2020-2021苏州新区二中七年级数学下期中试卷(含答案)
江苏省苏州市2021年七年级下学期期中数学试卷(II)卷

江苏省苏州市2021年七年级下学期期中数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题. (共10题;共20分)1. (2分)下列语句正确的是().A . 相等的角是对顶角B . 相等的两个角是邻补角C . 对顶角相等D . 邻补角不一定互补,但可能相等2. (2分) (2020八上·甘州期末) 在x轴上到点A(3,0)的距离为4的点一定是()A . (7,0)B . (−1,0)C . (7,0)和(−1,0)D . 以上都不对3. (2分)如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)…根据这个规律,第2016个点的坐标为()A . (45,9)B . (45,13)C . (45,22)D . (45,0)4. (2分)(2020·遵义模拟) 在▱ABCD中,对角线AC,BD相交于点O,以点O为坐标原点建立平面直角坐标系,其中A(a,b),B(a﹣1,b+2),C(3,1),则点D的坐标是()A . (4,﹣1)B . (﹣3,﹣1)C . (2,3)D . (﹣4,1)5. (2分)如图,AB∥CD,直线EF,GH与AB,CD相交,则以下结论正确的是()A . ∠1+∠2=180ºB . ∠2+∠4=180ºC . ∠1+∠4=180ºD . ∠3+∠4=180º6. (2分) (2016七下·宝丰期中) 下列运动属于平移的是()A . 空中放飞的风筝B . 飞机的机身在跑道上滑行至停止C . 运动员投出的篮球D . 乒乓球比赛中高抛发球后,乒乓球的运动方式7. (2分)在方程组、、、、、中,是二元一次方程组的有()A . 2个B . 3个C . 4个D . 5个8. (2分) (2017八上·灯塔期中) 下列各式表示正确的是()A .B .C . =-3D .9. (2分)已知是二元一次方程组的解,则的值为()A . 3B . 8C .D . 210. (2分) (2018七下·合肥期中) 的平方根是()A . 2B . ±2C .D . ±二、填空题. (共6题;共10分)11. (1分) (2020七下·甘井子期末) 点到轴的距离是________.12. (1分)在3x+4y=9中,如果2y=6,那么x=________13. (1分) (2018八上·海安月考) 在平面直角坐标系中,点 A的坐标是(-1,2) .作点A关于x 轴的对称点,得到点A1 ,再将点A1 向下平移 4个单位,得到点A2 ,则点A2 的坐标是________.14. (4分)如图直线AB、CD、EF相交于点O,是∠AOC的邻补角是________ ,∠DOA的对顶角是________ ,若∠AOC=50°,则∠BOD=________度,∠COB=________度.15. (1分) (2019八上·兰州月考) 如图,在△ABC中,CE平分∠ACB,CF平分外角∠ACD,且EF∥BC交AC 于M,若CM=5,则 ________。
2020-2021学年度七年级下学期期中考试数学试卷及答案

七年级下学期期中考试数学试卷满分:150分 考试用时:120分钟范围:第一章《二元一次方程组》~第三章《因式分解》 班级 姓名 得分第Ⅰ卷一、选择题(本大题共10小题,共40.0分)1. 甲、乙二人同时同地出发,都以不变的速度在环形路上奔跑.若反向而行,每隔3min 相遇一次,若同向而行,则每隔6min 相遇一次,已知甲比乙跑得快,设甲每分钟跑x 圈,乙每分钟跑y 圈,则可列方程为( )A. {x −y =3x +y =6B. {x +y =3x −y =6C. {3x +3y =16x −6y =1D. {3x −3y =16x +6y =1 2. 下列计算正确的是( )A. b 3⋅b 3=2b 3B. (a +b)2=a 2+b 2C. (a 5)2=a 10D. a −(b +c)=a −b +c3. 下列等式从左到右的变形,属于因式分解的是( )A. x 2+2x −1=(x −1)2B. (a +b)(a −b)=a 2−b 2C. x 2+4x +4=(x +2)2D. ax −a +1=a(x −1)+14. 已知方程组{2x +y =3x −2y =5,则2x +6y 的值是( ) A. −2 B. 2 C. −4 D. 45. 计算a 3⋅(a 3)2的结果是( )A. a 8B. a 9C. a 11D. a 186. 分别表示出如图阴影部分的面积,可以验证公式( )A. (a +b)2=a 2+2ab +b 2B. (a −b)2=a 2−2ab +b 2C. a 2−b 2=(a +b)(a −b)D. (a +2b)(a −b)=a 2+ab −2b 27. 下列方程组:①{x +y =−2y +z =3,②{2x +1y =1x −3y =0,③{3x −y =4y =4−x ,其中是二元一次方程组的是( )A. ①②B. ②③C. ①③D. ③8. 已知a =255,b =344,c =433,d =522,则这四个数从小到大排列顺序是( )A. a <b <c <dB. d <a <c <bC. a <d <c <bD. b <c <a <d9. 把代数式3x 3−12x 2+12x 因式分解,结果正确的是 ( )A. 3x(x 2−4x +4)B. 3x(x −4)2C. 3x(x +2)(x −2)D. 3x(x −2)210. 已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2−ab −ac −bc 的值是( )A. 0B. 1C. 2D. 3第Ⅱ卷二、填空题(本大题共8小题,共32.0分)11. 中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为______.12. 下面的图表是我国数学家发明的“杨辉三角”,此图揭示了(a +b)n (n 为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:(a +b)5=______.13. 因式分解:a 2b −10ab +25b = ______ .14. 若方程x −y =−1的一个解与方程组{x −2y =k 2x −y =1的解相同,则k 的值为______. 15. 已知a ,b ,c 为三角形的三边,若有(a +c)2=b 2+2ac ,则这个三角形的形状是______三角形.16. 在实数范围内因式分解:2x 2−4xy −3y 2=______.17. 若长方形的长为a ,宽为b ,周长为16,面积为15,则a 2b +ab 2的值为______ .18. 已知x 2−2(m +1)xy +16y 2是一个完全平方式,则m 的值是____.三、解答题(本大题共7小题,共78.0分)19. (10分)解下列二元一次方程组(1) {2x −y =−2x =5−y(2) {x −3y =62x +5y =120.(10分)计算该式,并用幂的形式表示结果:(1)[2(a−b)2]3(2)−(x3)4+3×(x2)4⋅x421.(10分)已知:用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨,某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运转,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计,有几种租车方案?(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次,请选出最省钱的租车方案,并求出最少租车费.22.(10分)用因式分解的方法进行简便运算:(1)1772+232+46×177;(2)20012−4002×2000+20002.23.(12分)若a m=a n(a>0且a≠1,m、n是正整数),则m=n.利用上面结论解决下面的问题:(1)若3x×9x×27x=312,求x的值.(2)若x=5m−3,y=4−25m,用含x的代数式表示y.24.(12分)已知a2+a+1=0,求a4+2a3+5a2+4a的值.25.(14分)如图,将一张矩形纸板按照图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n,(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为___________________;(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.答案1.C2.C3.C4.C5.B6.C7.D8.B9.D10.D11.{4x +6y =483x +5y =3812.a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 513.b(a −5)214.−415.直角16.2(x −2+√102y)(x −2−√102y) 17.12018.−5或319.解:{2x −y =−2①x =5−y②, 把②代入①,得2(5−y)−y =−2,解得y =4,将y =4代入②式得x =1,故方程组的解是{x =1y =4; (2){x −3y =6①2x +5y =1②, ①×2−②,得−11y =11,y =−1,则把y =−1代入①得x =3,故方程组的解是{x =3y =−1.20.解:(1)[2(a −b)2]3=8(a −b)6(2)−(x 3)4+3×(x 2)4⋅x 4=−x 12+3x 8·x 4=2x 12.21.解:(1)设1辆A 型车和1辆B 型车一次分别可以运货x 吨,y 吨,根据题意得:{2x +y =10x +2y =11, 解得:{x =3y =4, 则1辆A 型车和1辆B 型车一次分别可以运货3吨,4吨;(2)∵某物流公司现有31吨货物,计划同时租用A 型车a 辆,B 型车b 辆, ∴3a +4b =31,则有{a ≥0b =31−3a 4≥0,解得:0≤a ≤1013,∵a 为整数,∴a =0,1,2, (10)∵b =31−3a 4=7−a +3+a 4为整数,∴a =1,5,9,∴a =1,b =7;a =5,b =4;a =9,b =1,∴满足条件的租车方案一共有3种,a =1,b =7;a =5,b =4;a =9,b =1;(3)∵A 型车每辆需租金100元/次,B 型车每辆需租金120元/次,当a =1,b =7,租车费用为:W =100×1+7×120=940元;当a =5,b =4,租车费用为:W =100×5+4×120=980元;当a =9,b =1,租车费用为:W =100×9+1×120=1020元,∴当租用A 型车1辆,B 型车7辆时,租车费最少为940元.22.解:(1)1772+232+46×177=1772+2×23×177+232=(177+23)2=2002=40000.(2)20012−4002×2000+20002=20012−2×2001×2000+20002=(2001−2000)2=12=1.23.解:(1)3x×9x×27x=3x×(32)x×(33)x=3x×32x×33x=36x.∵36x=312,∴6x=12,∴x=2.(2)∵x=5m−3,∴5m=x+3,∵y=4−25m=4−(52)m=4−(5m)2=4−(x+3)2,∴y=−x2−6x−5.24.解:∵a2+a+1=0,∴a2+a=−1,∴a4+2a3+5a2+4a=a2(a2+a)+a(a2+a)+4(a2+a)=a2×(−1)+a×(−1)+4×(−1)=−a2−a−4=−(a2+a+4)=−(−1+4)=−3.25.解:(1)(m+2n)(2m+n);(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49,∵m+n>0,∴m+n=7,∴图中所有裁剪线(虚线部分)长之和为6×7=42cm.。
2020-2021学年度七年级下册期中考试数学试卷及答案

2020-2021学年度第二学期期中考试试卷七年级数学满分:120分 时间:90分钟一、选择题(本大题共10分,每小题3分,共30分) 1.下列图中,∠1和∠2是对顶角的有( )个.A .1个B .2个C .3个D .4个 2.在平面直角坐标系中,点(-2,3)所在的象限是( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 3.已知点A (4,-3)到y 轴的距离为( )A 、4B 、-4C 、3D 、-3 4.下列说法错误的是( )A 、1)1(2=-B 、113-=-C 、2的平方根是2±D 、81-的平方根是9±5.在实数,,,0,﹣1.414,,中,无理数有( )A .2个B .3个C .4个D .5个6.下列命题是真命题的是( )A 、邻补角相等B 、对顶角相等C 、内错角相等D 、同位角相等 7.如题7图,能够判断AD ∥BC 的条件是( ) A .∠1=∠2 B .∠1=∠4C .∠B=∠DD .∠3=∠4 题7图8.将点P (2,1)向左平移2个单位后得到P ’,则P ’的坐标是( ) A 、(2,3) B 、(2,-1) C 、(4,1) D 、(0,1)9.如题9图,已知直线AB ,CD 相交于点O ,OE ⊥AB ,∠EOC=28°,则∠BOD 的度数为( ) A .28° B .52°C .62°D .118°题9图10.如题10图,原来是完全重叠的两个直角三角形,将其中一个直角三角形沿着BC 方向平移BE 的距离,就得到此图形,则阴影部分面积是( )平方厘米 A 、24 B 、20 C 、32.5 D 、60题10图 二、填空题(本大题共7小题,每小题4分,共28分) 11.如题11图,AB 、CD 相交于点O ,射线OE 在∠DOB 的内部, 则∠AOD 的邻补角是________________.12.9的平方根是_______,4的算术平方根是_________,13.如题13图,直线a 与直线b 、c 分别相交于点A 、B ,将直线b 绕点A 转动,当∠1=∠ 时,c ∥b ;14.5的相反数是______,绝对值是_______. 15.已知|x+1|+=0,则P (x,y )在第_____________象限.16.1+x 的算术平方根是3,则x =________. 题13图 17.在y 轴上且到点A (0,-3)的线段长度是4的点B 的坐标为_______________. 三、解答题(一)(本大题共3小题,每小题6分,共18分) 18.计算:2252383+--+19.如图题19图,将△ABC 向右平移5个单位长度,再向下平移2个单位长度,得到△A'B'C',请画出平移后的图形,并写出△A'B'C'各顶点的坐标。
江苏省苏州市高新区2020-2021学年七年级下学期期中数学试卷(word版 含答案)

参考答案
1.D
【分析】
根据平移变换、轴对称变换、旋转变换的特征进行判断,便可找到答案.
