北师大版七年级数学上册第二章 有理数及其运算 全章水平测试卷(含答案)

合集下载

【北师大版】七年级数学上册第二章测试卷附答案--有理数及其运算

【北师大版】七年级数学上册第二章测试卷附答案--有理数及其运算

第二章单元测试卷(时间:100分钟 满分:120分)一、选择题(本大题10小题,每小题3分,共30分)1. 中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么-80元表示(C )A .支出20元B .收入20元C .支出80元D .收入80元 2. 下列说法正确的是(A )A .分数都是有理数B .-a 是负数C .有理数不是正数就是负数D .绝对值等于本身的数是正数 3. -5的相反数是(B )A .-5B .5C .-15D .154. 下列各对数是互为倒数的是(C )A .4和-4B .-3和13C .-2和-12D .0和05. 下列运算错误的是(A )A .13÷(-3)=3×(-3)B .-5÷(-12)=-5×(-2) C .8-(-2)=8+2 D .0÷3=06. 一天时间为86400秒,用科学记数法表示这一数字是(C ) A .864×102 B .86.4×103 C .8.64×104 D .0.864×1057. 有理数a ,b 在数轴上的位置如图所示,在-a ,b -a ,a +b ,0中,最大的是(D )A .-aB .0C .a +bD .b -a 8. 下列说法中,正确的是(B )A .若a≠b,则a 2≠b 2B .若a>|b|,则a>bC .若|a|=|b|,则a =bD .若|a|>|b|,则a>b9. 已知|x|=4,|y|=1,且x>y ,则x +y 的值为(D ) A .5 B .3 C .-5或-3 D .5或310. 在某一段时间里,计算机按如图所示程序工作,如果输入的数是2,那么输出的数是(C )A .-54B .54C .-558D .558二、填空题(本大题6小题,每小题4分,共24分)11. 小雷同学准备在教师节时和几位同学一起去看小学的老师,约定在中午12点到,提前到的时间记为正,若小雷到的时间记为-0.5 h ,则小雷到的时间是12:30.12. 计算:-32+12=-1;-5-|-9|=-14.13. 已知有理数+3,-8,-10,+12,请你通过有理数的加减混合运算,使其运算结果最大,这个最大值是33.14. 若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是1,则(a +b)cd -8m 的值是8或-8.15. 已知a ,b 满足|a +3b +1|+(2a -4)2=0,则(ab 3)2=4.16. 已知下列一组数:-1,34,-59,716,-925,1136……,则第9个数与第10个数之和为-1618100.三、解答题(一)(本大题3小题,每小题6分,共18分) 17. 把下列各数填入它所属的集合内:5.2,0,π2,227,+(-4),-234,-(-3),0.25555…,-0.030030003…(1)分数集合:{5.2,227,-234,0.25555…};(2)非负整数集合:{0,-(-3)}; (3)有理数集合:{5.2,0,227,+(-4),-234,-(-3),0.25555…}. 18. 画出数轴,在数轴上表示下列各数,并用“>”把它们连接起来. -(-412),-2,0,(-1)2,|-3|,-313.解:如图所示:-(-412)>|-3|>(-1)2>0>-2>-31319. 计算:(1)-52-16×(-12)3+33; (2)(-2)3×5-|-2.8|÷(-2)2.解:4 解:-40.7四、解答题(二)(本大题3小题,每小题7分,共21分)20. 如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示-112,设点B 所表示的数为m.(1)求m 的值;(2)求|m -1|+(m -6)2的值.解:(1)m =12(2)|m -1|+(m -6)2=30.7521. 某自行车厂一周计划生产自行车1400辆,平均每天生产200辆,但由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正,减产记为负,单位:辆):(1)产量最多的一天比产量最少的一天多生产自行车26辆;(2)该厂实行计件工资制,每生产一辆自行车可得30元,若超额完成任务,则超过部分每辆另奖20元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少元?解:(2)该厂本周实际生产自行车1410辆,因为1410>1400,所以超额完成10辆.则该厂工人这一周的工资总额是30×1410+10×20=42300+200=42500(元)22. (1)已知a |a|+b |b|=0,求ab|ab|的值;(2)已知a ,b ,c 是不为0的有理数,求a |a|+b |b|+c|c|的值.解:(1)由a |a|+b |b|=0可知a ,b 异号,则ab<0,故|ab|=-ab ,所以ab |ab|=ab-ab =-1(2)当a ,b ,c 均大于0时,原式=1+1+1=3;当a ,b ,c 中有两个大于0时,原式=1+1-1=1;当a ,b ,c 中有一个大于0时,原式=-1-1+1=-1;当a ,b ,c 均小于0时,原式=-1-1-1=-3五、解答题(三)(本大题3小题,每小题9分,共27分)23. 10月1日这一天下午,公安局警车司机小张在东西走向的世纪大道上值勤.如果规定向东为正,警车的所有行程如下(单位:千米):+5,-4,+3,-6,-2,+10,-3,-7(1)最后,警车司机小张在距离出发点的什么位置?(2)若警车每行驶10千米的耗油量为1升,那么这一天下午警车共耗油多少升? (3)如现在油价为每升7.34元,那么花费了多少油钱?解:(1)+5+(-4)+(+3)+(-6)+(-2)+10+(-3)+(-7)=-4,所以小张在距离出发点的西边4千米处(2)(|+5|+|-4|+|+3|+|-6|+|-2|+|+10|+|-3|+|-7|)÷10×1=4(升)(3)7.34×4=29.36(元)24. 流花河的警戒水位是33.5米,下表记录的是今年某一周内的水位变化情况,取河流的警戒水位作为0点,并且上周末(星期六)的水位达到警戒水位,(正号表示水位比前一天上升,负号表示水位比前一天下降).(1)本周哪一天河流的水位最高?哪一天河流的水位最低? (2)与上周末相比,本周末河流的水位是上升了还是下降了? (3)以警戒水位作为零点,用折线统计图表示本周的水位情况.解:(1)周日的水位是33.5+0.3=33.8(米),周一的水位是33.8+0.81=34.61(米),周二的水位是34.61-0.32=34.29(米),周三的水位是34.29+0.04=34.33(米),周四的水位是34.33+0.27=34.6(米),周五的水位是34.6-0.35=34.25(米),周六的水位是34.25-0.02=34.23(米),所以本周周一河流的水位最高,周日河流的水位最低(2)因为34.23>33.5,所以与上周末相比,本周末河流的水位上升了(3)折线统计图如图:25. 观察下列两组算式: ①22×32与(2×3)2; ②(-12)2×22与[(-12)×2]2.(1)每组两个算式的结果是否相等?(2)根据(1)的结果猜想a n b n等于什么? (3)用(2)的结论计算(15)2018×(-5)2018.解:(1)因为22×32=4×9=36,(2×3)2=62=36,(-12)2×22=14×4=1,[(-12)×2]2=(-1)2=1,所以每组两个算式的结果是相等的(2)根据(1)的结果,可得a n b n =(ab)n(3)(15)2018×(-5)2018=[15×(-5)]2018=(-1)2018=1。

北师大版七年级上册数学 第二章 有理数及其运算 单元测试题含答案

北师大版七年级上册数学 第二章 有理数及其运算 单元测试题含答案

D. ±8 或±2
C.
D. (-6)÷(-2)=3
11.若│a│=5,│b│=3 且 a>b,则 a-b=( )
A. 2 或 8
B. -2 或-8
C. -5 或-3
D. ±3 或±8
二、填空题
12.在 3,﹣4,5,﹣6 这四个数中,任取两个数相乘,所得的积最大的是________. 13.﹣ 的倒数是________.
北师大版七年级上册数学 第二章 有理数及其运算 单元测试题
一、选择题
1.- 的相反数是( )
A. -
B. -
C.
D.
2.我国最长的河流长江全长约 6300 千米,用科学记数法表示为( )
A. 6.3×102 千米
B. 63×102 千米
C. 6.3×103 千米
D. 6.3×104 千米
3.下列四个数中,最大的数是( )
B. 0.05(精确到千分位)
C. 0.050(精确到千分位)
D. 0.0502(精确到 0.0001)
6.两个数的和为正数,那么这两个数是 ( )
A. 正数B. 负数C Nhomakorabea 一正一负
D. 至少有一个为正数
7.若有理数 m 在数轴上对应的点为 M,且满足|m|>1 且 m<0,则下列数轴表示正确的是( )
=-54-49+18 =-85
24.解:(1)原式=﹣ × ﹣16÷(﹣4)=﹣6+4=﹣2;
(2)原式=6x﹣12y+4y﹣12x=﹣6x﹣8y. 25. (1)解:成绩记为正数的不达标,只有 2 人不达标,6 人达标. 这个小组男生的达标率=6÷8=75% (2)解:﹣0.8+1﹣1.2+0﹣0.7+0.6﹣0.4﹣0.1=﹣1.6 15﹣1.6÷8=14.8 秒 26.(1)解:80+(﹣40)+60+75+(﹣65)+(﹣80)=30(千米), 答:渔政船在出发东方,它离出发点有 30 千米 (2)解:(80+|﹣40|+60+75+|65|+|﹣80|)×0.2=80(吨), 答:一共耗 80 吨油

北师大版七年级数学上册第二章《有理数及其运算》复习题含答案解析 (22)

