日期:___________________
板带轧机电动及液压压下联合控
制系统(最新版)
板带轧机电动及液压压下联合控制系统(最
新版)
导语:生产有了安全保障,才能持续、稳定发展。

生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。

当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。

"安全第一"
的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。

随着科学技术的进步,我国经济得到了快速的发展,汽车、电子等行业对板带钢材的质量要求越来越高。

厚度是板带材最重要的质量指标之一,厚度自动控制AGC控制性能的优劣将直接影响轧制产品的质量。

本文对该轧机采取的改造方案为电动压下和液压压下联合控制板厚,由电动压下进行辊缝粗调,液压压下系统负责辊缝精调。

板带轧机厚度控制理论
1.1.影响轧制产品厚度的因素
轧制过程中,影响轧制产品厚度的因素很多,根据弹跳方程,生产实际中影响轧制产品厚度的因素主要如下:
1.1.1.轧机的机械装置和液压装置
在轧机加工装配过程中,零部件之间的误差对轧机的刚度和空载辊缝造成直接影响,从而使得轧制产品的厚度偏离目标值。

轧机开始运作之后,其零部件会发生变形或扭曲,这都会改变轧机辊缝的大小
和形状。

一般情况,轧机的刚度越大,轧机的弹跳量越小,辊缝的变化程度和轧制产品厚度偏差都越小,产品尺寸精度就越高。

1.1.
2.轧件的来料特性
厚度不均、硬度变化、截面变化、平直度变化等来料特性会对轧制生产过程中的轧制力大小和辊缝值变化产生一定影响。

当影响因素已知,而来料特性未知,这就难以满足轧制产品的厚度要求,此时,只有轧机的厚度自动控制系统才能保证产品的质量。

1.1.3.轧机的控制系统
轧机的控制系统分为轧机硬件设备和控制模型。

限制轧机厚度控制精度的硬件因素主要有计算机的速度与精度、传感器的精度与稳定性等。

板带轧机压下控制系统
2.1.电动压下自动控制系统
2.1.1.电动压下控制过程
本轧机的传动侧和操作侧分别安装一台西门子直流电机,用于空载时粗调轧机辊缝,当接收到粗调辊缝设定值后,将电动辊缝调到目标设定值,此外,通过进行倾斜度的监控,使得传动侧和操作侧的压下位置偏差控制在允许的范围内,即上辊的倾角保持在允许的偏差范
围内。

电动压下控制方式为电机带动齿轮、蜗杆、涡轮传动,压下两台50HP电机带动齿轮啮合。

由于通过大齿轮连接轴上的蜗杆带动轧机两侧蜗轮,蜗轮与压下螺丝转动,蜗轮旋转是,压下螺丝上下运动。

电机之间的电磁离合器可以同步控制两边的压下,离合器离开时,两边压下电机可以进行单独调节。

2.1.2.电动压下定位过程的控制算法
2.1.
3.电动压下电机的控制方式
在此调速系统中,转速调节器是主导调节器,它使控制电机的转速时刻随着给定电压发生变化而变化,转速调节器的输出限幅值决定控制电机的最大允许电流,稳态运行时可以对负载的变化起抗扰作用,从而实现无静差转速。

2.2.液压压下控制
传统电动AGC存在很多问题,比如响应速度慢、调节精度差、压下效率低等。

此案待会的轧机一般都采用液压压下控制方式或者电液相结合的控制方式。

液压压下控制系统可以根据轧制实际情况改变,实现动态调节,从而保证轧制产品的厚度保持不变。

其优点主要有以下几点:
2.2.1.液压AGC的响应速度快,调整精度高。

液压AGC系统的伺服系统灵敏度高、摩擦力小,使得系统的惯性大幅度降低,得以快速响应控制信号。

相对于电动AGC来说,其具有较高的阶跃响应频率,这个数值一般在25Hz左右。

同时,液压采用先进的反馈方式,控制精度可以达到2.5um,这远抄电动装置的精度。

2.2.2.液压AGC的过载保护简单可靠。

液压压下系统有防止轧机过载的安全阀等,这可以方式损坏轧辊与轴承。

在出现异常状况时,如卡钢、堆钢等,可以快速排出液压缸中的压力油,实现过载保护。

采用液压压下方式可以根据工艺需要灵活地进行控制。

液压压下方式可以方便的对轧机的当量刚度进行控制,实现轧机的“恒辊缝控制”与“恒压力控制”之间的转换,以满足不同轧制阶段对机架当量刚度的要求,适应各种金属、各种规程及不同厚度的轧制要求。

2.2.
3.液压AGC的体积小、重量轻,具有惯性低、工作平稳的优点,在功率相同的情况下,特别是在大功率工况下,液压AGC与电动AGC相比,上述优点的体现尤为明显。

2.2.4.液压AGC装置均采用标准液压元件,结构简单,使繁杂的机械结构得以简化,更能节约成本。

3.基于AMESIM和MATLAB的HAPC仿真研究
3.1.电液伺服位置仿真模型建立
根据液压压下伺服系统的物理模型特点,在AMESIM环境下构造其机械液压模型,具体步骤如下所述:
3.1.1.建立系统模型:首先选择AMESIM的“绘图模式”,根据轧机液压压下系统的实际物理模型,搭建好液压压下系统框架如图3所示。

利用AMESIM能够实现与MATLAB/Simulink进行联合仿真的接口,在已经搭建好的液压压下模型中搭建进行联合仿真控制模块。

3.1.2.选择系统子模型:根据实际需要,对系统中各个模块选择合适的子模型并进行储存。

3.1.3.设置系统参数:根据实际设置系统的参数,进行联合仿真时使用这一步骤生成的S函数。

3.1.
4.运行系统:点击菜单“Tools”中的“startMATLAB”选项,这时系统的AMESIM物理模型被MATLAB软件当作一个普通的S函数,完成数据交换,实现液压压下系统的联合仿真。

Simulink模型及参数准备好之后,点击运行按钮,则系统开始运行,进行仿真。

3.2.仿真结果与分析
当空载时,液压缸位移的变化就是辊缝的变化,取输入阶跃信号
rin=0.15mm。

由仿真结果图7可以得到:模糊PID控制效果明显优于常规PID,常规PID超调量为37%,而模糊PID无超调,无振荡,上升时间比较快。

与常规PID控制相比,模糊PID系统响应快,稳态误差小,能够有效改善系统的动态性能,得到比较满意的控制效果。

由于电液伺服控制系统是典型的非线性系统,存在时变性、不确定性、外界干扰以及多种外界因素等的影响,采用传统PID算法时,难以选择控制参数,系统存在抗扰能力低、超调量大等缺点;试验结果表明该模糊PID自动厚度控制系统,能使厚度控制偏差快速接近目标值,大大提高了厚度控制精度,既保留了PID控制器无静差的特点,又能获得模糊控制鲁棒性强的优点。

XX设计有限公司
Your Name Design Co., Ltd.。

相关文档
最新文档