【详解】
解:A、是由基本图形旋转得到的,故不选.
B、是轴对称图形,故不选.
C、是由基本图形旋转得到的,故不选.
D、是由基本图形平移得到的,故选此选项.
(1)补全 ;
(2)画出 边上的高线 ;
(3)在平移过程中,线段 扫过的面积为________.
23.先化简,再求值:(x﹣1)(3x+1)﹣(x+2)2+5,其中x2﹣3x﹣1=0.
24.如图,D、E、F分别在△ABC的三条边上,DE∥AB,∠1+∠2=180°.
(1)试说明:DF∥AC;
(2)若∠1=110°,DF平分∠BDE,求∠C的度数.
则m=BC-EC=3-1=2.
②若E在线段BC延长线上,
则m=BC+CE=3+1=4,
综上:m=2或4,
故答案为:2或4.
【点睛】
本题考查了平移,解题的关键是掌握平移的性质,注意分类讨论.
17.(1)360°;(2)(n-2)360°
【详解】
试题分析:(1)连结B1B2,首先根据三角形的内角和得到∠A2+∠C1=∠B1B2A2+∠B2B1C1,然后所求的六个角的和可转化为四边形A1B1B2C2的内角和;(2)2环n边形添加(n-2)条边,2环n边形的内角和成为(2n-2)边形的内角和,然后根据多边形的内角和公式计算即可.
17.(1)在图1中,求∠A1+∠B1+∠C1+∠A2+∠B2+∠C2的度数.
(2)我们作如下规定:
2020-2021学年度七年级下学期期中考试数学试卷(含答案)

七年级下学期期中考试数学试卷满分:150分考试用时:120分钟范围:第一章《整式的乘除》~第三章《变量之间的关系》班级姓名得分卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45.0分。
在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.某数学兴趣小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表),下列说法错误的是()温度/℃−20−100102030声速/(m/s)318324330336342348A. 在这个变化中自变量是温度,因变量是声速B. 当温度每升高10℃,声速增加6m/sC. 当空气温度为20℃,5s的时间声音可以传播1740mD. 温度越高声速越快2.体育课上,老师测量跳远成绩的依据是()A. 平行线间的距离相等B. 两点之间,线段最短C. 垂线段最短D. 两点确定一条直线3.下列各项中,两个幂是同底数幂的是()A. x2与a2B. (−a)5与a3C. (x−y)2与(y−x)2D. −x2与x34.若(x−1)0−2(2x−6)−2有意义,那么x的取值范围是()A. x>1B. x<3C. x≠1或x≠3D. x≠1且x≠35.如图,∠B的同位角可以是()A. ∠1B. ∠2C. ∠3D. ∠46.一蓄水池中有水50m3,打开排水阀门开始放水后水池的水量与放水时间有如下关系:放水时间/分1234…水池中水量/m348464442…下列说法不正确的是()A. 蓄水池每分钟放水2m3B. 放水18分钟后,水池中水量为14m3C. 蓄水池一共可以放水25分钟D. 放水12分钟后,水池中水量为24m37.某商场为了增加销售额,推出优惠活动,其活动内容为凡活动期间一次购物超过50元,超过50元的部分按9折优惠.在活动期间,李明到该商场为单位购买单价为30元的办公用品x(件)(x>2),则应付款y(元)与商品件数x的关系式为()A. y=27x(x>2)B. y=27x+5(x>2)C. y=27x+50(x>2)D. y=27x+45(x>2)8.如图 ①,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的关系的图象如图 ②,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的关系的图象大致是()A. B.C. D.9.如图,将一副三角尺按下列位置摆放,使∠α和∠β互余的摆放方式是()A.B.C.D.10.如图,直线AB,CD相交于点O,射线OM平分∠BOD.若∠AOC=42∘,则∠AOM等于()A. 159∘B. 161∘C. 169∘D. 138∘11.小萌在利用完全平方公式计算一个二项整式的平方时,得到正确结果4x2+20xy+■,不小心把最后一项染黑了,你认为这一项是()A. 5y2B. 10y2C. 100y2D. 25y212.某同学在计算−3x2乘一个多项式时错误的计算成了加法,得到的答案是x2−x+1,由此可以推断正确的计算结果是()A. 4x2−x+1B. x2−x+1C. −12x4+3x3−3x2D. 无法确定13.若多项式x2+x+m能被x+5整除,则此多项式也能被下列哪个多项式整除()A. x−6B. x+6C. x−4D. x+414.如图所示,与∠α构成同位角的角的个数为()A. 1B. 2C. 3D. 415.某人要在规定的时间内加工100个零件,则工作效率η与时间t之间的关系中,下列说法正确的是()A.数100和η、t都是变量B. 数100和η都是常量C. η和t是变量D. 数100和t都是常量卷Ⅱ二、填空题(本大题共5小题,共25.0分)16.在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,如果设剩余部分的面积为y,那么y关于x的函数解析式是_________________.17.如图,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车距离最近,请你在铁路边选一点来建火车站(位置已选好),理由是.18.已知2x=a,3x=b,则6x=.19.如图,直线EF与CD相交于点O,OA⊥OB,且OC平分∠AOF.若∠AOE=40∘,则∠BOD的度数为.20.观察下列图形及表格:梯形个数n123456⋯周长l5811141720⋯则周长l与梯形个数n之间的关系式为.三、解答题(本大题共7小题,共80.0分)21.(8分)计算:(1)(x2y−12xy2−2xy)÷12xy;(2)[2(x+y)3−4(x+y)2−x−y]÷(x+y).22.(8分)如图,直线a、b被直线l所截,已知∠1=40°,试求∠2的同位角及同旁内角的度数.23.(12分)(1)表示汽车性能的参数有很多,例如:长宽高、轴距、排量、功率、扭矩、转速、百公里油耗等等.为了了解某种车的耗油量,某专业检测人员对这种车在高速公路上做了耗油试验,并把试验的数据记录下米,制成下表:汽车行驶时间t(ℎ)0123…油箱剩余油量Q(L)100948882…①上表反映的两个变量中,白变量是______;②根据上表可知,每小时耗油______升;③根据上表的数据,写出用t表示Q的关系式:______④若汽车油箱中剩余油量为55L,则汽车行驶了多少小时?(2)年龄与手机号码的秘密:①选取你家里任意一部手机的最后一位:②把这个数字乘上2;③然后加上5;④再乘以50;⑤把得到的数目加上1767;⑥最后用这个数目减去你出生的那一年(例如2004年).现在你看到一个三位数的数字.第一位数字是你家手机号的最后一位,接下来就是你的实际年龄!你能否用你所选数字按照上述步骤验证下?你能用所学知识解释这一问题吗?(计算年龄时按照农历现在为2017年)24.(10分)观察下列式:(x2−1)÷(x−1)=x+1;(x3−1)÷(x−1)=x2+x+1;(x4−1)÷(x−1)=x3+x2+x+1;(x5−1)÷(x−1)=x4+x3+x2+x+1;(1)猜想:(x7−1)÷(x−1)=______;(27−1)÷(2−1)=______;(2)根据①猜想的结论计算:1+2+22+23+24+25+26+27.25.(12分)如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=72∘,求∠BOD的度数;(2)若∠DOE=2∠AOC,判断射线OE,OD的位置关系,并说明理由.26.(14分)2018年5月14日川航3U8633航班挡风玻璃在高空爆裂,机组临危不乱,果断应对,正确处置,顺利返航,避免了一场灾难的发生,下面表格是成都当日海拔ℎ(千米)与相应高度处气温t(℃)的关系(成都地处四川盆地,海拔较低,为方便计算,在此题中近似为0米).海拔ℎ(千米)012345…气温t(℃)201482−4−10…根据上表,回答以下问题:(1)由上表可知海拔5千米的上空气温约为________℃;(2)由表格中的规律请写出当日气温t与海拔高度h的关系式为________;如图表示当日飞机下降过程中海拔与玻璃爆裂后立即返回地面所用的时间关系.根据图象回答以下问题:(3)挡风玻璃在高空爆裂时飞机所处的高度为________千米,返回地面用了________分钟;(4)飞机在2千米高空水平面上大约盘旋了________分钟;(5)求挡风玻璃在高空爆裂时,飞机所处高空的气温.27.(16分)已知:如图是一个跳棋棋盘,其游戏规则是:一个棋子从某一个起始角开始,经过若干步跳动以后,到达终点角.跳动时,每一步只能跳到它的同位角或内错角或同旁内角的位置上,例如:从起始位置∠1跳到终点位置∠3写出其中两种不同路径,路径1:∠1−同旁内角→∠9−内错角→∠3.路径2:∠1一内错角→∠12一内错角→∠6−同位角→∠10−同旁内角→∠3.试一试:(1)从起始∠1跳到终点角∠8;(2)从起始角∠1依次按同位角、内错角、同旁内角的顺序跳,能否跳到终点∠8?答案1.C2.C3.D4.D5.D6.D7.B8.C9.A10.A11.D12.C13.C14.C15.C16.y=4−x2(0<x<2)17.垂线段最短18.ab19.20∘20.l=3n+221.解:(1)(x2y−12xy2−2xy)÷12xy=x2y÷12xy−12xy2÷12xy−2xy÷12xy=2x−y−4;(2)[2(x+y)3−4(x+y)2−x−y]÷(x+y)=2(x+y)3÷(x+y)−4(x+y)2÷(x+y)−(x+y)÷(x+y) =2(x+y)2−4(x+y)−1.22.解:如图,由图可知,∠4是∠2的同位角,∠3是∠2的同旁内角,∵∠1=40°,∴∠3=∠1=40°,∠4=180°−∠1=140°,即∠2的同位角是140°,∠2的同旁内角是40°.23.解:(1)①自变量是t,②据上表可知,每小时耗油100−94=6升;③Q=100−6t;④当Q=55时,55=100−6t,6t=45,t=7.5.答:汽车行使了7.5小时;(2)比如:我选择数字为9,出生时间为2004年,我的年龄为13岁,由题意得(9×2+5)×50+1767−2004=900+2017−2004=913,解释:假设选取数字为m,出生时间为n年,由题意得(m×2+5)×50+1767−n=100m+(2017−n)因为m为个位数字,(2017−n)两位数,所以100m+(2017−n)三位数,而且第一位数字就所选数字,后两位恰好为年龄.24.(1)x6+x5+x4+x3+x2+x+1;26+25+24+23+22+2+1;(2)根据①猜想的结论计算:1+2+22+23+24+25+26+27=(28−1)÷(2−1)=28−1=255.25.解:(1)因为OA平分∠EOC,∠EOC=72∘,∠EOC=36∘.所以∠AOC=12所以∠BOD=∠AOC=36∘.(2)OE⊥OD.理由如下:因为∠DOE=2∠AOC,OA平分∠EOC,所以∠DOE=2∠AOC=∠EOC.又因为∠DOE +∠EOC =180∘, 所以∠DOE =∠EOC =90∘. 所以OE ⊥OD .26.解:(1)−10;(2)t =20−6ℎ; (3)9.8,20; (4)2;(5)根据图象可知,当ℎ=9.8时,挡风玻璃爆裂,此时t =20−6×9.8=−38.8, 所以挡风玻璃在高空爆裂时,飞机所处高空的气温为−38.8℃.27.解:(1)路径∠1→内错角∠12→同旁内角∠8;(2)从起始角∠1依次按同位角、内错角、同旁内角的顺序跳,能跳到终点∠8.其路径为: 路径:∠1→同位角∠10→内错角∠5→同旁内角∠8.。