北师大版七年级数学上册第二章《有理数及其运算》复习题含答案解析 (22)

一、选择题1.在运用有理数加法法则求两个有理数的和时,下列的一些思考步骤中最先进行的是()A.求两个有理数的绝对值,并比较大小B.确定和的符号C.观察两个有理数的符号,并作出一些判断D.用较大的绝对值减去较小的绝对值2.如图,点A,B在数轴上的位置如图所示,其对应的数分别为a,b,有以下结论:甲:b−a<0.乙:a+b>0.丙:a<∣b∣.丁:ab>∣ab∣,其中结论正确的是( )A.甲、乙B.甲、丙C.丙、丁D.乙、丁3.2019年世界超高清视频产业发展大会在广州召开,到2022年我国超高清视频产业规模将超过4万亿元.4万亿用科学记数法表示为( )A.4×104B.4×108C.4×1012D.4×10134.有理数m,n在数轴上的对应点的位置如图所示,则正确的结论是( )A.m<−1B.n>3C.m<−n D.m>−n5.有理数a,b在数轴上的位置如图所示,下列选项正确的是( )A.a+b>a−b B.ab>0C.∣b−1∣<1D.∣a−b∣>16.在数轴上有两个点,分别表示数x和y,已知∣x∣=1,且x>0,∣y+1∣=4,那么这两个点之间距离为( )A.2或6B.5或3C.2D.37.数轴上点A,M,B分别表示数a,a+b,b,那么下列运算结果一定是正数的是( )A.a+b B.a−b C.ab D.∣a∣−b8.古希腊著名的毕达哥拉斯学派把1,3,6,10⋯这样的数称为“三角形数”,而把1,4,9,16⋯ 这样的数称为“正方形数”.从图中可以发现,任何一个大于 1 的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是 ( )A .13=3+10B .25=9+16C .36=15+21D .49=18+319. 已知 a ,b ,c 为有理数,且 a +b +c =0,b ≥−c >∣a ∣,且 a ,b ,c 与 0 的大小关系是 ( ) A . a <0,b >0,c <0 B . a >0,b >0,c <0 C . a ≥0,b <0,c >0D . a ≤0,b >0,c <010. 一串数字的排列规律是:第一个数是 2,从第二个数起每一个数与前一个数的倒数之和为 1,则第 2020 个数是 ( ) A . 2 B . −2 C . −1 D . 12二、填空题11. 定义一种新运算:a ⋇b ={a −b,a ≥b3b,a <b ,则当 x =3 时,2⋇x −4⋇x 的结果为 .12. 在数轴上将点 A 移动 3 个单位长度恰好到达 −2 的位置,则点 A 表示的数是 .13. 代数式 ∣x −2018∣+5 的最小值是 .14. 定义新运算:对任意有理数 a ,b ,c ,都有 a ∗b ∗c =∣a−b−c∣+a+b+c2.例如:(−1)∗2∗3=∣−1−2−3∣+(−1)+2+32=5.将 −716,−616,−516,−416,−316,−216,−116,816,916,1016,1116,1216,1316,1416,1516这 15 个数分成5 组,每组 3 个数,进行 a ∗b ∗c 运算,得到 5 个不同的结果,那么 5 个结果之和的最大值是 .15. 数轴上点 M 表示有理数 −3,将点 M 向右平移 2 个单位长度到达点 N ,点 E 到点 N 的距离为 4,则点 E 表示的有理数为 .16. 我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为 个.17. 已知 a ,b ,c 为有理数,且满足 abc <0,a +b +c =0,则 ∣a∣b+c+∣b∣a+c+∣c∣b+a的值为 .三、解答题18. 在数轴上把下列各数表示出来,并用“<”连接各数.23,−∣−1∣,112,0,−(−3.5).19. 已知六(2)班有班费 300 元,收入记为正,支出记为负,生活委员的记录为:+50.5 元,−15.4 元,−5 元,则现在还有多少班费?20. 观察下列各式:−1×12=−1+12;−12×13=−12+13; −13×14=−13+14; ⋯.(1) 你发现的规律是 (用含 n 的式子表示).(2) 用以上规律计算:(−1×12)+(−12×13)+(−13×14)+⋯+(−12017×12018).21. 完成下列各题.(1) 19−9÷(−3)×(−13).(2) −14+16÷(−2)3×∣−3−1∣.22. 已知 m 和 n 互为相反数,p 和 q 互为倒数,a 的绝对值是 2,求 m+n2000a −2004pq +14a 2 的值.23.如图:有理数a,b,c在数轴上的位置如图所示,化简下列各式:(1) ∣a∣=,∣b∣=,∣c∣=,∣a+b∣=,∣b−c∣=;(2) ∣a+b∣+∣b−c∣.24.如图,四边形AOBC是正方形,点C的坐标是(8√2,0).(1) 正方形AOBC的边长为,点A的坐标是;(2) 将正方形AOBC绕点O顺时针旋转45∘,点A,B,C旋转后的对应点为Aʹ,Bʹ,Cʹ,求点Aʹ的坐标及旋转后的正方形与原正方形的重叠部分的面积;(3) 动点P从点O出发,沿折线OACB方向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t秒,当它们相遇时同时停止运动,当△OPQ为等腰三角形时,求出t的值(直接写出结果即可).25.已知:△ABC中,BC=a,AC=b,AB=c,a是最小的合数,b,c满足等式:∣b−5∣+(c−6)2=0,点P是△ABC的边上一动点,点P从点B开始沿着△ABC的边按BA→AC→CB顺序顺时针移动一周,回到点B后停止,移动的路程为S,如图1所示.(1) 试求出△ABC的周长;(2) 当点P移动到AC边上时,化简:∣S−4∣+∣3S−6∣+∣4S−45∣.答案一、选择题1. 【答案】C【解析】【分析】本题主要考查有理数的加法,熟练掌握加法法则是解题的关键.【解析】解:在运用有理数加法法则求两个有理数的和时,思考步骤中最先进行的是:观察两个有理数的符号,属于同号还是异号;其次是确定和的符号;然后求两个有理数的绝对值,并比较大小,最后是用较大的绝对值减去较小的绝对值,故选:C.【点评】本题主要考查有理数的加法运算,熟练掌握运算的法则是解题的关键.2. 【答案】B【解析】∵b<a,∴b−a<0,故甲正确;∵b<−2,0<a<2,∴a+b<0;故乙错误;∵b<−2,0<a<2,∴∣b∣>2,∴a<∣b∣,故丙正确;∵b<0,a>0,∴ab<0,∴ab<∣ab∣,故丁错误;∴正确的是:甲、丙.3. 【答案】C4. 【答案】D【解析】由数轴可得,−1<m<0<2<n<3,故选项A错误,选项B错误,∴m>−n,故选项C错误,选项D正确.5. 【答案】D【解析】由题可知0<a<1,正数,b<−1,负数;A.a+b<0,a−b>0,∴a+b<a−b,故A错误;B.a,b异号,ab<0,故B错误;C.b−1<−2,∣b−1∣>2>1,故C错误;D.a>0,−b>1,∣a−b∣>1,故D正确.故选D.6. 【答案】A【解析】∵∣x∣=1,且x>0,∴x=1,∵∣y+1∣=4,∴y=−5或3,∴这两个点之间距离为1−(−5)=6或3−1=2.7. 【答案】A【解析】∵a<a+b,∴b>0.∵a+b<b,∴a<0.∵AM>BM,∴∣a+b−a∣>∣a+b−b∣,∴∣b∣>∣a∣.∵a<0,b>0,∣b∣>∣a∣,A.∵a<0,b>0,∣b∣>∣a∣,a+b>0,故正确;B.∵a<0,b>0,a−b<0,故不正确;C.∵a<0,b>0,ab<0,故不正确;D.∵a<0,b>0,∣b∣>∣a∣,∣a∣−b<0,故不正确.8. 【答案】C【解析】显然选项A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和.9. 【答案】D【解析】∵∣a∣≥0,则b≥−c>∣a∣≥0,b>0,−c>0,即c<0,a+b+c=0,即a+b=−c≤b,即a≤0,∴a≤0,b>0,c<0.10. 【答案】A【解析】第一个数是2,倒数是1,2,倒数是2,第二个数是12第三个数是−1,倒数是−1.第四个数是2.由规律可知,这串数由 2,12,−1 循环出现 2020÷3=673⋯1, ∴ 第 2020 个数是 2.二、填空题 11. 【答案】 8【解析】当 x =3 时,原式=2⋇3−4⋇3=9−(4−3)=9−1=8.12. 【答案】 1 或 −5【解析】根据数轴上距离某点 3 个单位长度的数有两个来分情况讨论:若点 A 在 −2 的左边,移动 3 个单位长度恰好到达 −2 的位置,此时点 A 表示的数是 −5; 若点 A 在 −2 的右边,移动 3 个单位长度恰好到达 −2 的位置,此时点 A 表示的数是 1, ∴ 点 A 表示的数为 1 或 −5.13. 【答案】 5【解析】 ∵∣x −2018∣≥0, ∴∣x −2018∣+5≥5,∴ 代数式 ∣x −2018∣+5 的最小值是 5.14. 【答案】158【解析】令 b ,c 取最大的正数 1416,1516,a 取最小的负数 −716, ∴a ∗b ∗c =∣∣−716−1416−1516∣∣−716+1416+15162=158.15. 【答案】 −5 或 3【解析】 ∵ 点 M 表示有理数 −3,将点 M 向右平移 2 个单位长度到达点 N , ∴ 点 N 表示 −3+2=−1,点 E 在点 N 的左边时,−1−4=−5, 点 E 在点 N 的右边时,−1+4=3, 综上所述,点 E 表示的有理数是 −5 或 3.16. 【答案】 1838【解析】 2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1838.17. 【答案】−1【解析】不妨设ab>0,c<0,∵a+b+c=0,∴a+b>0,∴a>0,b>0,∴原式=a−a +b−b+−c−c=−1−1+1=−1.故答案为:−1.三、解答题18. 【答案】如图所示:观察数轴可知:−∣−1∣<0<23<112<−(−3.5).19. 【答案】300+50.5−15.4−5=330.1(元),答:现在还有330.1元班费.20. 【答案】(1) −1n ×1n+1=−1n+1n+1(2) 原式=−1+12−12+13−13+14−⋯−12017+12018 =−1+12018=−20172018.【解析】(1) ∵第1个式子为−1×12=−1+12第2个式子为−12×13=−12+13第3个式子为-13×14=−13+14⋯∴第n个式子为−1n ×1n+1=−1n+1n+1.21. 【答案】(1)19−9÷(−3)×(−13)=19−9×(−13)×(−13)=19−9×19=19−1=18.(2)−14+16÷(−2)3×∣−3−1∣=−1+16÷(−8)×4=−1+16×(−18)×4=−1+(−2)×4=−1−8=−9.22. 【答案】∵m和n互为相反数,p和q互为倒数,a的绝对值是2,∴m+n=0,pq=1,a=±2,a2=4.∴ m+n2000a −2004pq+14a2=0−2004×1+14×4=−2003.23. 【答案】(1) −a;b;−c;−(a+b);b−c(2) −a−c.24. 【答案】(1) 8;(4√2,4√2)(2) 如图.∵四边形AOBC是正方形,∴∠AOB=90∘,∠AOC=45∘.∵将正方形AOBC绕点O顺时针旋转45∘,∴点Aʹ落在x轴上.又∵正方形的边长为8,∴OAʹ=OA=8.∴点Aʹ的坐标为(8,0).∵OC=8√2,∴AʹC=OC−OAʹ=8√2−8.∵四边形OACB,OAʹCʹBʹ是正方形,∴∠OAʹCʹ=90∘,∠ACB=90∘,∴∠CAʹE=90∘,∠OCB=45∘.∴∠AʹEC=∠OCB=45∘.∴AʹE=AʹC=8√2−8.∴S OBEAʹ=S△OBC−S△AʹCE=12OB2−12AʹE2=12×82−12(8√2−8)2=64√2−64.∴旋转后的正方形与原正方形的重叠部分的面积为64√2−64.(3) t=8或t=163.25. 【答案】(1) 由题意得a=4,b=5,c=6,所以,C=15.(2) 由题意得6≤S≤11,原式=S−4+3S−6+45−4S=35.11。

北师大版七年级上册《第2章+有理数及其运算》 单元测试卷 解析版

北师大版七年级上册《第2章+有理数及其运算》 单元测试卷 解析版

第2章有理数及其运算一、选择题(每小题3分,共30分)1.(3分)如果“盈利5%”记作+5%,那么﹣3%表示()A.亏损3%B.亏损8%C.盈利2%D.少赚3%2.(3分)有理数﹣1,﹣2,0,3中,最小的数是()A.﹣1B.﹣2C.0D.33.(3分)下列运算正确的是()A.﹣24=16B.﹣(﹣2)2=﹣4C.(﹣)2=﹣1D.(﹣2)3=8 4.(3分)计算﹣×22+×62的值是()A.0B.C.D.5.(3分)数轴上点A、B表示的数分别是5、﹣3,它们之间的距离可以表示为()A.﹣3+5B.﹣3﹣5C.|﹣3+5|D.|﹣3﹣5|6.(3分)下列说法中正确的有()①同号两数相乘,符号不变;②异号两数相乘,积取负号;③互为相反数的两数相乘,积一定为负;④两个有理数的积绝对值,等于这两个有理数的绝对值的积.A.1个B.2个C.3个D.4个7.(3分)气象部门测定,高度每增加1千米,气温大约下降5℃,现在地面气温是15℃,那么4千米高空的气温是()A.5℃B.0℃C.﹣5℃D.﹣15℃8.(3分)在有理数中,一个数的立方等于这个数本身,这种数的个数为()A.1B.2C.3D.无数个9.(3分)为了方便市民出行,提倡低碳交通,近几年南京市大力发展公共自行车系统,根据规划,全市公共自行车总量明年将达70000辆,用科学记数法表示70000是()A.0.7×105B.7×104C.7×105D.70×10310.(3分)计算:3﹣2×(﹣1)=()A.5B.1C.﹣1D.6二、填空题(每小题4分,共28分)11.(4分)若规定a*b=5a+2b﹣1,则(﹣4)*6的值为.12.(4分)绝对值小于4的所有整数的和是.13.(4分)如果规定向东为正,那么向西即为负.汽车向东行驶3千米记作+3千米,向西行驶2千米应记作千米.14.(4分)测某乒乓球厂生产的五个乒乓球的质量误差(g)如表.检验时,通常把比标准质量大的克数记为正,比标准质量小的克数记为负.请你选出最接近标准质量的球,是号.号码12345误差(g)﹣0.020.1﹣0.23﹣0.30.215.(4分)某次数学测验共20道选择题,规则是:选对一道的5分,选错一道的﹣1分,不选得零分,王明同学的卷面成绩是:选对16道题,选错2道题,有2道题未做,他的得分是.16.(4分)找出下列各图形中数的规律,依此,a的值为.17.(4分)如图,是一个数值转换机的示意图,若输入x的值为3,y的值为﹣2时,则输出的结果为.三、解答题18.计算:(1)(﹣+)×(﹣36);(2)[2﹣5×(﹣)2]÷(﹣).19.把下列各数在数轴上表示出来,并直接用“<”把各数连接起来:﹣1,﹣|﹣4|,0,﹣(﹣1).20.计算6÷(﹣),方方同学的计算过程如下,原式=6+6=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.21.某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数)星期一二三四五六日增减﹣5+7﹣3+4+10﹣9﹣25(1)本周三生产了多少辆摩托车?(2)本周总生产量与计划生产量相比,是增加还是减少?(3)产量最多的一天比产量最少的一天多生产了多少辆?22.某儿童服装店购进一批童装合计30件进行销售,若以50元/件为标准,将超出过的价格记为正,不足的价格记为负,销售价格及售出件数如下表所示:售价(元)+5+20﹣5﹣10售出件数105645(1)这批童装销售中,最高售价与最低售价相差元/件.(2)求这批童装全部售出后,服装店收入多少钱?(3)若该批童装是以25元/件的价格进货的,请问该店在批童装销售中赚了多少钱?23.李强靠勤工俭学的收入维持上大学费用,表中是李强某一周的收支情况表,(单位:元):星期一二三四五六日收入+15+180+160+25+24支出10 14138101415 (1)到这个周末,李强有多少节余?(2)照这个情况估计,李强一个月(按30天计算)能有多少节余?(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?24.观察下列解题过程:计算:1+5+52+53+…+524+525的值.解:设S=1+5+52+53+…+524+525,(1)则5S=5+52+53+…+525+526(2)(2)﹣(1),得4S=526﹣1S=通过阅读,你一定学会了一种解决问题的方法,请用你学到的方法计算:(1)1+3+32+33+…+39+310(2)1+x+x2+x3+…+x99+x100.25.阅读下列材料:点A,B在数轴上分别表示有理数a,b.A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图1所示,|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,分三种情况,情况一:如图2所示,点A,B都在原点的右侧,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;情况二:如图3所示,点A,B都在原点左侧,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;情况三:如图4所示,点A,B在原点的两边,|AB|=|OB|﹣|OA|=|b|﹣|a|=a+(﹣b)=|a﹣b|;综上,数轴上A,B之间的距离|AB|=|a﹣b|.回答下列问题:(1)数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示3和﹣1的两点之间的距离是.(2)数轴上表示x和﹣1的两点A,B之间的距离是,如果|AB|=2,那么x 为.(3)当|x+4|+|y﹣7|取最小值时,x=,y=.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)如果“盈利5%”记作+5%,那么﹣3%表示()A.亏损3%B.亏损8%C.盈利2%D.少赚3%【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵“盈利5%”记作+5%,∴﹣3%表示表示亏损3%.故选:A.2.(3分)有理数﹣1,﹣2,0,3中,最小的数是()A.﹣1B.﹣2C.0D.3【分析】先求出|﹣1|=1,|﹣2|=2,根据负数的绝对值越大,这个数就越小得到﹣2<﹣1,而0大于任何负数,小于任何正数,则有理数﹣1,﹣2,0,3的大小关系为﹣2<﹣1<0<3.【解答】解:∵|﹣1|=1,|﹣2|=2,∴﹣2<﹣1,∴有理数﹣1,﹣2,0,3的大小关系为﹣2<﹣1<0<3.故选:B.3.(3分)下列运算正确的是()A.﹣24=16B.﹣(﹣2)2=﹣4C.(﹣)2=﹣1D.(﹣2)3=8【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=﹣16,错误;B、原式=﹣4,正确;C、原式=,错误;D、原式=﹣8,错误,故选:B.4.(3分)计算﹣×22+×62的值是()A.0B.C.D.【分析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=﹣+=.故选:B.5.(3分)数轴上点A、B表示的数分别是5、﹣3,它们之间的距离可以表示为()A.﹣3+5B.﹣3﹣5C.|﹣3+5|D.|﹣3﹣5|【分析】由距离的定义和绝对值的关系容易得出结果.【解答】解:∵点A、B表示的数分别是5、﹣3,∴它们之间的距离=|﹣3﹣5|=8,故选:D.6.(3分)下列说法中正确的有()①同号两数相乘,符号不变;②异号两数相乘,积取负号;③互为相反数的两数相乘,积一定为负;④两个有理数的积绝对值,等于这两个有理数的绝对值的积.A.1个B.2个C.3个D.4个【分析】根据有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘,以及利用互为相反数和绝对值的性质,分别判断得出即可.【解答】解:①两负数相乘,符号变为正号;此选项错误;②异号两数相乘,积取负号;此选项正确;③互为相反数的两数相乘,积不一定为负可能为0,故此选项错误;④两个有理数的积绝对值,等于这两个有理数的绝对值的积,此选项正确.故正确的有2个.故选:B.7.(3分)气象部门测定,高度每增加1千米,气温大约下降5℃,现在地面气温是15℃,那么4千米高空的气温是()A.5℃B.0℃C.﹣5℃D.﹣15℃【分析】根据该地区高度每增加1千米,气温就下降大约5℃,求出4千米中有几个1千米,温度就下降几个5℃,进而求出下降的温度,然后用地面温度减去下降的温度列出算式,即可求出4千米高空的气温.【解答】解:根据题意得:15﹣4÷1×5=15﹣20=﹣5(℃).故选:C.8.(3分)在有理数中,一个数的立方等于这个数本身,这种数的个数为()A.1B.2C.3D.无数个【分析】设这个数为x,根据题意列出关于x的方程,求出方程的解即可得到x的值.【解答】解:设这个数为x,根据题意得:x3=x,变形得:x(x+1)(x﹣1)=0,解得:x=0或﹣1或1,共3个.故选:C.9.(3分)为了方便市民出行,提倡低碳交通,近几年南京市大力发展公共自行车系统,根据规划,全市公共自行车总量明年将达70000辆,用科学记数法表示70000是()A.0.7×105B.7×104C.7×105D.70×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:70000=7×104,故选:B.10.(3分)计算:3﹣2×(﹣1)=()A.5B.1C.﹣1D.6【分析】先算乘法,再算减法,由此顺序计算即可.【解答】解:原式=3﹣(﹣2)=3+2=5.故选:A.二、填空题(每小题4分,共28分)11.(4分)若规定a*b=5a+2b﹣1,则(﹣4)*6的值为﹣9.【分析】根据a*b=5a+2b﹣1,可以求得题目中所求式子的值,本题得以解决.【解答】解:∵a*b=5a+2b﹣1,=5×(﹣4)+2×6﹣1=(﹣20)+12﹣1=﹣9,故答案为:﹣9.12.(4分)绝对值小于4的所有整数的和是0.【分析】找出绝对值小于4的所有整数,求出之和即可.【解答】解:绝对值小于4的所有整数是﹣3,﹣2,﹣1,0,1,2,3,其和为﹣3+(﹣2)+(﹣1)+0+1+2+3=0.故答案为:013.(4分)如果规定向东为正,那么向西即为负.汽车向东行驶3千米记作+3千米,向西行驶2千米应记作﹣2千米.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:汽车向东行驶3千米记作3千米,向西行驶2千米应记作﹣2千米.故答案为:﹣2.14.(4分)测某乒乓球厂生产的五个乒乓球的质量误差(g)如表.检验时,通常把比标准质量大的克数记为正,比标准质量小的克数记为负.请你选出最接近标准质量的球,是1号.号码12345误差(g)﹣0.020.1﹣0.23﹣0.30.2【分析】先比较出超标情况的大小,再根据绝对值最小的越接近标准质量,即可得出答案.【解答】解:∵|﹣0.3|>|﹣0.23|>|﹣0.2|>|0.1|>|﹣0.02|,∴最接近标准质量是1号.故答案为:1.15.(4分)某次数学测验共20道选择题,规则是:选对一道的5分,选错一道的﹣1分,不选得零分,王明同学的卷面成绩是:选对16道题,选错2道题,有2道题未做,他的得分是78.【分析】根据规则列出得分的代数式计算即可.【解答】解:∵选对一道得5分,选错一道得﹣1分,不选得零分.∴他的得分是16×5﹣2=78.故本题答案为:78.16.(4分)找出下列各图形中数的规律,依此,a的值为226.【分析】由0+2=1×2,2+10=3×4,4+26=5×6,6+50=7×8,得出规律:左下和右下的两数和等于另外两数的积,即可得出a的值.【解答】解:根据题意得出规律:14+a=15×16,解得:a=226.故答案为:226.17.(4分)如图,是一个数值转换机的示意图,若输入x的值为3,y的值为﹣2时,则输出的结果为﹣1.【分析】首先根据已知一个数值转换机的示意图,逐步列出代数式并化简,最后表示出输出的结果的代数式,然后代入求值.【解答】解:根据已知一个数值转换机的示意图可得x×2=2x,(y)3=y3,(2x+y3)÷2=x+,把x=3,y=﹣2代入得3+×(﹣2)3=3+(﹣4)=﹣1.故答案为:﹣1.三、解答题18.计算:(1)(﹣+)×(﹣36);(2)[2﹣5×(﹣)2]÷(﹣).【分析】(1)原式利用乘法分配律计算即可求出值;(2)原式先计算括号中的乘方运算,再计算乘法运算,进而算减法运算,最后算除法运算即可求出值.【解答】解:(1)原式=×(﹣36)﹣×(﹣36)+×(﹣36)=﹣18+20﹣21=﹣19;(2)原式=(2﹣)×(﹣4)=×(﹣4)=﹣3.19.把下列各数在数轴上表示出来,并直接用“<”把各数连接起来:﹣1,﹣|﹣4|,0,﹣(﹣1).【分析】先在数轴上表示出来,再比较即可.【解答】解:在数轴上表示出来为:用“<”号把它们连接起来为:.20.计算6÷(﹣),方方同学的计算过程如下,原式=6+6=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.【分析】根据有理数的混合运算顺序,先算括号里面的,再根据除法法则进行计算即可.【解答】解:方方的计算过程不正确,正确的计算过程是:原式=6÷(﹣+)=6÷(﹣)=6×(﹣6)=﹣36.21.某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数)星期一二三四五六日增减﹣5+7﹣3+4+10﹣9﹣25(1)本周三生产了多少辆摩托车?(2)本周总生产量与计划生产量相比,是增加还是减少?(3)产量最多的一天比产量最少的一天多生产了多少辆?【分析】(1)明确增加的车辆数为正数,减少的车辆数为负数,依题意列式再根据有理数的加减法则计算;(2)首先求出总生产量,然后和计划生产量比较即可得到结论;(3)根据表格可以知道产量最多的一天和产量最少的一天各自的产量,然后相减即可得到结论.【解答】解:(1)本周三生产的摩托车为:300﹣3=297辆;(2)本周总生产量为(300﹣5)+(300+7)+(300﹣3)+(300+4)+(300+10)+(300﹣9)+(300﹣25)=300×7﹣21=2079辆,计划生产量为:300×7=2100辆,2100﹣2079=21辆,∴本周总生产量与计划生产量相比减少21辆;(3)产量最多的一天比产量最少的一天多生产了10﹣(﹣25)=35,即产量最多的一天比产量最少的一天多生产了35辆.22.某儿童服装店购进一批童装合计30件进行销售,若以50元/件为标准,将超出过的价格记为正,不足的价格记为负,销售价格及售出件数如下表所示:售价(元)+5+20﹣5﹣10售出件数105645(1)这批童装销售中,最高售价与最低售价相差15元/件.(2)求这批童装全部售出后,服装店收入多少钱?(3)若该批童装是以25元/件的价格进货的,请问该店在批童装销售中赚了多少钱?【分析】(1)依据最高售价与最低售价,即可得到差价;(2)销售价格乘以售出件数,即可得到这批童装全部售出后的总售价;(3)首先由进货量和进货单价计算出进货的成本,然后再根据售价计算出赚了多少钱.【解答】解:(1)最高售价与最低售价相差:5﹣(﹣10)=15(元/件),故答案为:15;(2)总售价:10×(50+5)+5×(50+2)+6×50+4×(50﹣5)+5×(50﹣10)=1490(元).答:这批童装全部售出后共卖了1490元.(3)该店在批童装销售中赚的钱为:1490﹣30×25=740(元),答:该店在批童装销售中赚了740元.23.李强靠勤工俭学的收入维持上大学费用,表中是李强某一周的收支情况表,(单位:元):星期一二三四五六日收入+15+180+160+25+24支出10 14138101415 (1)到这个周末,李强有多少节余?(2)照这个情况估计,李强一个月(按30天计算)能有多少节余?(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?【分析】(1)先求得收入,再看其支出,求其差可得出结论;(2)利用计算的结果求出其每天的节余,再乘30求得;(3)可以先计算出本周的支出情况,求出其平均每天的支出,再乘30可得出其支出情况,可得出结论.【解答】解:(1)用正数表示收入,负数表示支出,则这七天的收入为:15+18+0+16+0+25+24=98,支出为:10+14+13+8+10+14+15=84,98﹣84=14,所以到这个周末,李强节余14元;(2)由(1)可知其每天能节余14÷7=2(元),30×2=60(元),即照这个情况估计,李强一个月(按30天计算)能有60元的节余;(3)84÷7=12(元),30×12=360(元),即按以上的支出水平,李强一个月(按30天计算)至少有360元收入才能维持正常开支.24.观察下列解题过程:计算:1+5+52+53+…+524+525的值.解:设S=1+5+52+53+…+524+525,(1)则5S=5+52+53+…+525+526(2)(2)﹣(1),得4S=526﹣1S=通过阅读,你一定学会了一种解决问题的方法,请用你学到的方法计算:(1)1+3+32+33+…+39+310(2)1+x+x2+x3+…+x99+x100.【分析】这道题是求等比数列前n项的和:(1)设S=1+3+32+33+…+39+310,等号两边都乘以3可解决;(2)需要分类讨论:Ⅰ当x=1时,易得结果;Ⅱ当x≠1时,设S=1+x+x2+x3+…+x99+x100等号两边都乘以x可解决.【解答】解:(1)设S=1+3+32+33+…+39+310①则3S=3+32+33+…+39+310+311②②﹣①得2S=311﹣1,所以S=;(2)由于x为未知数,故需要分类讨论:Ⅰ当x=1时,1+x+x2+x3+…+x99+x100=1+1+12+…+199+1100=101;Ⅱ当x≠1时,设S=1+x+x2+x3+…+x99+x100①则xS=x+x2+x3+…+x99+x100+x101②②﹣①得(x﹣1)S=x101﹣1,所以S=.25.阅读下列材料:点A,B在数轴上分别表示有理数a,b.A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图1所示,|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,分三种情况,情况一:如图2所示,点A,B都在原点的右侧,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;情况二:如图3所示,点A,B都在原点左侧,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;情况三:如图4所示,点A,B在原点的两边,|AB|=|OB|﹣|OA|=|b|﹣|a|=a+(﹣b)=|a﹣b|;综上,数轴上A,B之间的距离|AB|=|a﹣b|.回答下列问题:(1)数轴上表示2和5的两点之间的距离是3,数轴上表示﹣2和﹣5的两点之间的距离是3,数轴上表示3和﹣1的两点之间的距离是4.(2)数轴上表示x和﹣1的两点A,B之间的距离是|x+1|,如果|AB|=2,那么x为1或﹣3.(3)当|x+4|+|y﹣7|取最小值时,x=﹣4,y=7.【分析】(1)根据数轴上A、B两点之间的距离|AB|=|a﹣b|,分别求出数轴上表示2和5的两点之间的距离、数轴上表示﹣2和﹣5的两点之间的距离、数轴上表示3和﹣1的两点之间的距离各是多少即可.(2)根据数轴上A、B两点之间的距离|AB|=|a﹣b|,求出数轴上表示x和﹣1的两点A 和B之间的距离是|x+1|,然后根据|AB|=2,可得|x+1|=2,据此求出x的值是多少即可.(3)当代数式|x+4|+|y﹣7|取最小值时,|x+4|=0,|y﹣7|=0,据此求出x、y的值各是多少即可.【解答】解:(1)数轴上表示2和5的两点之间的距离是:|2﹣5|=3,数轴上表示﹣2和﹣5的两点之间的距离是:|﹣2﹣(﹣5)|=3,数轴上表示3和﹣1的两点之间的距离是:|3﹣(﹣1)|=4;(2)数轴上表示x和﹣1的两点A和B之间的距离是:|x﹣(﹣1)|=|x+1|,如果|AB|=2,则|x+1|=2,∴x+1=2或x+1=﹣2,解得x=1或﹣3.(3)当代数式|x+4|+|y﹣7|取最小值时,|x+4|+|y﹣7|=0∴x+4=0,y﹣7=0,解得x=﹣4,y=7.故答案为:3,3,4;|x+1|,1或﹣3;﹣4,7.。