2020-2021学年江苏省七年级下学期期中模拟考试数学试题及答案A

第二学期期中考试七年级数学试题(考试时间:120分钟 满分:150分)请注意:1.本试卷分选择题和非选择题两个部分.2.所有试题的答案均填写在答题卡上,答案写在试卷上无效.一、选择题(每小题3分,共18分)1.如图所示的图案是一些汽车的车标,可以看作由“基本图案”经过平移得到的是A .B .C .D .2.下列每组数分别是三根木棒的长度,能用它们搭成三角形的是 A .2cm ,2cm ,4cm B .3cm ,9cm ,5cmC .5cm ,12cm ,13cmD .6cm ,10cm ,4cm3.下列运算中,正确的是A .2224ab a b =() B .2242a a a += C .236•a a a =D .632a a a ÷=4.若a b <,则下列各式一定成立的是 A .+3+3a b > B .22ab>C .11a b --<D .33a b > 5.下列各式从左边到右边的变形中,是因式分解的是A .a x y ax ay +=+() B .24444x x x x +=-+-() C .()()224x x x +-=-2D .2105521x x x x -=-()6.已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,则a ,b 的值为A .⎩⎨⎧==21b aB .⎩⎨⎧=-=26b aC .⎩⎨⎧==214b a D .⎩⎨⎧-==614b a二、填空题(每空3分,共30分) 7.23-= ▲ .8.将0.00000034用科学记数法表示为 ▲ .9.一个多边形的内角和等于1080°,则这个多边形是 ▲ 边形.10.若2,3mna a ==,则m na -= ▲ .11.如果32x y =⎧⎨=⎩是方程632x by +=的解,则b = ▲ .12.若()()2153x mx x x n +-=++,则mn = ▲ . 13.计算:()20182017133⎛⎫-⨯= ⎪⎝⎭▲ .14.若3=+b a ,2=ab ,则=+22b a ▲ .15.已知关于x 的不等式()224m x m -->的解集为x <2,则m 的取值范围是 ▲ .16.已知方程组1122a x y b a x y b +=⎧⎨+=⎩的解是24x y =⎧⎨=⎩,则关于x 、y 的方程组1112222222a x y a b a x y a b -=+⎧⎨-=+⎩的解是 ▲ .三、解答题(本大题共102分)17.(10分)(1)计算:()-201+232π⎛⎫---- ⎪⎝⎭;(2)先化简,再求值:()()()2333x y x y x y ++-﹣,其中3,2x y ==-.18.(10分)把下列各式因式分解:(1)29x - (2)32232a b a b ab +-19.(10分)解方程组:(1) 215x y x y +=⎧⎨-=-⎩ (2)22123x y x y +=⎧⎪⎨+=⎪⎩20.(10分)解下列不等式,并把它们的解集在数轴上表示出来................. (1)()2134x x +->(2)63421---x x >3121. (10分)(1)求x 的值:x 2·x -34·3281=+x;(2)已知2310x x --=,求代数式()()()2131+2+5x x x -+-的值.22.(8分)如图,D 、E 、F 分别在△ABC 的三条边上,DE ∥AB ,∠1+∠2=180°. (1)试说明:DF ∥AC;(2)若∠1=110°,DF 平分∠BDE,求∠C 的度数.23.(8分)观察下列各式:21543⨯+=…………① 23745⨯+=…………②25947⨯+=…………③……探索以上式子的规律: (1)试写出第6个等式;(2)试写出第n 个等式(用含n 的式子表示),并用你所学的知识说明第n 个等式成立.24. (10分)用二元一次方程组解决问题:某商场按定价销售某种商品时,每件可获利35元;按定价的八折销售该商品5件与将定价降低20元销售该商品8件所获得的利润相等.求该商品每件的进价、定价各是多少元?25. (12分)仔细阅读下列解题过程: 若2222690a ab b b ++-+=,求a 、b 的值. 解:∵2222690a ab b b ++-+=∴2222690a ab b b b +++-+= ∴()()2230a b b ++-= ∴+0,30a b b =-=∴3,3a b =-=根据以上解题过程,试探究下列问题:(1)已知2222210x xy y y -+-+=,求2x y +的值; (2)已知2254210a b ab b +--+=,求a 、b 的值;(3)若=+4m n ,28200mn t t +-+=,求2m tn-的值.26.(14分)已知关于x 、y 的二元一次方程组23221x y k x y k-=-⎧⎨+=-⎩(k 为常数).(1)求这个二元一次方程组的解(用含k 的代数式表示); (2)若方程组的解x 、y 满足+x y >5,求k 的取值范围; (3)若()24+21yx =,直接写出k 的值;(4)若k ≤1,设23m x y =-,且m 为正整数,求m 的值.七年级下学期数学期中试卷答案一、选择题(每小题3分,共18分) 1.D 2.C 3.A 4.C 5.D 6.C 二、填空题(每小题3分,共30分)7. 19 8.73.410-⨯ 9.八 10. 2311.7 12.10 13.13- 14. 5 15.2m < 16.42x y =⎧⎨=-⎩三、解答题(本大题共102分)17.(本题满分10分,每小题5分)(1)2(2)2618xy y +,3618.(本题满分10分,每小题5分)(1)()()33x x +- (2)()2ab a b -19.(本题满分10分,每小题5分)(1) 32x y =-⎧⎨=⎩ (2)26x y =-⎧⎨=⎩ 20.(本题满分10分,每小题5分)(1)6x <,略(2)x <-2,略21.(本题满分10分,每小题5分)(1)2x =- (2)226x x -,2 22.(本题满分8分)(1) 略 (2)70°23.(本题满分8分,每小题4分)(1)21115413⨯+= (2)()()()22123421n n n -++=+理由:()()21234n n -++=246234n n n +--+=2441n n ++=()221n +24.(本题满分10分)设该商品每件的定价为x 元,进价为y 元,由题意得:()()3550.8820x y x y x y -=⎧⎪⎨-=--⎪⎩,解得5520x y =⎧⎨=⎩. 答:该商品每件的定价为55元,进价为20元.25.(本题满分12分,每小题4分)(1)2=3x y + (2)2,1a b == (3)126.(本题满分14分)(1)214342k x k y -⎧=⎪⎪⎨-⎪=⎪⎩ ……(3分)(2)52k <- …… (3分)(3)304k =或 ……(4分)(4)12m =或……(4分)。
2020-2021学年苏教版七年级下学期期中模拟数学试卷(及答案)A
第一教研片七年级(下)期中数学试卷一、选择题:(每题2分,共20分)1.下列各图中,正确画出AC边上的高的是()A.B.C.D.2.(﹣0.25)2014×42013等于()A.﹣4 B.4 C.0.25 D.﹣0.253.下列各式中,为完全平方式的是()A.a2+2a+B.a2+a+C.x2﹣2x﹣1 D.x2﹣xy+y24.已知方程组,则x+y的值是()A.5 B.1 C.0 D.﹣15.一个多边形的外角和是内角和的一半,则它是()边形A.7 B.6 C.5 D.46.某流感病毒的直径大约是0.000000081m,用科学记数法可表示为()A.8.1×10﹣9m B.8.1×10﹣8m C.81×10﹣9m D.0.81×10﹣7m7.已知代数式﹣a2+2a﹣1,无论a取任何值,它的值一定是()A.正数B.非正数C.负数D.非负数8.如图,AB∥CD,E是BD上的一点.下列结论中,正确的是()A.∠1=∠2﹣∠3 B.∠2=∠1﹣∠3C.∠3=∠1+∠2 D.∠1+∠2+∠3=180°9.(2x+1)(﹣2x+1)的计算结果是()A.4x2+1 B.1﹣4x2C.1+4x2 D.﹣4x2﹣110.设a m=8,a n=16,则a m+n=()A.24 B.32 C.64 D.128二、填空题:(每空2分,共26分)11.如图,AB∥CD,点G、F分别在AB、CD上,FE平分∠GFD交AB于点E,∠EGF=40°,则∠BEF= .12.()0÷()﹣2= .13.若a+b=11,ab=24,则a2+b2= ,(a﹣b)2= .14.已知x与y互为相反数,且3x﹣y=4,则x= ,y= .15.一个等腰三角形的边长分别是4cm和9cm,则它的周长是cm.16.若是二元一次方程3x+ay=5的一组解,则a= .17.若x+2y﹣3=0,则2x•4y的值为.18.如图,△ABC中,点E是BC上的一点,EC=2BE,点D是AC中点,若S△ABC =12,则S△ADF﹣S△BEF= .19.一个正多边形的每个外角都等于24°,则它是边形,它的内角和是度.20.若x2+kx+9恰好为一个整式的完全平方,则常数k的值是.21.已知a2+4a+b2﹣2b+5=0,则a b= .三、计算:(每小题8分,共8分)22.(1)2(a2)3﹣a2•a4+(2a4)2÷a2;(2)30﹣2﹣3+(﹣3)2﹣()﹣1.四、解下列方程组:(每小题8分,共8分)23.(1)(2).五、因式分解:(每小题8分,共8分)24.(1)m3﹣10m2+25m(2)x2(y2﹣1)﹣(y2﹣1).六、解答题:25.先化简再求值:(2x+3)(2x﹣3)﹣2x(x+1)﹣2(x﹣1)2,其中x=﹣1.26.今年,小丽和她爸爸年龄和是52岁,三年后的2018年,爸爸的年龄将比女儿年龄的2倍大10岁,请你算出小丽和她爸爸今年的年龄.27.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.(1)请画出平移后的△DEF.(2)若连接AD、CF,则这两条线段之间的关系是.(3)画出△ABC的BC边上的高AD,并画出AC边上的中线BE.28.有两个多边形,这两个多边形的边数比为3:5.内角和的度数之比是1:2,求它们各自的边数.29.如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与AB有怎样的位置关系?为什么?(下)期中数学试卷参考答案与试题解析一、选择题:(每题2分,共20分)1.下列各图中,正确画出AC边上的高的是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】根据三角形高的定义,过点B与AC边垂直,且垂足在边AC上,然后结合各选项图形解答.【解答】解:根据三角形高线的定义,只有D选项中的BE是边AC上的高.故选:D.2.(﹣0.25)2014×42013等于()A.﹣4 B.4 C.0.25 D.﹣0.25【考点】幂的乘方与积的乘方.【分析】首先把所求的算式适当变形,然后根据积的乘方法则,求出算式的值是多少即可.【解答】解:(﹣0.25)2014×42013=(﹣0.25)2013×(﹣0.25)×42013=(﹣0.25)2013×42013×(﹣0.25)=[(﹣0.25)×4]2013×(﹣0.25)=﹣1×(﹣0.25)=0.25故选:C.3.下列各式中,为完全平方式的是()A.a2+2a+B.a2+a+C.x2﹣2x﹣1 D.x2﹣xy+y2【考点】完全平方式.【分析】利用完全平方公式的结构特征判断即可得到结果.【解答】解:a2+a+=(a+)2,故选B4.已知方程组,则x+y的值是()A.5 B.1 C.0 D.﹣1【考点】解二元一次方程组.【分析】观察方程组,即可发现,只需两个方程相加,得3x+3y=15,解得x+y=5.【解答】解:在方程组中,两方程相加得:3x+3y=15,即x+y=5.故选A.5.一个多边形的外角和是内角和的一半,则它是()边形A.7 B.6 C.5 D.4【考点】多边形内角与外角.