七年级数学上册《第二章 有理数及其运算》单元检测卷及答案(北师大版)

七年级数学上册《第二章 有理数及其运算》单元检测卷及答案(北师大版)

七年级数学上册《第二章 有理数及其运算》单元检测卷及答案(北师大版)学校:___________班级:___________姓名:___________考号:___________一、单选题(共10小题,满分40分) 1.若2x 9=,y 2=且x y <,则x y -的值为( )A .5±B .1±C .5-或1-D . 5或1 2.某商场对顾客实行优惠,规定:(1)如一次购物不超过200元,则不予折扣;(2)如一次购物超过200元但不超过500元的,按标价给予九折优惠;(3)如一次购物超过500元的,其中500元按第(2)条给予优惠,超过500元的部分则给予八折优惠.某人两次去购物,分别付款168元与423元,如果他只去一次购买同样的商品,则应付款是( )A .52.8元B .510.4元C .560.4元D .472.8元3.对于任意一个三位数n ,如果n 满足各个数位上的数字互相不同,且都不为零,将其任意两个数位上的数字对调后可以得到三个不同的新三位数﹒把这三个新三位数的和与111的商记为()F n ,则()246F 的值为( )A .12B .11C .16D .184.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是多少天?( )A .9天B .69天C .76天D .126天5.下列各数中,最大的是( )A .-3B .0C .1D .26.a,b 对应点的位置如图所示,把﹣a , b ,0按照从小到大的顺序排列,正确的是( )A.﹣a<b<0B.0<﹣a<b C.b<0<﹣a D.0<b<-a 7.2020年长春市双阳区体育场升级改造,旨在提升全民文化体育生活质量,体育场改造后总面积约为23800平方米,则23800用科学记数法表示为()A.323.810⨯C.3⨯D.52.38102.3810⨯B.4⨯2.310A.50B.63C.83D.1009.一天早晨的气温是7-℃,中午上升了11℃,半夜又下降了9℃,半夜的气温是()A.9-B.2-C.2D.5-10.0到-3之间的负数共有()A.1个B.2个C.3个D.无数个二、填空题(共8小题,满分32分)三、解答题(共6小题,每题8分,满分48分) 19.用简便方法计算:(1)2215130.34(13)0.343737-⨯-⨯+⨯--⨯; (2)111()(60)345--+⨯- .20.某机械厂计划平均每天生产300个零件,但是由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超过计划量记为正):星期一 星期二 星期三 星期四 星期五 星期六 星期日+6 -2 -8 +10 -7 +5 +4(1)根据记录的数据,求该厂星期二生产零件多少个?(2)根据记录的数据,求产量最多的一天比产量最少的一天多生产零件多少个? (3)根据记录的数据,求该厂本周实际共生产零件多少个?21.在数轴上,把原点记作点O ,表示数1的点记作点A . 对于数轴上任意一点P (不与点O ,点A 重合),将线段PO 与线段PA 的长度之比定义为点P 的特征值,记作ˆP,即ˆPO P PA=. 例如:当点P 是线段OA 的中点时,因为PO PA =,所以ˆ1P =. 如图,点123,,P P P 为数轴上三个点,点1P 表示的数为14-,点2P 表示的数与点1P 表示的数互为相反数,点3P 表示的数为2.(1)点2P 表示的数为:___________;(2)求123ˆˆ,ˆ,P P P 的值,比较123ˆˆ,ˆ,P P P 的大小,并用“<”连接; (3)若数轴上有一点M 满足13OM OA =,求ˆM .1.C 2.C 3.A4.B5.D6.A7.B8.C9.D10.D11.012.-6.13.614.21.15.016.217.10或-418.819.(1)-13.34;(2)23.20.(1)292个;(2)18个;(3)2108个21.(1)14(2)115P =,213P =与32P =和123ˆˆˆP P P << (3)12或1422.(1)-2;(2)5;(3)13;(4)107;(5)-3923.(1)有2个,分别是1,-1.(2)有1个,是0.(3)不存在. 24.(1)21x x ++-(2)☆-2,4;☆4,不小于0且不大于2,2(3)最小值为4, x =2。

北师大版七年级上册数学第二章有理数及其运算测试卷(附答案解析)

北师大版七年级上册数学第二章有理数及其运算测试卷(附答案解析)

16.【答案】
(1)-23×(1-
1 4
)÷0.5;
=-8×
3 4
×2
=-6×2 =-12;
(2)( 11 - 7 - 5 )÷ 1 -2;
12 9 18
36
=(
11 12
-
7 9
-
5 18
)×36-2

=
11 12
×36-
7 9
×36-
5 18
×36-2
=33-28-10-2 =-7;
(3)3(20-y)=6y-4(y-11); 60-3y=6y-4y+44
(2)∵如果收入用正数表示, ∴支出则用负数表示, ∴总收入+130 万,总支出﹣35 万, 答:如果收入用正数表示,则总收入与总支出应表示为+130 万,﹣35 万.
(3)∵利润=收入﹣支出, ∴利润=+130﹣35=95, 答:该公司第一季度利润为 95 万元.
19.【答案】 解:根据题意得, | | = | | ,即 =− − > 0, − < 0, + = 0 ,
(2) 解:原式=2×(-2)÷(-
1 4

=2×(-2)×(-4)
=16
22.【答案】 (1)1
(2)解:[6﹣(﹣4)]÷2=10÷2=5(秒)
答:当 t=5 秒时,点 P 到达点 A 处
(3)2t﹣4
北师大版七年级上册数学第二章有理数及其运算测试卷
第Ⅰ卷 客观题
第Ⅰ卷的注释
阅卷人 得分
一、单选题(共 10 题;共 30 分)
1.以下四个有理数运算的式子中:①(2+3)+4=2+(3+4);②(2-3)-4=2-(3-4);③(2×3)×4=2×(3×4);

北师大版七年级数学上册 第2章 有理数及其运算 单元测试卷(含解析)

北师大版七年级数学上册第 2章有理数及其运算单元测试卷一、选择题(本大题共10小题,共30分)1. 如果“盈利5%”记作+5%,那么−3%表示( )A. 盈利2%B. 亏损8%C. 亏损3%D. 少赚2%2. 在有理数−3,0,3,4中,最小的有理数是( )A. −3B. 0C. 3D. 43. 下列运算正确的是( )A. −22=4B. (−213)3=−8127 C. (−12)3=−18 D. (−2)3=−64. −22−(−2)4的值是( )A. −20B. 16C. −16D. −125. 数轴上点A 、B 表示的数分别是−3、8,它们之间的距离可以表示为A. −3+8B. −3−8C. |−3+8|D. |−3−8|6. 下列说法中正确的有( )①同号两数相乘,符号不变;②几个因数相乘,积的符号由负因数的个数决定;③互为相反数的两数相乘,积一定为负;④两个有理数的积的绝对值等于这两个有理数的绝对值的积. A. 1个B. 2个C. 3个D. 4个7. 高度每增加1千米,气温就下降2℃,现在地面气温是−10℃,那么离地面高度为7千米的高空的气温是( ) A. −4℃B. −14℃C. −24℃D. 14℃8. 一个数的立方是它本身,那么这个数是( )A. 0B. 0或1C. −1或1D. 0或−1或19. 为解决“最后一公里”的交通接驳问题,平谷区投放了大量公租自行车供市民使用.据统计,目前我区共有公租自行车3 500辆.将3 500用科学记数法表示应为( ) A. 0.35×104B. 3.5×103C. 3.5×102D. 35×10210. 计算:3−2×(−1)=( )二、填空题(本大题共6小题,共24分)11.若规定一种运算:a∗b=ab+a−b,则1∗(−2)=___________.12.绝对值小于2的所有整数的和是______.13.如果向南走5米,记作+5米,那么向北走8米应记作______米.14.在实数范围内定义运算“☆”,其规则为:a☆b=a2−b2,则(4☆3)☆6=__________。

北师大版数学七年级上册 第二章 有理数及其运算 练习题(有答案)