【分析】多边形的外角和是360度,多边形的外角和是内角和的一半,则多边形的内角和是720度,根据多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:设多边形边数为n.则360°×2=(n﹣2)•180°,解得n=6.故选B.6.某流感病毒的直径大约是0.000000081m,用科学记数法可表示为()A.8.1×10﹣9m B.8.1×10﹣8m C.81×10﹣9m D.0.81×10﹣7m【考点】科学记数法—表示较小的数.【分析】根据绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000081=8.1×10﹣8.故选B.7.已知代数式﹣a2+2a﹣1,无论a取任何值,它的值一定是()A.正数B.非正数C.负数D.非负数【考点】因式分解-运用公式法;非负数的性质:偶次方.【分析】直接利用完全平方公式分解因式进而利用偶次方的性质分析得出即可.【解答】解:∵﹣a2+2a﹣1=﹣(a2﹣2a+1)=﹣(a﹣1)2,(a﹣1)2≥0,∴﹣(a﹣1)2≤0,故选:B.8.如图,AB∥CD,E是BD上的一点.下列结论中,正确的是()A.∠1=∠2﹣∠3 B.∠2=∠1﹣∠3C.∠3=∠1+∠2 D.∠1+∠2+∠3=180°【考点】平行线的性质.【分析】根据两直线平行,同旁内角互补即可得到∠3+∠B=180°,然后在△ABE中利用三角形的内角和定理即可判断.【解答】解:∵AB∥CD,∴∠3+∠B=180°,又∵∠1+∠2+∠B=180°,∴∠3=∠1+∠2.故选C.9.(2x+1)(﹣2x+1)的计算结果是()A.4x2+1 B.1﹣4x2C.1+4x2 D.﹣4x2﹣1【考点】平方差公式.【分析】根据平方差公式直接计算即可.【解答】解:(2x+1)(﹣2x+1)=12﹣(2x)2=1﹣4x2.故选B.10.设a m=8,a n=16,则a m+n=()A.24 B.32 C.64 D.128【考点】同底数幂的乘法.【分析】根据同底数幂的乘法的性质,可得a m+n=a m•a n,再代入计算.【解答】解:∵a m=8,a n=16,∴a m+n=a m•a n=8×16=128.故选:D.二、填空题:(每空2分,共26分)11.如图,AB∥CD,点G、F分别在AB、CD上,FE平分∠GFD交AB于点E,∠EGF=40°,则∠BEF= 110°.【考点】平行线的性质.【分析】由AB∥CD,根据“两直线平行,内错角相等”得到∠CFG=∠EGF=40°,求得∠GFD的度数,再根据角平分线的定义得到∠EFD,然后根据“两直线平行,同旁内角互补”即可得到∠BEF.【解答】解:∵AB∥CD,∴∠CFG=∠EGF=40°,∴∠GFD=180°﹣40°=140°,∵FE平分∠BEF,∴∠EFD=∠GFD=70°,而AB∥CD,∴∠BEF=180°﹣∠EFD=180°﹣70°=110°.故答案是:110°12.()0÷()﹣2= .【考点】负整数指数幂;零指数幂.【分析】根据同底数幂的除法底数不变指数相减,可得答案.【解答】解:原式=()0﹣(﹣2)=()2=.故答案为:.13.若a+b=11,ab=24,则a2+b2= 73 ,(a﹣b)2= 25 .【考点】完全平方公式.【分析】运用完全平方公式计算.【解答】解:a2+b2=(a+b)2﹣2ab=121﹣48=73,(a﹣b)2=(a+b)2﹣4ab=121﹣96=25,故答案为:73,25.14.已知x与y互为相反数,且3x﹣y=4,则x= 1 ,y= ﹣1 .【考点】解二元一次方程组.【分析】根据题意列出方程组,求出方程组的解即可得到x与y的值.【解答】解:根据题意得:,①+②得:4x=4,即x=1,将x=1代入①得:y=﹣1,故答案为:1;﹣1.15.一个等腰三角形的边长分别是4cm和9cm,则它的周长是22 cm.【考点】等腰三角形的性质;三角形三边关系.【分析】题中没有指出哪个底哪个是腰,故应该分情况进行分析,注意应用三角形三边关系进行验证能否组成三角形.【解答】解:当4cm是腰时,4+4<9cm,不符合三角形三边关系,故舍去;当9cm是腰时,周长=9+9+4=22cm.故该三角形的周长为22cm.故答案为:22.16.若是二元一次方程3x+ay=5的一组解,则a= 2 .【考点】二元一次方程的解.【分析】把方程的解代入二元一次方程,即可得到一个关于a的方程,即可求解.【解答】解:把代入方程得:﹣3+4a=5,解得:a=2.故答案是:2.17.若x+2y﹣3=0,则2x•4y的值为8 .【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据幂的乘方,可化成同底数幂的乘法,根据同底数幂的乘法,可得答案.【解答】解:2x•4y=2x•22y=2x+2y,x+2y﹣3=0,x+2y=3,2x•4y=2x+2y=23=8,故答案为:8.18.如图,△ABC中,点E是BC上的一点,EC=2BE,点D是AC中点,若S△ABC =12,则S△ADF﹣S△BEF= 2 .【考点】三角形的面积.【分析】本题需先分别求出S △ABD ,S △ABE 再根据S △ADF ﹣S △BEF =S △ABD ﹣S △ABE 即可求出结果. 【解答】解:∵点D 是AC 的中点, ∴AD=AC , ∵S △ABC =12,∴S △ABD =S △ABC =×12=6.∵EC=2BE ,S △ABC =12,∴S △ABE =S △ABC =×12=4,∵S △ABD ﹣S △ABE =(S △ADF +S △ABF )﹣(S △ABF +S △BEF )=S △ADF ﹣S △BEF , 即S △ADF ﹣S △BEF =S △ABD ﹣S △ABE =6﹣4=2. 故答案为:2.19.一个正多边形的每个外角都等于24°,则它是 15 边形,它的内角和是 2340 度. 【考点】多边形内角与外角.【分析】根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出多边形的边数;n 边形的内角和是(n ﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和. 【解答】解:360÷24=15,则它是15边形;内角和是:(15﹣2)•180°=2340度.20.若x2+kx+9恰好为一个整式的完全平方,则常数k的值是±6 .【考点】完全平方式.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【解答】解:∵x2+kx+9=x2+kx+32,∴kx=±2×3x,解得k=±6.故答案为:±6.21.已知a2+4a+b2﹣2b+5=0,则a b= ﹣2 .【考点】因式分解-运用公式法;非负数的性质:偶次方.【分析】直接利用完全平方公式配方,进而得出a,b的值,即可得出答案.【解答】解:∵a2+4a+b2﹣2b+5=0,∴(a+2)2+(b﹣1)2=0,∴a=﹣2,b=1,则a b=﹣2.故答案为:﹣2.三、计算:(每小题8分,共8分)22.(1)2(a2)3﹣a2•a4+(2a4)2÷a2;(2)30﹣2﹣3+(﹣3)2﹣()﹣1.【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)首先计算幂的乘方、积的乘方,再计算同底数幂的乘法、单项式除以单项式,然后再合并同类项;(2)首先计算乘方、零次幂、负整数指数幂,然后再计算有理数的加减即可.【解答】解:(1)原式=2a6﹣a6+4a8÷a2,=2a6﹣a6+4a6,=5a6;(2)原式=1﹣+9﹣4=5.四、解下列方程组:(每小题8分,共8分)23.(1)(2).【考点】解二元一次方程组.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),把①代入②得:3x+4x﹣6=8,解得:x=2,把x=2代入①得:y=1,则方程组的解为;(2)方程组整理得:,①×3﹣②得:8x=﹣40,解得:x=﹣5,把x=﹣5代入②得:y=3,则方程组的解为.五、因式分解:(每小题8分,共8分)24.(1)m3﹣10m2+25m(2)x2(y2﹣1)﹣(y2﹣1).【考点】提公因式法与公式法的综合运用.【分析】(1)首先提取公因式m,再利用完全平方公式进行二次分解;(2)首先提取公因式(y2﹣1),然后两次使用平方差公式分解因式.【解答】解:(1)m3﹣10m2+25m=m(m2﹣10m+25),=m(m﹣5)2;(2)x2(y2﹣1)﹣(y2﹣1)=(x2﹣1)(y2﹣1)=(x+1)(x﹣1)(y+1)(y﹣1)六、解答题:25.先化简再求值:(2x+3)(2x﹣3)﹣2x(x+1)﹣2(x﹣1)2,其中x=﹣1.【考点】整式的混合运算—化简求值.【分析】先把原式进行化简,再把x=﹣1代入进行计算即可.【解答】解:原式=4x2﹣9﹣2x2﹣2x﹣2(x2+1﹣2x)=4x2﹣9﹣2x2﹣2x﹣2x2﹣2+4x=2x﹣11,当x=﹣1时,原式=2×(﹣1)﹣11=﹣13.26.今年,小丽和她爸爸年龄和是52岁,三年后的2018年,爸爸的年龄将比女儿年龄的2倍大10岁,请你算出小丽和她爸爸今年的年龄.【考点】二元一次方程组的应用.【分析】首先设小丽今年的年龄为x岁,爸爸的年龄为y岁,由题意得等量关系:①小丽和她爸爸年龄和是52岁;②2×(女儿的年龄+3)+10=爸爸三年后的年龄,根据等量关系列出方程组,再解即可.【解答】解:设小丽今年的年龄为x岁,爸爸的年龄为y岁.列出方程组,解得,答:小丽今年的年龄为13岁,爸爸的年龄为39岁.27.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.(1)请画出平移后的△DEF.(2)若连接AD、CF,则这两条线段之间的关系是平行且相等.(3)画出△ABC的BC边上的高AD,并画出AC边上的中线BE.【考点】作图-平移变换.【分析】(1)根据网格结构找出点B、C平移后的对应点E、F的位置,然后与点D顺次连接即可;(2)根据平移的性质,对应点的连线平行且相等;(3)根据网格结构和三角形的高线与中线的定义作出图形即可.【解答】解:(1)△DEF如图所示;(2)AD与CF平行且相等;(3)高线AD,中线BE如图所示.28.有两个多边形,这两个多边形的边数比为3:5.内角和的度数之比是1:2,求它们各自的边数.【考点】多边形内角与外角.【分析】设多边形的边数为3n,则另一个为5n,分别表示出两个多边形的内角和得到有关n的方程求解即可.【解答】解:∵两个多边形的边数之比为3:5,∴设多边形的边数为3n,则另一个为5n,∵内角和度数之比为1:2,∴(3n﹣2):(5n﹣2)=1:2,解得:n=,2,∴3n=6,5n=10.故它们各自的边数为6和10.29.如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与AB有怎样的位置关系?为什么?【考点】平行线的判定与性质.【分析】两直线的位置关系有两种:平行和相交,根据图形可以猜想两直线平行,然后根据条件探求平行的判定条件.【解答】平行.证明:∵CD∥AB,∴∠ABC=∠DCB=70°;又∵∠CBF=20°,∴∠ABF=∠ABC﹣∠CBF=70°﹣20°=50°;∴∠ABF+∠EFB=50°+130°=180°;∴EF∥AB(同旁内角互补,两直线平行).2016年8月28日。
2020-2021学年江苏省苏州市吴中区、吴江区、相城区七年级(下)期中数学试卷