北师大版数学七年级上册 第二章 有理数及其运算 练习题(有答案)2.1 有理数基础题知识点1 认识正数与负数1.(连云港中考)下列各数中;为正数的是(A)A .3B .-12C .-2D .02.(临沂中考)四个数-3;0;1;2;其中负数是(A)A .-3B .0C .1D .2 3.在-1;0;1;2这四个数中;既不是正数也不是负数的是(B) A .-1 B .0 C .1 D .24.下列各数:-101.2;+18;0.002;-60;0;-45;+3.2;属于正数的有+18;0.002;+3.2;属于负数的有-101.2;-60;-45.知识点2 用正、负数表示具有相反意义的量5.(咸宁中考)冰箱冷藏室的温度零上5 ℃;记作+5 ℃;保鲜室的温度零下7 ℃;记作(B) A .7 ℃ B .-7 ℃ C .2 ℃ D .-12 ℃ 6.下列不具有相反意义的是(C) A .前进5 m 和后退5 m B .节约3 t 和浪费3 tC .身高增加2 cm 和体重减少2 kgD .超过5 g 和不足5 g7.若火箭发射点火前5秒记作-5秒;则火箭发射点火后10秒应记作(D) A .-10秒 B .-5秒 C .+5秒 D .+10秒8.如果+80 m 表示向东走80 m;那么-60 m 表示向西走60__m . 知识点3 有理数的概念及分类9.在0;1;-2;-3.5这四个数中;为负整数的是(C) A .0 B .1 C .-2 D .-3.510.有理数可按正、负性质分类;也可按整数、分数分类: ①按正、负性质分类: ②按整数、分数分类:有理数⎩⎪⎨⎪⎧正有理数⎩⎪⎨⎪⎧正整数正分数0负有理数⎩⎪⎨⎪⎧负整数负分数有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数0负整数分数⎩⎪⎨⎪⎧正分数负分数 11.下列各数:3;-5;-12;0;2;0.97;-0.21;-6;9;23;85;1;其中正数有7个;负数有4个;正分数有2个;负分数有2个.12.如图是数学果园里的一棵“有理数”知识树;请仔细辨别分类;把各类数填在它所属的相应横线上.中档题13.在数-5;3;0;-32;100;0.4中;非负数有(A)A .4个B .3个C .2个D .1个 14.下列说法正确的是(D) A .+2是正数;但3不是正数 B .一个数不是正数就是负数 C .含有负号的数就是负数 D .-0.25是负分数15.请按要求填出相应的两个有理数:(1)既是正数也是分数:212;34(答案不唯一);(2)既不是负数也不是分数:2;0(答案不唯一). 16.“一只闹钟;一昼夜误差不超过±12秒.”这句话的含义是:闹钟走一天的时间比标准时间最多慢12秒或最多快12秒.17.下面是几个家庭五月份用电支出比上月支出变化情况: 赵力减少25% 肖刚增加10% 王辉减少17% 李玉增加5% 田红增加8% 陈佳减少12%分别用正、负数写出这几家五月用电支出比上月支出的增长率. 解:这六家五月用电支出比上月支出的增长率分别为:赵力-25%;肖刚+10%;王辉-17%;李玉+5%;田红+8%;陈佳-12%.18.请用两种不同的分类标准将下列各数分类:-15;+6;-2;-0.9;1;35;0;314;0.63;-4.95.解:分类一:整数:-15;+6;-2;1;0;分数:-0.9;35;314;0.63;-4.95.分类二:正数:+6;1;35;314;0.63;0;负数:-15;-2;-0.9;-4.95.19.小米家住黄河边的某市;黄河大堤高出某市区20米;另有铁塔高约58米;是该市的一大景观;小米和好朋友小华、玲玲出去玩;小米站在黄河大堤上;玲玲站在地面放风筝;顽皮的小华则爬上了铁塔顶;小米说:“以大堤为基准;记为0米;则玲玲所在的位置高为-20米;小华所在位置高为+58米.”小华说:“以铁塔顶为基准;记为0米;则玲玲所在的位置高为-58米;小米所在的位置高为-38米.”玲玲说:“小华的位置比我高58米.”他们谁说得对?解:小华和玲玲说得对.理由:用正、负数表示具有相反意义的量时;由于“基准”(0米点)的选法不同;表示的结果也不同;小米以大堤为基准;玲玲所在的位置高为-20米;小华所在位置高为38米.综合题20.将一串有理数按下列规律排列;回答下列问题:(1)在A处的数是正数还是负数?(2)负数排在A、B、C、D中的什么位置?(3)第2 017个数是正数还是负数?排在对应于A、B、C、D中的什么位置?解:(1)在A处的数是正数.(2)B和D位置是负数.(3)第2 017个数是负数;排在对应于B的位置.2.2 数轴基础题知识点1 认识数轴1.关于数轴;下列说法最准确的是(D) A .一条直线B .有原点、正方向的一条直线C .有单位长度的一条直线D .规定了原点、正方向、单位长度的直线 2.下列各图中;所画数轴正确的是(D)知识点2 在数轴上表示数 3.如图;在数轴上点A 表示(A)A .-2B .2C .±2D .04.在如图的数轴上;表示-2.75的点是(D)A .点EB .点FC .点GD .点H5.在数轴上表示数-3;0;5;2;-1的点中;在原点右边的有(C) A .0个 B .1个 C .2个 D .3个6.在数轴上;表示-2的点在原点的左侧;它到原点的距离是2个单位长度. 7.画数轴;并在数轴上表示下列各数:2;-2.5;0;13;-4.解:如图:知识点3 利用数轴比较有理数的大小 8.如图;下列说法中正确的是(B)A .a >bB .b >aC .a >0D .b >09.(成都中考)在-3;-1;1;3四个数中;比-2小的数是(A)A .-3B .-1C .1D .310.已知有理数x;y 在数轴上的位置如图所示;则下列结论正确的是(C)A .x>0>yB .y>x>0C .x<0<yD .y<x<011.把下列各数在数轴上表示出来;并用“<”把各数连接起来:-212;4;-4;0;412.解:如图;大小关系为:-4<-212<0<4<412.中档题12.下列语句中;错误的是(B)A .数轴上;原点位置的确定是任意的B .数轴上;正方向可以是从原点向右;也可以是从原点向左C .数轴上;单位长度可根据需要任意选取D .数轴上;与原点的距离等于8的点有两个13.(济宁中考)在0;-2;1;12这四个数中;最小的数是(B)A. 0 B .-2 C. 1 D.1214.数轴上的点A;B;C;D 分别表示a;b;c;d 四个数;已知A 在B 的左侧;C 在A;B 之间;D 在B 的右侧;则下列式子成立的是(A)A .a<c<b<dB .a<b<c<dC .a<d<c<bD .a<c<d<b15.将一刻度尺如图所示放在数轴上(数轴的单位长度是1 cm);刻度尺上的“0 cm ”和“15 cm ”分别对应数轴上的-3.6和x;则(C)A .9<x <10B .10<x <11C .11<x <12D .12<x <1316.若数轴上的点A 表示+3;点B 表示-4.2;点C 表示-1;则点A 和点B 中离点C 较远的是点A . 17.如图所示;数轴上的点A 向左移动2个单位长度得到点B;则点B 表示的数是-1.18.小红在做作业时;不小心将墨水洒在一个数轴上;如图所示;根据图中标出的数值;判断被墨迹盖住的整数共有多少个?解:因为-13<-12.6<-12;-8<-7.4<-7;所以此段整数有-12;-11;-10;-9;-8共5个;同理10<10.6<11;17<17.8<18;所以此段整数有11;12;13;14;15;16;17共7个;所以被墨迹盖住的整数共有5+7=12(个).19.如图;点A 表示的数是-4.(1)在数轴上表示出原点O ; (2)指出点B 所表示的数;(3)在数轴上找一点C;它与点B 的距离为2个单位长度;那么点C 表示什么数? 解:(1)如图. (2)点B 表示3. (3)点C 表示1或5.综合题20.(1)借助数轴;回答下列问题.①从-1到1有3个整数;分别是-1、0、1;②从-2到2有5个整数;分别是-2、-1、0、1、2;③从-3到3有7个整数;分别是-3、-2、-1、0、1、2、3; ④从-200到200有401个整数;⑤从-n 到n(n 为正整数)有(2n +1)个整数;(2)根据以上规律;直接写出:从-2.9到2.9有5个整数;从-10.1到10.1有21个整数;(3)在单位长度是1厘米的数轴上随意画出一条长为1 000厘米的线段AB;求线段AB 盖住的整点的个数.解:1 000个或1 001个.2.3 绝对值基础题知识点1 相反数的概念1.(河南中考)-13的相反数是(B)A .-13 B.13C .-3D .32.相反数等于本身的数为(C)A .正数B .负数C .0D .非负数 3.下列各组数中互为相反数的是(D) A .2与-3B .-3与-13C .2 016与-2 015D .-0.25与144.下列说法中正确的是(C) A .一个数的相反数是负数 B .0没有相反数C .只有一个数的相反数等于它本身D .表示相反数的两个点;可以在原点的同一侧 5.16和-16互为相反数;-2 017的相反数是2__017;1的相反数是-1. 知识点2 绝对值的意义及计算6.在数轴上表示-2的点到原点的距离等于(A) A .2 B .-2 C .±2 D .4 7.(安徽中考)-2的绝对值是(B)A .-2B .2C .±2 D.128.若|-a|=5;则a 的值是(D)A .-5B .5 C.15D .±59.-3的绝对值是3;-|-2.5|=-2.5;绝对值是6的数是±6. 10.计算:|4|+|0|-|-3|=1. 知识点3 绝对值的性质11.任何一个有理数的绝对值一定(D) A .大于0 B .小于0 C .不大于0 D .不小于0 12.在有理数中;绝对值等于它本身的数有(D) A .一个 B .两个 C .三个 D .无数个 13.(1)①正数:|+5|=5;|12|=12; ②负数:|-7|=7;|-15|=15; ③零:|0|=0;(2)根据(1)中的规律发现:不论正数、负数和零;它们的绝对值一定是非负数;即|a|≥0. 知识点4 利用绝对值比较有理数的大小 14.下列各式中正确的是(D)A .|-3|>|-4|B .-2>|-5|C .0>|-0.000 1|D .|-89|>-91015.用“>”或“<”填空: (1)-7<-6.5; (2)-3>-4;(3)-5<-4.中档题16.如果a 与1互为相反数;那么|a|等于(C) A .2 B .-2 C .1 D .-1 17.下列说法正确的是(D) A .-|a|一定是负数B .只有两个数相等时它们的绝对值才相等C .若|a|=|b|;则a 与b 相等D .若一个数小于它的绝对值;则这个数为负数18.(南京中考)数轴上点A;B 表示的数分别是5;-3;它们之间的距离可以表示为(D) A .-3+5 B .-3-5 C .|-3+5| D .|-3-5|19.如果a>0;b<0;a<|b|;那么a 、b 、-a 、-b 的大小顺序是(A) A .-b>a>-a>b B .a>b>-a>-b C .-b>a>b>-a D .b>a>-b>-a20.绝对值小于6的整数有11个;它们分别是±5;±4;±3;±2;±1;0;绝对值大于3且小于6的整数是±5;±4.21.(河北中考改编)若有理数m;n 满足|m -2|+|2 017-n|=0;则m +n =2__019. 