2020-2021学年江苏省苏州市吴中区、吴江区、相城区七年级(下)期中数学试卷1.在下列四个图案中,能用平移变换来分析其形成过程的图案是()A. B. C. D.2.下列运算正确的是()A. a2+a3=a6B. a2⋅a3=a6C. a6÷a3=a2D. (a3)2=a63.下列计算正确的是()A. (x+y)2=x2+y2B. (x−y)2=x2−y2C. (x+y)(y−x)=−x2−y2D. (x+y)(x−y)=x2−y24.下列各组线段不能组成三角形的是()A. 4cm、4cm、5cmB. 4cm、6cm、11cmC. 4cm、5cm、6cmD. 5cm、12cm、13cm5.下列不等式中,是一元一次不等式的是()A. 4x−5y<1B. 4y+2≤0C. −1<2D. X2−3>56.当a,b互为相反数时,代数式a2+ab−4的值为()A. 4B. 0C. −3D. −47.下列图形中,由AB//CD,能得到∠1=∠2的是()A. B.C. D.8.关于x的不等式组{3x−2>4(x−1)x<a的解集为x<2,那么a的取值范围为()A. a=2B. a>2C. a<2D. a≥29.三种不同类型的长方形砖长宽如图所示,现有A类1块,B类4块,C类5块,小明在用这些地砖拼成一个正方形时,多出其中1块地砖,那么小明拼成正方形的边长是()A. m+2nB. 2m+nC. 2m+2nD. m+n∠CGE.下列结10.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,∠CEG=2∠DCB,且∠DFB=12论:①EG//BC,②CG⊥EG,③∠ADC=∠GCD,④CA平分∠BCG.其中正确的个数是()A. 1B. 2C. 3D. 411.我国自主研发的某型号手机处理器采用10nm工艺,已知1nm=0.000000001m,则10nm用科学记数法可表示为______m.12.因式分解:x2−16=______ .13.关于x的方程2x−2m=x+4的解为1,则m的值是______ .14.一个多边形的每个外角都是60°,则这个多边形边数为______.15.若2x=5,2y=3,则22x+y=______.16.将一个宽度相等的纸条按如图所示方式折叠,如果∠1=138°,那么∠2=______ .17.如图,两个正方形边长分别为a、b,如果a+b=18,ab=12,则阴影部分的面积为______ .18.观察下列各式(x−1)(x+1)=x2−1(x−1)(x2+x+1)=x3−1(x−1)(x3+x2+x+1)=x4−1(x −1)(x 4+x 3+x 2+x +1)=x 5−1…则:1+3+32+⋯+3886+3887+3888= ______ .19. 计算:(1)−13+(−12)−2−3.140; (2)(−2a 3)2+(a 2)3−2a ⋅a 5;(3)(a 3b −3a 2b +2ab 3)÷ab ;(4)x(x +7)−(x −3)(x +2).20. 因式分解:2x 3y +4x 2y 2+2xy 3.21. 解不等式组{4(x +1)≤7x +10x −5<x−83,并写出它的所有非负整数解.22.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A与点D重合,点E、F分别是B、C的对应点.(1)请画出平移后的△DEF;(2)若连接AD、CF,则这两条线段之间的关系是______ ;(3)△ABC的面积是______ .23.先化简,再求值:(2a−1)2+6a(a+1)−(3a+2)(3a−2),其中a2+2a−2021=0.24.如图,AB//CD,∠B=26°,∠D=39°,求∠BED的度数.完成以下解答过程中的空缺部分:解:过点E作EF//AB,∴∠B=∠______ (______ ).∵∠B=26°(已知),∴∠1=______ °(等量代换).∵AB//CD(已知),∵EF//AB(作辅助线),∴EF//CD.∴∠D=∠______ .∵∠D=39°(已知),∴∠2=______ °.∴∠BED=______ °(等式性质).25.“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某童装厂准备生产L、M两种型号的童装销往“一带一路”沿线国家和地区.现工厂有甲种布料38米,乙种布料26米.计划用这两种布料生产这两种型号的童装50套进行市场调研.已知做一套L型号的童装需甲种布料0.5米、乙种布料1米,可获利50元;做一套M型号的童装需甲种布料0.9米、乙种布料0.2米,可获利30元.(1)按要求安排L、M两种型号的童装的生产套数,有哪几种方案?请你设计出来;(2)在你设计的方案中,哪种生产方案获总利润最大?最大利润是多少?26.整式乘法与多项式因式分解是既有联系又有区别的两种变形.例如,a(b+c+d)=ab+ac+ad是单项式乘多项式的法则;把这个法则反过来,得到sb+ac+ad= a(b+c+d),这是运用提取公因式法把多项式因式分解.又如(a±b)2=a2±2ab+b2、(a+b)(a−b)=a2−b2是多项式的乘法公式;把这些公式反过来,得到a2±2ab+b2=(a±b)2、a2−b2=(a+b)(a−b),这是运用公式法把多项式因式分解.把多项式乘多项式法则(a+b)(c+d)=ac+ad+bc+bd反过来,将得到什么呢?事实上,ac+ad+bc+bd=a(c+d)+b(c+d)=(a+b)(c+d),这样多项式ac+ad+bc+bd就分解为两个因式(a+b)与(c+d)的乘积.类似地,ac+bc+3a+3b=c(a+b)+3(a+b)=(a+b)(c+3).问题一:因式分解:(1)a2−ab+ac−bc;(2)9a2−6a+2b−b2.问题二:探究对x、y定义一种新运算F,规定:F(x,y)=(mx+ny)(3x−y)(其中m,n均为非零常数).当x2≠y2时,F(x,y)=F(y,x)对任意有理数x、y都成立,试探究m,n的数量关系.27.如图,在△ABC中,BC=6cm.射线AG//BC,点E从点A出发沿射线AG以2cm/s的速度运动,当点E出发1s后,点F也从点B出发沿射线BC以3cm/s的速度运动,分别连接AF,CE.设点E运动时间为t(S),其中t>0.(1)若∠BAF<∠BAC,则t的取值范围是______ ;(2)当t为何值时,AE=CF;(3)是否存在某一时刻t,使S△ABF+S△ACE=S△ABC.28.在△ABC中,∠A=70°,点D、E分别是边AC、AB上的点(不与A、B、C重合),点P是平面内一动点(P与D、B不在同一直线上),设∠PEB=∠1,∠DPE=∠2,∠PDC=∠3.(1)若点P在边BC上运动(不与点B和点C重合),如图(1)所示,则∠2=______ ;(用含有∠1、∠3的代数式表示)(2)若点P在△ABC的外部,如图(2)所示,则∠1、∠2、∠3之间有何关系?写出你的结论,并说明理由.(3)当点P在边CB的延长线上运动时,试画出相应图形,标注有关字母与数字,并写出对应的∠1、∠2、∠3之间的关系式.(不需要证明)答案和解析1.【答案】C【解析】解:A、不是由“基本图案”经过平移得到,故此选项不合题意;B、不是由“基本图案”经过平移得到,故此选项不合题意;C、是由“基本图案”经过平移得到,故此选项符合题意;D、不是由“基本图案”经过平移得到,故此选项不合题意;故选:C.确定一个基本图案按照一定的方向平移一定的距离组成的图形就是经过平移得到的图形.此题主要考查了利用平移设计图案,关键是正确理解平移的概念.2.【答案】D【解析】解:A、a2+a3不能进一步计算,不符合题意;B、a2⋅a3=a5,故错误,不符合题意;C、a6÷a3=a3,故错误,不符合题意;D、(a3)2=a6,正确,符合题意,故选:D.分别根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,合并同类项,只把系数相加减,字母与字母的次数不变,对各选项计算后利用排除法求解.本题考查了同底数幂的乘法,幂的乘方,同底数幂的除法,合并同类项的法则,熟练掌握运算性质是解题的关键.3.【答案】D【解析】解:A,(x+y)2=x2+2xy+y2,故A选项不正确;B,(x−y)2=x2−2xy+y2,故B选项不正确;C,(x+y)(y−x)=y2−x2,故C选项不正确;D,(x+y)(x−y)=x2−y2,故D选项正确.故选:D.根据平方差公式和完全平方公式求解即可.此题考查的是平方差公式和完全平方公式,熟记这两个公式是解题的关键.4.【答案】B【解析】【分析】本题考查了三角形的三边关系,是基础题,熟记三边关系是解题的关键.根据三角形的任意两边之和大于第三边对各选项分析判断后利用排除法求解.【解答】解:A.∵4+4=8>5,∴4cm、4cm、5cm能组成三角形,故本选项错误;B.∵4+6=10<11,∴4cm、6cm、11cm不能组成三角形,故本选项正确;C.∵5+4=9>6,∴4cm、5cm、6cm能组成三角形,故本选项错误;D.∵5+12=17>13,∴5cm、12cm、13cm能组成三角形,故本选项错误.故选B.5.【答案】B【解析】解:A、不是一元一次不等式,故本选项不符合题意;B、是一元一次不等式,故本选项符合题意;C、不是一元一次不等式,故本选项不符合题意;D、不是一元一次不等式,故本选项不符合题意;故选:B.根据一元一次不等式的定义逐个判断即可.本题考查了一元一次不等式的定义,能熟记一元一次不等式的定义的内容是解此题的关键.6.【答案】D【解析】解:∵a,b互为相反数,∴a+b=0,∴a2+ab−4=a(a+b)−4=0−4=−4.故选:D.首先利用相反数的定义得出a+b=0,再利用提取公因式法将原式变形求出答案.此题主要考查了提取公因式的应用以及相反数的定义,正确将原式变形是解题关键.7.【答案】B【解析】解:A、∵AB//CD,∴∠1+∠2=180°,故A错误;B、∵AB//CD,∴∠1=∠3,∵∠2=∠3,∴∠1=∠2,故B正确;C、∵AB//CD,∴∠BAD=∠CDA,若AC//BD,可得∠1=∠2;故C错误;D、若梯形ABCD是等腰梯形,可得∠1=∠2,故D错误.故选:B.根据平行线的性质求解即可求得答案,注意掌握排除法在选择题中的应用.此题主要考查了平行线的性质,关键是掌握平行线的性质定理.此题难度不大,注意掌握数形结合思想的应用.8.【答案】D【解析】解:解不等式3x−2>4(x−1)得到x<2,∵关于x的不等式组{3x−2>4(x−1)x<a的解集为x<2,∴a≥2.故选:D.先解不等式3x−2>4(x−1)得到x<2,再根据x<2,由不等式组解集的规律即可得解.考查了解一元一次不等式组,关键是熟悉不等式组解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.9.【答案】A【解析】解:当边长为m+2n时,(m+2n)2=m2+4mn+4n2,此时需要A类1块,B类4块,C类4块,此时多出一块C类,故选项A正确,当边长为2m+n时,(2m+n)2=4m2+4mn+n2,此时需要A类4块,B类4块,C类1块,不符合题意,故选项B错误,当边长为2m+2n时,(2m+2n)2=4m2+8mn+4n2,此时需要A类4块,B类8块,C类4块,不符合题意,故选项C错误,当边长为m+n时,(m+n)2=m2+2mn+n2,此时需要A类1块,B类2块,C类1块,不符合题意,故选项D错误,故选:A.根据题目中的选项,可以用假设法进行判断,即可得到哪个选项是正确的.本题考查完全平方公式,解答本题的关键是明确题意,找出所求问题需要的条件,利用假设法解答本题.10.【答案】C【解析】解:①∵CD平分∠ACB,∴∠BCA=2∠DCB,∵∠CEG=2∠DCB,∴∠CEG=∠BCA,∴EG//BC,故①正确;②∵△ABC的角平分线CD、BE相交于F,∴∠CBF=12∠CBA,∠BCF=12∠BCA,∵∠A=90°,∴∠CBA+∠BCA=90°,∴∠CBF+∠BCF=45°,即∠DFB=45°,∵∠DFB=12∠CGE,∴∠CGE=90°,即CG⊥EG.故②正确;③∵CG⊥EG,∴∠G=90°,∴∠GCE+∠CEG=90°,∵∠A=90°,∴∠BCA+∠ABC=90°,∵∠CEG=∠ACB,∴∠ECG=∠ABC,∵∠ADC=∠ABC+∠DCB,∠GCD=∠ECG+∠ACD,∠ACD=∠DCB,∴∠ADC=∠GCD,故③正确;④假设CA平分∠BCG,则∠ECG=∠ECB=∠CEG,∴∠ECG=∠CEG=45°,显然不符合题意,故④错误.故选:C.①正确.利用平行线的性质证明即可;②正确.首先证明∠CBF=12∠CBA,∠BCF=12∠BCA,再利用三角形的外角的性质解决问题即可;③正确.利用同角的余角相等得到∠ECG=∠ABC,再根据直角三角形的性质可得;④错误.假设AC平分∠BCG,再得到与图形不符的结论即可解决问题.本题考查三角形内角和定理,三角形外角的性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.11.【答案】1×10−8【解析】解:10nm用科学记数法可表示为1×10−8m,故答案为:1×10−8.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.【答案】(x+4)(x−4)【解析】解:x2−16=(x+4)(x−4).故答案为:(x+4)(x−4).直接利用平方差公式分解因式得出答案.此题主要考查了公式法分解因式,正确运用乘法公式是解题关键.13.【答案】−32【解析】解:∵关于x的方程2x−2m=x+4的解为1,∴2×1−2m=1+4,∴m=−32,故答案为:−32.将1代入方程即可解决问题.本题考查了方程解的定义,属于简单题.14.【答案】6【解析】解:360÷60=6.故这个多边形边数为6.故答案为:6.利用外角和除以外角的度数即可得到边数.此题主要考查了多边形的外角和,关键是掌握任何多边形的外角和都360°.15.【答案】75【解析】解:∵2x=5,2y=3,∴22x+y=(2x)2×2y=52×3=75.故答案为:75.直接利用同底数幂的乘法运算法则以及幂的乘方运算法则将原式变形进而得出答案.此题主要考查了同底数幂的乘法运算以及幂的乘方运算,正确掌握运算法则是解题关键.16.【答案】111°【解析】解:∵∠1=138°,纸条的边互相平行,∴∠3=180°−∠1=180°−138°=42°,根据翻折的性质,∠4=12(180°−∠3)=12(180°−42°)=69°,∴∠2=180°−∠4=180°−69°=111°.故答案为:111°.根据两直线平行,同旁内角互补的性质求出∠3,然后翻折的性质求出∠4,再根据两直线平行,同旁内角互补列式进行计算即可得解.本题考查了两直线平行,同旁内角互补的性质,翻折的性质,准确识图,熟练掌握性质平行线的性质是解题的关键.17.【答案】144【解析】解:阴影部分的面积为:S正方形ABCD +S正方形CEFG−S△ABD−S△BFG=a2+b2−12a2−12(a+b)⋅b=12a2−12ab+12b2=12(a2+b2)−12ab=12(a2+2ab+b2−2ab)−12ab=12(a+b)2−32ab.∵a+b=18,ab=12,∴阴影部分的面积为:12×182−32×12=144.∴阴影部分的面积为 144.故答案为:144.将阴影部分的面积表示为两个正方形的面积之和减去△ABD和△BFG的面积,再利用配方法将多项式变形后,整体代入即可求解.本题主要考查了完全平方公式的几何背景,正方形,等腰直角三角形,三角形的面积,利用配方法将多项式变形,利用整体代入的思想求值是解题的关键.18.【答案】3889−12【解析】解:由题中给出的式子可得;(x−1)(x n−1+x n−2+⋯+x2+x+1)=x n−1,∴(3−1)(1+3+32+⋯+3886+3887+3888)=3889−1,∴1+3+32+⋯+3886+3887+3888)=3889−12.故答案为:3889−12.观察所给式子的特点,等号右边x的指数比等号左边x的最高指数大1,据此解答即可.本题考查了平方差公式的推广,要读懂题目并总结出规律,解题的关键是找出所给范例展示的规律.19.【答案】解:(1)−13+(−12)−2−3.140=−1+4−1=2;(2)(−2a3)2+(a2)3−2a⋅a5=4a6+a6−2a6=3a6;(3)(a3b−3a2b+2ab3)÷ab=a2−3a+2b2;(4)x(x+7)−(x−3)(x+2)=x2+7x−x2+x+6=8x+6.【解析】(1)根据有理数的乘方、负整数指数幂和零指数幂可以解答本题;(2)根据积的乘方、幂的乘方和同底数幂的乘法可以解答本题;(3)根据多项式除以单项式可以解答本题;(4)根据单项式乘多项式和多项式乘多项式可以解答本题.本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.20.【答案】解:原式=2xy(x2+2xy+y2)=2xy(x+y)2.【解析】直接提取公因式2xy,进而利用完全平方公式分解因式即可.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.21.【答案】解:{4(x+1)≤7x+10①x−5<x−83②,由①得:x≥−2;由②得:x<72,∴不等式组的解集为−2≤x<72,则不等式组的所有非负整数解为:0,1,2,3.【解析】此题考查了解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可确定出所有非负整数解.22.【答案】AD//CF,AD=CF7【解析】解:(1)如图,△DEF即为所求作.(2)AD//CF.AD=CF.故答案为:AD//CF,AD=CF.(3)S△ABC=4×4−12×2×4−12×2×3−12×4×1=7,故答案为:7.(1)分别作出A,B,C的对应点D,E,F即可.(2)利用平移的性质判断即可.(3)利用分割法求出面积即可.本题考查作图−平移变换三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.【答案】解:原式=4a2−4a+1+6a2+6a−9a2+4=a2+2a+5,∵a2+2a−2021=0,∴a2+2a=2021,∴原式=2021+5=2026.【解析】直接利用乘法公式以及整式的混合运算法则化简,再利用已知变形代入即可.此题主要考查了整式的混合运算−化简求值,正确运用乘法公式是解题关键.24.【答案】1 两直线平行,内错角相等 26 2 39 65【解析】解:过点E 作EF//AB ,∴∠B =∠1(两直线平行,内错角相等).∵∠B =26°(已知),∴∠1=26°(等量代换).∴AB//CD(已知),∵EF//AB(作辅助线),∴EF//CD .∴∠D =∠2(两直线平行,内错角相等).∵∠D =39°(已知),∴∠2=39°(等量代换).∴∠BED =65°(等式性质).故答案为:1;两直线平行,内错角相等;26;2;39;65.过点E 作EF//AB ,则可判断AB//EF//CD ,根据平行线的性质得∠1=∠B =26°,∠2=∠D =39°,于是得到∠BED =65°.本题考查了平行线的性质与判定,熟练掌握平行线的性质与判定是解决问题的关键.25.【答案】解:(1)设生产L 型号的童装x 件,则生产M 型号的童装(50−x)件,依题意得:{0.5x +0.9(50−x)≤38x +0.2(50−x)≤26, 解得:352≤x ≤20.又∵x 为正整数,∴x 可以取18,19,20,∴共有3种生产方案,方案1:生产18套L 型号的童装,32套M 型号的童装;方案2:生产19套L 型号的童装,31套M 型号的童装;方案3:生产20套L 型号的童装,30套M 型号的童装.(2)方案1获得的总利润为50×18+30×32=1860(元);方案2获得的总利润为50×19+30×31=1880(元);方案3获得的总利润为50×20+30×30=1900(元).∵1860<1880<1900,∴方案3获得的总利润最大,最大利润是1900元.【解析】(1)设生产L型号的童装x件,则生产M型号的童装(50−x)件,根据生产50套童装所需甲种布料不超过38米、乙种布料不超过26米,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再结合x为正整数即可得出各生产方案;(2)利用总利润=每套的利润×生产数量,即可得出各生产方案获得的总利润,比较后即可得出结论.本题考查了一元一次不等式组的应用以及有理数的混合运算,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式组;(2)利用总利润=每套的利润×生产数量,分别求出各生产方案可获得的总利润.26.【答案】解:问题一、(1)a2−ab+ac−bc=a(a−b)+c(a−b)=(a−b)(a+c);(2)9a2−6a+2b−b2,=(3a+b)(3a−b)−2(3a−b)=(3a−b)(3a+b−2),问题二、∵F(x,y)=(mx+ny)(3x−y),F(y,x)=(my+nx)(3y−x),又∵F(x,y)=F(y,x),∴(mx+ny)(3x−y)=(my+nx)(3y−x),3mx2+(3n−m)xy−ny2=−nx2+(3n−m)xy+3my2,∵x2≠y2,∴3m=−n.【解析】(1)套用例子两两进行分组解决问题;(2)是新定义题,列出式子,左右进行对比得出答案.本题考查了多项式的因式分解,灵活运用分组分解法进行因式分解是解题的关键.27.【答案】0<t<2【解析】解:(1)当BF<BC时,∠BAF<∠BAC,∴3t<6,解得t<2,故答案为0<t<2;(2)分两种情况讨论:①点F在点C左侧时,AE=CF,则2(t+1)=6−3t,;解得t=45②当点F在点C的右侧时,AE=CF,则2(t+1)=3t−6,解得t=8,综上所述,t=4或8时,AE=CF;5(3)当BF+AE=BC,S△ABF+S△ACE=S△ABC,∴3t+2(t+1)=6,解得t=4.5(1)根据边越长,边所对的角越大,可得答案;(2)分类讨论:当点F在点C左侧时,点F再点C的右侧时,可得关于t的一元一次方程,根据解方程,可得答案;(3)当BF+AE=BC,S△ABF+S△ACE=S△ABC,即可求解.本题三角形综合题,主要考查了平行线间的距离,利用了平行线间的距离相等.28.【答案】∠1+∠3−70°【解析】解:(1)∵∠AEP=180°−∠1,∠ADP=180°−∠3,∴180°−∠1+180°−∠3+∠2+70°=360°,即∠2=∠1+∠3−70°;故答案为:∠1+∠3−70°.(2)结论:∠3=∠1+∠2−70°.如图:根据三角形外角的性质可知,∠4=∠1−70°,∠3=∠5+∠2,由对顶角可知:∠5=∠4=∠1−70°,∴∠3=∠1−70°+∠2=∠1+∠2−70°.(3)如图①,由外角的性质得:∠4=∠3−70°,∠1=∠5+∠2,由对顶角可知:∠5=∠4=∠3−70°,∴∠1=∠3−70°+∠2=∠3+∠2−70°.如图②,由外角的性质得:∠4=∠3−70°,∠5=∠2+∠1,由对顶角可知:∠5=∠4,∴∠3−70°=∠1+∠2,即∠3=∠1+∠2+70°.综上:∠1=∠3+∠2−70°或∠3=∠1+∠2+70°.(1)根据∠AEP=180°−∠1,∠ADP=180°−∠3和四边形AEPD的内角和为360°,表示出∠3,∠1,∠2之间的关系;(2)根据三角形外角的性质∠4=∠1−70°,∠3=∠5+∠2,求出∠3,∠1,∠2之间的关系;(3)画出符合条件的图形,根据图形和(2)的结论解答即可.本题考查的是三角形内角和定理和三角形的外角的性质的综合运用,灵活运用定理进行计算是解题的关键,在画图时,要全面考虑问题,不要只画出一种.。
江苏省苏州市2020版七年级下学期数学期中考试试卷B卷