22.比较下列各对数的大小: (1)0和|-2|; 解:0<|-2|.(2)-45和-23;解:-45<-23.(3)-(-4)和|-4|. 解:-(-4)=|-4|.23.计算:(1)|+223|×|-9|;解:原式=83×9=24.(2)|-34|÷|-178|.解:原式=34×815=25.24.光明奶粉每袋质量为500克;在质量检测中;若质量超出标准质量2克记作+2克;若质量低于标准质量3克以上;(1)这10(2)质量最大的是哪袋?它的实际质量是多少? 解:(1)第4袋和第6袋不合格.(2)质量最大的是第9袋;实际质量是505克.综合题25.已知a;b;c为有理数;且它们在数轴上的位置如图所示.(1)试判断a;b;c的正负性;(2)在数轴上分别标出a;b;c的相反数的位置;(3)根据数轴化简:①|a|=-a;②|b|=b;③|c|=c;④|-a|=-a;⑤|-b|=b;⑥|-c|=c.(4)若|a|=5.5;|b|=2.5;|c|=7;求a;b;c的值.解:(1)a为负;b为正;c为正.(2)如图.(4)a=-5.5;b=2.5;c=7.小专题(一) 绝对值的应用类型1 利用绝对值比较大小 1.比较下面各对数的大小: (1)-0.1与-0.2;解:因为|-0.1|=0.1;|-0.2|=0.2;且0.1<0.2;所以-0.1>-0.2.(2)-45与-56;解:因为|-45|=45=2430;|-56|=56=2530;且2430<2530; 所以-45>-56.2.比较下列各对数的大小:(1)-821与-|-17|;解:-|-17|=-17;因为|-821|=821;|-17|=17=321;且821>17;所以-821<-|-17|.(2)-2 0152 016与-2 0162 017.解:因为⎪⎪⎪⎪⎪⎪-2 0152 016=2 0152 016;⎪⎪⎪⎪⎪⎪-2 0162 017=2 0162 017;且2 0152 016<2 0162 017; 所以-2 0152 016>-2 0162 017.类型2 巧用绝对值的性质求字母的值3.已知|x -3|+|y -5|=0;求x +y 的值. 解:由|x -3|+|y -5|=0;得 x -3=0;y -5=0. 解得x =3;y =5. 所以x +y =3+5=8.4.若x 的相反数是-3;|y|=5;且x <y;求y -x 的值. 解:因为x 的相反数是-3;所以x =3. 因为|y|=5;所以y =±5. 因为x <y;所以x =3;y =5. 所以y -x =5-3=2.类型3 绝对值在生活中的应用5.司机小李某天下午的营运全是在南北走向的鼓楼大街进行的.假定向南为正;向北为负;他这天下午行车里程如下(单位:千米):+15;-3;+14;-11;+10;+4;-26.若汽车耗油量为0.1 L/km;这天下午汽车共耗油多少升?解:0.1×(|+15|+|-3|+|+14|+|-11|+|+10|+|+4|+|-26|)=8.3(L).6.在活动课上;有6名学生用橡皮泥做了6个乒乓球;直径可以有0.02毫米的误差;超过规定直径的毫米数记(1)(2)指出哪个同学做的乒乓球质量最好;哪个同学做的质量最差?(3)请你对6名同学做的乒乓球质量按照最好到最差排名;(4)用学过的绝对值知识来说明以上问题.解:(1)张兵、蔡伟.(2)蔡伟做的乒乓球质量最好、李明做的乒乓球质量最差.(3)蔡伟、张兵、余佳、赵平、王敏、李明.(4)这是绝对值在实际生活中的应用;对误差来说绝对值越小越好.小专题(二) 三种方法比较有理数的大小方法1 利用数轴比较大小1.如图;在数轴上有a;b;c;d 四个点;则下列说法正确的是(C)A .a>bB .c<0C .b<cD .-1>d2.有理数a 在数轴上对应的点如图所示;则a;-a;-1的大小关系是(C)A .-a<a<-1B .-a<-1<aC .a<-1<-aD .a<-a<-1 3.大于-2.5而小于3.5的整数共有(A) A .6个 B .5个 C .4个 D .3个4.在数轴上表示下列各数;并把这些数用“>”连接起来.3.5;3.5的相反数;-12;绝对值等于3的数;最大的负整数.解:各数分别为:3.5;-3.5;-12;±3;-1.在数轴上表示如图:这些数由大到小用“>”连接为:3.5>3>-12>-1>-3>-3.5.5.点A 、B 在数轴上的位置如图所示;它们分别表示数a 、b.(1)请将a;b;1;-1四个数按从小到大的顺序排列起来;(2)若将点B 向右移动3个单位长度;请将a 、b 、-1三个数按从小到大的顺序排列起来. 解:(1)b<-1<a<1. (2)-1<a<b.方法2 利用比较大小的法则比较大小 6.下列各式成立的是(B)A .-1>0B .3>-2C .-2<-5D .1<-27.(安徽中考)在-4;2;-1;3这四个数中;比-2小的数是(A) A .-4 B .2 C .-1 D .38.(西双版纳中考)若a =-78;b =-58;则a;b 的大小关系是a <b(填“>”“<”或“=”).9.已知数:0;-2;1;-3;5. (1)用“>”把各数连接起来; 解:5>1>0>-2>-3.(2)用“<”把各数的相反数连接起来; 解:-5<-1<0<2<3.(3)用“>”把各数的绝对值连接起来. 解:|5|>|-3|>|-2|>|1|>|0|. 方法3 利用特殊值比较大小10.如图;数轴上的点表示的有理数是a;b;则下列式子正确的是(B)A .-a <bB .a <bC .|a|<|b|D .-a <-b11.a;b 两数在数轴上的对应点的位置如图;下列各式正确的是(D)A.b>a B.-a<bC.|a|>|b| D.b<-a<a<-b2.4 有理数的加法第1课时 有理数的加法法则基础题知识点1 有理数的加法法则1.下列各式的结果;符号为正的是(C)A .(-3)+(-2)B .(-2)+0C .(-5)+6D .(-5)+5 2.(天津中考)计算(-3)+(-9)的结果是(B) A .12 B .-12 C .6 D .-6 3.(梅州中考)计算(-3)+4的结果是(C) A .-7 B .-1 C .1 D .7 4.已知a;b 两数互为相反数;则a +b =(C) A .2a B .2b C .0 D .1 5.下列结论不正确的是(D) A .若a>0;b>0;则a +b>0 B .若a<0;b<0;则a +b<0C .若a>0;b<0;且|a|>|b|;则a +b>0D .若a<0;b>0;且|a|>|b|;则a +b>06.在每题的横线上填写和的符号或结果. (1)(+3)+(+5)=+(3+5)=8; (2)(-3)+(-5)=-(3+5)=-8; (3)(-16)+6=-(16-6)=-10; (4)(-6)+8=+(8-6)=2; (5)(-2 015)+0=-2__015. 7.计算:(1)(-4)+(-6); 解:原式=-10.(2)(-12)+5; 解:原式=-7.(3)0+(-12);解:原式=-12.(4)(-2.5)+(-3.5). 解:原式=-6.知识点2 有理数加法的应用8.小明家冰箱冷冻室的温度为-5 ℃;调高4 ℃后的温度为(C) A .4 ℃ B .9 ℃ C .-1 ℃ D .-9 ℃9.一个物体在数轴上做左右运动;规定向右为正;按下列方式运动;列出算式表示其运动后的结果: (1)先向左运动2个单位长度;再向右运动7个单位长度.列式:-2+7; (2)先向左运动5个单位长度;再向左运动7个单位长度.列式:-5+(-7). 10.某人某天收入265元;支出200元;则该天节余65元.11.已知飞机的飞行高度为10 000 m;上升3 000 m 后;又上升了-5 000 m;此时飞机的高度是8__000m.中档题12.(玉林、防城港中考)下面的数中;与-2的和为0的是(A) A .2 B .-2 C.12 D .-1213.有理数a 、b 在数轴上对应的位置如图所示;则a +b 的值(A)A .大于0B .小于0C .小于aD .大于b 14.如果两个数的和是正数;那么(D) A .这两个数都是正数 B .一个为正;一个为零C .这两个数一正一负;且正数的绝对值较大D .必属上面三种情况之一15.一个数是25;另一个数比25的相反数大-7;则这两个数的和为(B) A .7 B .-7 C .57 D .-5716.若x 是-3的相反数;|y|=5;则x +y 的值为(D) A .2 B .8C .-8或2D .8或-217.已知A 地的海拔高度为-53米;而B 地比A 地高30米;则B 地的海拔高度为-23米. 18.如图;三个小球上的有理数之和等于-2.19.计算: (1)32+(-32); 解:原式=0.(2)116+(-4);解:原式=-256.(3)715+(-235);解:原式=+(715-235)=435.(4)-8.75+(-314).解:原式=-(8.75+314)=-12.20.已知有理数a;b;c 在数轴上的位置如图所示;请根据有理数的加法法则判断下列各式的正负性:①a ;②b ;③-c ;④a +b ;⑤a +c ;⑥b +c ;⑦a +(-b). 解:①③⑦为正;②④⑤⑥为负.综合题21.若|a -2|与|b +5|互为相反数;求a +b 的值.解:因为|a-2|与|b+5|互为相反数; 所以|a-2|+|b+5|=0.所以a=2;b=-5.所以a+b=2+(-5)=-3.第2课时 有理数的加法运算律基础题知识点1 有理数的加法运算律1.计算314+(-235)+534+(-825)时;用运算律最为恰当的是(B)A .[314+(-235)]+[534+(-825)]B .(314+534)+[(-235)+(-825)]C .[314+(-825)]+[(-235)+534]D .[(-235)+534]+[314+(-825)]2.计算512+(+4.71)+712+(-6.71)的结果为(D)A .-2B .3C .-3D .-13.在下面的计算过程后面填上运用的运算律. 计算:(-2)+(+3)+(-5)+(+4).解:原式=(-2)+(-5)+(+3)+(+4)(加法交换律) =[(-2)+(-5)]+[(+3)+(+4)](加法结合律) =(-7)+(+7) =0.4.在计算323+(-2.53)+(-235)+3.53+(-23)时;比较简便的计算方法是先计算323+(-23)和(-2.53)+3.53. 5.计算:(1)(-0.8)+1.2+(-0.7)+(-2.1) =[(-0.8)+(-0.7)+(-2.1)]+1.2 =-3.6+1.2=-2.4; (2)32.5+46+(-22.5)=[32.5+(-22.5)]+46=10+46=56. 6.运用加法的运算律计算下列各题: (1)24+(-15)+7+(-20);解:原式=(24+7)+[(-15)+(-20)] =31+(-35) =-4.(2)18+(-12)+(-18)+12;解:原式=[18+(-18)]+[(-12)+12] =0+0 =0.(3)137+(-213)+247+(-123).解:原式=(137+247)+[(-213)+(-123)]=4+(-4) =0.知识点2 有理数加法运算律的应用7.李老师的银行卡中有5 500元;取出1 800元;又存入1 500元;又取出2 200元;这时银行卡中还有3__000元钱.。