江苏省苏州市2020版七年级下学期数学期中考试试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020七下·交城期末) 下列化简正确的是A .B .C .D .2. (2分) (2020八上·通州期末) 下列实数① ;② ;③ ;④ ,其中是无理数的是()A . ①B . ②C . ③D . ④3. (2分)(2019·天水) 自然界中的数学不胜枚举,如蜜蜂建造的蜂房既坚固又省料,其厚度为0.000073米,将0.000073用科学记数法表示为(()A .B .C .D .4. (2分)设▲、、■分别表示三种不同物体.现用天平秤两次,情况如图所示,那么▲、、■这三种物体按质量从大到小排列应为()A . ■、、▲B . ▲、■、C . ■、▲、D . 、▲、■5. (2分) (2019七下·东城期末) 不等式 x - 3≤0 的正整数解的个数是()A . 1B . 2C . 3D . 46. (2分) (2019九上·北碚月考) 已知数m使关于x的不等式组至少有一个非负整数解,且使关于x的分式方程有不大于5的整数解,则所有满足条件的m的个数是()A . 1B . 2C . 3D . 47. (2分)(2019·贵池模拟) 下列运算正确是()A . (﹣a2)3=a6B . a2a3=a6C . (﹣ab)2=a2bD . 2a6÷a3=2a38. (2分)计算(ab2)3的结果是()A . ab5B . ab6C . a3b5D . a3b69. (2分)已知二次三项式 x2+12x+m2 是一个完全平方式,那么m的值是()A . 36B . 6C . -6D .10. (2分) (2019七下·唐河期末) 把一些书分给几名同学,若______;若每人分11本,则有剩余.依题意,设有名同学,可列不等式,则横线的信息可以是()A . 每人分7本,则剩余8本B . 每人分7本,则可多分8个人C . 每人分8本,则剩余7本D . 其中一个人分7本,则其他同学每人可分8本二、填空题 (共4题;共8分)11. (1分) (2020七下·枣庄期中) 已知,,则 ________.12. (1分) (2019七下·蔡甸月考) 实数a的位置如图所示,那么a 、-a、、a2的大小关系是________.13. (5分) (2018九上·黑龙江月考) 当x= -1时,代数式x2+2x+2的值是________.14. (1分)如果关于x的不等式组的整数解仅有1,2,那么适合这个不等式组的整数a,b组成的有序数对(a,b)共有________个.三、解答题 (共9题;共77分)15. (10分)计算(1) 24+[﹣18+6﹣(﹣23)](2)(﹣18)÷(﹣)×(﹣)(3)﹣12015×7+(﹣2)3÷(4) |﹣12|÷4+(﹣)×12﹣(﹣2)2 .16. (5分) (2019七上·丰台期中) 若关于的一元一次方程的解是正整数,求整数的值.17. (10分)(2020·镇江)(1)解方程:= +1;(2)解不等式组:18. (5分) (2020七上·浦城期末)(1)计算﹣22×2 (﹣3)3×()(2)求代数式﹣2x2 3y2﹣2(x2﹣y2)+6]的值,其中x=﹣1,y=﹣2.19. (5分)求下列各式中的x的值:(1) 8x3+125=0;(2) (x-3)2-9=0.20. (10分) (2019七上·昌平期中) 阅读下列材料:1×2=(1×2×3-0×1×2),2×3=(2×3×4-1×2×3),3×4=(3×4×5-2×3×4),由以上三个等式相加,可得1×2+2×3+3×4=×3×4×5=20.读完以上材料,请你计算下列各题:(1)1×2+2×3+3×4+…+10×11(写出过程);(2)1×2+2×3+3×4+…+n×( n+1)=________;(3)1×2×3+2×3×4+3×4×5+…+7×8×9=________.21. (10分) (2019九上·慈溪期中) 合肥市某学校搬迁,教师和学生的寝室数量在增加,若该校今年准备建造三类不同的寝室,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍.(1)若2015年学校寝室数为64个,2017年建成后寝室数为121个,求2015至2017年的平均增长率;(2)若建成后的寝室可供600人住宿,求单人间的数量;(3)若该校今年建造三类不同的寝室的总数为180个,则该校的寝室建成后最多可供多少师生住宿?22. (11分) (2018九上·天台月考) 对实数a,b定义运算求函数y=x※(2x-1)的解析式;(1)若点A(x1,y1),B(x2,y2)(x1<x2)在函数y=x※(2x-1)的图象上,且A,B两点关于坐标原点成中心对称,求点A的坐标;(2)关于x的方程x※(2x-1)=m恰有三个互不相等的实数根,则m的取值范围是1 .23. (11分) (2019七下·青山月考) 图1中的长方形长为宽的3倍,将四个这样的长方形拼成图2中的大正方形.(1)若中间小正方形的面积是,问图1中的长方形的面积是多少?(2)若大正方形的面积就比小正方形的面积大,求中间小正方形的面积.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共4题;共8分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:三、解答题 (共9题;共77分)答案:15-1、答案:15-2、答案:15-3、答案:15-4、考点:解析:答案:16-1、考点:解析:答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、答案:20-3、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:。
2020-2021学年七年级下学期期中数学试卷及答案解析 (31)
2020-2021学年七年级下学期期中数学试卷一、选择题(每小题3分,共30分)1.计算(2x)2的结果是()A.2x2B.4x2C.4x D.2x解:(2x)2=22×x2=4x2.故选:B.2.下列语句中正确的是()A.相等的角是对顶角B.有公共顶点且相等的角是对顶角C.有公共顶点的两个角是对顶角D.角的两边互为反向延长线的两个角是对顶角解:A、相等的角不一定是对顶角,是假命题;B、有公共顶点且相等的角不一定是对顶角,错误;C、有公共顶点的两个角不一定是对顶角,错误;D、角的两边互为反向延长线的两个角是对顶角,正确;故选:D.3.下列运算正确的是()A.a2•a3=a6B.(ab)2=a2b2C.(a2)3=a5D.a2+a2=a4解:A、a2•a3=a2+3=a5,故本选项错误;B、(ab)2=a2b2,故本选项正确;C、(a2)3=a2×3=a6,故本选项错误;D、a2+a2=2a2,故本选项错误.故选:B.4.如果一个角的余角是30°,那么这个角的补角的度数是()A.30°B.60°C.90°D.120°解:由题意,得:180°﹣(90°﹣30°)=180°﹣60°=120°.故这个角的补角的度数是120°.故选:D.5.若物体运动的路程s(米)与时间t(秒)的关系式为s=3t2+2t+1,则当t=4秒时,该物体所经过的路程为()A.28米B.48米C.57米D.88米解:把t=4代入s=3t2+2t+1,得s=3×42+2×4+1=57(米).故选:C.6.在关系式y=3x+5中,下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x无关;④用关系式表示的不能用图象表示;⑤y与x的关系还可以用列表法和图象法表示,其中说法正确的是()A.①②⑤B.①②④C.①③⑤D.①④⑤解:①x是自变量,y是因变量;正确;②x的数值可以任意选择;正确;③y是变量,它的值与x无关;而y随x的变化而变化;错误;④用关系式表示的不能用图象表示;错误;⑤y与x的关系还可以用列表法和图象法表示,正确;故选:A.7.若(x﹣2)(x+3)=x2+ax+b,则a、b的值分别为()A.a=5,b=6B.a=1,b=﹣6C.a=1,b=6D.a=5,b=﹣6解:∵(x﹣2)(x+3)=x2+x﹣6=x2+ax+b,∴a=1,b=﹣6.故选:B.8.如图,已知B、C、E在同一直线上,且CD∥AB,若∠A=105°,∠B=40°,则∠ACE 为()A.35°B.40°C.105°D.145°解:∵CD∥AB,∠B=40°,∠A=105°,∴∠DCE=∠B=40°,∠ACD=∠A=105°,∴∠ACE=∠ACD+∠DCE=145°.故选:D.9.张大伯出去散步,从家走了20分钟,到一个离家900米的阅报亭,看了10分钟报纸后,用了15分钟返回到家,下面哪个图形表示张大伯离家时间与距离之间的关系()A.B.C.D.解:依题意,0~20min散步,离家路程从0增加到900m,20~30min看报,离家路程不变,30~45min返回家,离家从900m路程减少为0m.故选:D.10.设a=x﹣2017,b=x﹣2019,c=x﹣2018,若a2+b2=34,则c2的值是()A.16B.12C.8D.4解:∵a=x﹣2017,b=x﹣2019,a2+b2=34,∴(x﹣2017)2+(x﹣2019)2=34,∴(x﹣2018+1)2+(x﹣2018﹣1)2=34,∴(x﹣2018)2+2(x﹣2018)+1+(x﹣2018)2﹣2(x﹣2018)+1=34,∴2(x﹣2018)2=32,∴(x﹣2018)2=16,又c=x﹣2018,∴c2=16.故选:A.二、填空题(每小题4分,6小题共24分)11.(4分)如果a x•a3=a5,那么x=2.解:由题意,得x+3=5,解得x=2,故答案为:2.12.(4分)在关系式y=3x﹣1中,当x由1变化到5时,y由2变化到14.解:当x=1时,代入关系式y=3x﹣1中,得y=3﹣1=2;当x=5时,代入关系式y=3x﹣1中,得y=15﹣1=14.故答案为:2,14.13.(4分)如图,直线l1∥l2,被直线l所截,如果∠1=60°,那么∠2的度数为120°.解:∵直线l1∥l2,被直线l所截,∠1=60°,∴∠2=180°﹣60°=120°.故答案为:120°.14.(4分)小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行80米.解:通过读图可知:小明家距学校800米,小明从学校步行回家的时间是15﹣5=10(分),所以小明回家的速度是每分钟步行800÷10=80(米).故答案为:80.15.(4分)已知:如图,OC⊥AB,OD⊥OE,则与∠AOD互余的角是∠COD,∠BOE.解:∵OC⊥AB,OD⊥OE,∴∠DOE=∠COB=∠AOC=90°,∴∠AOD+∠COD=∠AOD+∠BOE=90°,∴与∠AOD互余的角是∠COD,∠BOE.故答案为:∠COD,∠BOE.16.(4分)设4x2+mx+121是一个完全平方式,则m=±44.解:∵4x2+mx+121是一个完全平方式,∴mx=±2×11•2x,∴m=±44.故答案为:±44.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)计算:(﹣2x3y2)3÷(2x2y)解:原式=﹣8x9y6÷2x2y=﹣4x7y5.18.(6分)先化简,再求值:(a+2)(a﹣2)+a(4﹣a),其中a=1 4.解:(a+2)(a﹣2)+a(4﹣a)=a2﹣4+4a﹣a2=4a﹣4,当a=14时,原式=4×14−4=1−4=−3.19.(6分)如图,直线a,b被直线c所截,若a∥b,∠1=40°,∠2=70°,求∠3的度数.解:∵a∥b,∠1=40°,∴∠4=∠1=40°,∴∠3=∠2+∠4=70°+40°=110°.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)若一个角的补角是这个角的余角的3倍,求这个角的度数.解:设这个角是x,则这个角的补角为180°﹣x,余角为90°﹣x,所以3(90°﹣x)=180°﹣x,整理,可得2x=90°,解得:x=45°,即这个角的度数为45°.21.(7分)已知y=﹣x2+(a﹣1)x+2a﹣3,当x=﹣1时,y=0,(1)求a的值;(2)当x=1时,求y的值.解:(1)由y=﹣x2+(a﹣1)x+2a﹣3,当x=﹣1时,y=0,得﹣1﹣(a﹣1)+2a﹣3=0,解得a=3;(2)函数解析式为y=﹣x2+2x+3,当x=1时,y=﹣1+2+3=4.22.(7分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.解:阴影部分的面积=(3a+b)(2a+b)﹣(a+b)2=6a2+5ab+b2﹣a2﹣2ab﹣b2=5a2+3ab,当a=3,b=2时,原式=5×32+3×3×2=63(平方米).五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=105°,求∠ACB的度数.解:(1)CD与EF平行.理由如下:∵CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°,∴EF∥CD;(2)∵EF∥CD,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠ACB=∠3=105°.24.(9分)小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的函数关系式.(2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?解:(1)设函数的解析式是y=kx,把x=40,y=64代入得:40k=64,解得k=1.6.则函数的解析式是y=1.6x.(2)∵价前西瓜售价每千克1.6元.降价0.4元后西瓜售价每千克1.2元.降价后销售的西瓜为(76﹣64)÷1.2=10(千克)∴小明从批发市场共购进50千克西瓜.(3)76﹣50×0.8=76﹣40=36(元).即小明这次卖瓜赚了36元钱.25.(9分)小学四年级我们已经知道三角形三个内角和是180°,对于如图1中,AC,BD 交于O点,形成的两个三角形中的角存在以下关系:①∠DOC=∠AOB②∠D+∠C=∠A+∠B.试探究下面问题:已知∠BAD的平分线AE与∠BCD的平分线CE交于点E,(1)如图2,若AB∥CD,∠D=30°,∠B=40°,则∠E=35°;(2)如图3,若AB不平行CD,∠D=30°,∠B=50°,则∠E=40°;(3)在总结前两问的基础上,借助图3,探究∠E与∠D、∠B之间是否存在某种等量关系?若存在,请说明理由;若不存在,请举例说明.解:(1)∠E=12(∠D+∠B)=35°;(2)∠E=12(∠D+∠B)=40°;(3)∠D+∠B=2∠E.简单说明:∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=12∠BCD,∠EAD=∠EAB=12∠BAD,∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB∴∠D+∠B=2∠E.故答案为:35°;40°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析:B
【解析】
∵−2<0,3>0,
∴(−2,3)在第二象限,
故选B.
10.D
解析:D
【解析】
一个自然数的算术平方根是x,则这个自然数是 则它后面一个数的算术平方根是 .
故选D.
11.C
解析:C
【解析】
【分析】
由平行线性质和角平分线定理即可求.
【详解】
∵AB∥CD
∴∠GEC=∠1=50°
∵EF平分∠GED
D. , ,此项正确,不合题意.
故选:C.
【点睛】
本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.
6.D
解析:D
【解析】
【分析】
根据平方根、算术平方根、立方根的定义,即可解答.
【详解】
A、一个数的算术平方根一定是正数,错误,例如0的算术平方根是0;
B、1的立方根是1,错误;
C、 ,错误;
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
分析:分别判断是否是假命题.
详解:选项A.对顶角相等,正确.
选项B.若直线a、b、c满足b∥a,c∥a,那么b∥c,正确.
选项C.两直线平行,同旁内角互补,正确.
选项D.互补的角是邻补角,错误,不相邻的两个补角不是邻补角.
故选D.
点睛:(1)真命题就是正确的命题,即如果命题的题设成立,那么结论一定成立.简单来说就是成立的、对的就是真命题.比如太阳是圆的...就是真命题.
(2)条件和结果相矛盾的命题是假命题,即不成立的、错的就是假命题.比如太阳是方的...就是假命题
2.C
解析:C
【解析】分析:让A点的横坐标减3,纵坐标加2即为点B的坐标.
④如果连接GF,则只有GF⊥EF时丁的结论才成立;
∴丙错误,丁错误;
故选:C.
【点睛】
本题考查平行线的性质和判定.熟记定理,并能正确识图,依据定理完成角度之间的转换是解决此题的关键.
4.D
解析:D
【解析】
试题解析:∠A比∠B大30°,
则有x=y+30,
∠A,∠B互余,
则有x+y=90.
故选D.
5.C
∴∠2=∠GEF= ∠GED= (180°-∠GEC)=65°
故答案为C.
【点睛】
本题考查的知识点是平行线性质和角平分线定理,解题关键是熟记角平分线定理.
12.D
解析:D
【解析】
【分析】
【详解】
如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,
∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,
解析:C
【解析】
【分析】
根据平行线的判定方法一一判断即可:A.同旁内角互补,两直线平行;B、C内错角相等,两直线平行;D.同位角相等,两直线平行,再根据结果是否能判断 ,即可得到答案.
【详解】
解:A. , ,此项正确,不合题意;
B. , ,此项正确,不合题意;
C.∵∠2=∠4,
∴CD∥AB,
∴不能判定 ,此项错误,符合题意;
16.若一个正数x的平方根是2a+1和4a-13,则a=____,x=____.
17.若不等式(m-2)x>1的解集是x< ,则m的取值范围是______.
18.如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为_____.
A.第一象限 B.第二象限 C.第三象限 D.第四象限
10.一个自然数的算术平方根是x,则它后面一个自然数的算术平方根是().
A.x+1B.x2+1C. D.
11.如图,AB∥CD,EF平分∠GED,∠1=50°,则∠2=()
A.50°B.60°C.65°D.70°
12.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=( )
三、解答题
21.计算:
(1) (2)
22.某学校为了迎接“中招考试理化生实验”,需购进 , 两种实验标本共75个.经调查, 种标本的单价为20元, 种标本的单价为12元,若总费用不超过1180元,那么最多可以购买多少个 种标本?(列不等式解决)
23.家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康.某市药监部门为了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调査.
【详解】
解:∵点A(0,1)的对应点C的坐标为(4,2),
即(0+4,1+1),
∴点B(3,3)的对应点D的坐标为(3+4,3+1),
即D(7,4);
故选:C.
【点睛】
此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.
8.A
解析:A
【解析】
【分析】
平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;
④家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收点.
24.求不等式 的所有正整数解.
25.观察下列关于自然数的等式:
① ;② ;③ ;…
根据上述规律解决下列问题:
(1)请仿照①、②、③,直接写出第4个等式:;
(2)请写出你猜想的第n个等式(用含n的式子表示),并证明该等式成立.
D、 是 的平方根,正确;
故选:D
【点睛】
本题考查了立方根、平方根,解决本题的关键是熟记平方根、立方根的定义.
7.C
解析:C
【解析】
【分析】
根据A和C的坐标可得点A向右平移4个单位,向上平移1个单位,点B的平移方法与A的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D的坐标.
A.(2,1)B.(﹣2,﹣1)C.(﹣2,1)D.(2,﹣1)
3.甲、乙、丙、丁一起研究一道数学题,如图,已知EF⊥AB,CD⊥AB,甲说:“如果还知道∠CDG=∠BFE,则能得到∠AGD=∠ACB.”乙说:“如果还知道∠AGD=∠ACB,则能得到∠CDG=∠BFE.”丙说:“∠AGD一定大于∠BFE.”丁说:“如果连接GF,则GF∥AB.”他们四人中,正确的是( )
①根据∠CDG=∠BFE结合两直线平行,同位角相等可得∠CDG=∠BCD,由此可得DG//BC,再根据两直线平行,同位角相等可得甲的结论;
②根据∠AGD=∠ACB可得DG//BC,再根据平行线的性质定理可得乙的结论;
③根据已知条件无法判断丙的说法是否正确;
④根据已知条件无法判断丁的说法是否正确.
【详解】
C. D. 是 的平方根
7.在平面直角坐标系中,点 的坐标 ,点 的坐标 ,将线段 平移,使得 到达点 ,点 到达点 ,则点 的坐标是()
A. B. C. D.
8.下列生活中的运动,属于平移的是()
A.电梯的升降 B.夏天电风扇中运动的扇叶
C.汽车挡风玻璃上运动的刮雨器 D.跳绳时摇动的绳子
9.在平面直角坐标中,点M(-2,3)在()
∴∠ABE+∠BED+∠CDE=360°.
又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,
∴∠FBE+∠FDE= (∠ABE+∠CDE)= (360°﹣90°)=135°,
∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.
故选D.
【点睛】
本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.
14.x=4【解析】【分析】【详解】解:∵点P(x+3x−4)在x轴上∴x−4=0解得:x=4故答案为:x=4
解析:x=4
【解析】
【分析】
【详解】
解:∵点P(x+3,x−4)在x轴上,
∴x−4=0,
解得:x=4,
故答案为:x=4.
15.垂线段最短【解析】【分析】根据题干跳远落点视为一个点直尺垂直踏板边缘可理解为作垂线然后用数学语言描述出来即可【详解】根据题意可知答案为:垂线段最短【点睛】本题考查点到直线距离在生活中的实际应用注意在
解析:垂线段最短
【解析】
【分析】
根据题干,跳远落点视为一个点,直尺垂直踏板边缘可理解为作垂线,然后用数学语言描述出来即可.
【详解】
根据题意,可知
答案为:垂线段最短
【点睛】
本题考查点到直线距离在生活中的实际应用,注意在书写答案时,尽量用“数学化”的语言来描述.
16.25【解析】【分析】【详解】∵正数m的平方根是2a+1和4a−13∴2a+1+4a−13=0解得a=2∴2a+1=2×2+1=5∴m=5²=25故答案为225
详解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,
∴点B的坐标是(-2,1).
故选:C.
点睛:本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.
3.C
解析:C
【解析】
【分析】
根据EF⊥AB,CD⊥AB,可得EF//CD,
A.110°B.120°C.125°D.135°
二、填空题
13.关于 的不等式 的解集为 ,写出一组满足条件的实数 , 的值: _________, ___________.
14.已知点P(x+3,x﹣4)在x轴上,则x的值为_____________.
15.运动会上裁判员测量跳远成绩时,先在距离踏板最近的跳远落地点上插上作为标记的小旗,再以小旗的位置为赤字的零点,将尺子拉直,并与踏板边缘所在直线垂直,把尺子上垂足点表示的数作为跳远成绩.这实质上是数学知识____________在生活中的应用.