(北师大版)济南市七年级数学上册第二单元《有理数及其运算》测试卷(包含答案解析)

一、选择题1.如图,数轴上有三个点A 、B 、C ,且A 、B 表示的数互为相反数,若每个单位长度表示1,则点C 表示的数为( )A .不能确定B .-2C .2D .02.已知数a ,b 在数轴上对应点的位置如图所示,则下列结论不正确的是( )A .a +b <0B .a ﹣b >0C .b <﹣a <a <﹣bD .b a >0 3.定义☆运算:观察下列运算:(+3)☆(+15)=+18(-14)☆(-7)=+21 (-2)☆(+14)=-16(+15)☆(-8)=-23 0☆(-15)=+15 (+13)☆0=+13☆[0☆(–12)]等于( )A .132B .0C .-132D .-23 4.计算:(-3)-(-5)=____________.( )A .2B .-2C .-8D .8 5.截止2020年12月30日,全球新冠肺炎确诊病例累计超8000万例,其中“8000万”用科学记数法表示为( )A .3810⨯B .7810⨯C .40.810⨯D .80.810⨯ 6.已知数a b c ,,的大小关系如图所示,下列选项中正确的有( )个①0abc > ②0a b c +-> ③||1||||a b c a b c++= ④||||||2a b c a b c a --++-=-A .0B .1C .2D .37.已知a ,b ,c ,三个数在数轴上,对应点的位置如图所示,下列各式错误的是( )A .b a c <<B .a b -<C .0a b +<D .0c a -> 8.南海是我国最大的领海,总面积有35000002km ,3500000用科学记数法可表示为( )A .3.5×104B .3.5×105C .3.5×106D .0.35×1079.某地一天早晨的气温是2-℃,中午温度上升了12℃,半夜又下降了8℃,则半夜的气温是( )A .10-℃B .6-℃C .2℃D .6℃10.对于有理数a ,b ,有以下四个判断:①若a b =,则b a ≥;②若a b >,则a >b ;③若a b =,则a b =;④若a b <,则a b <.其中错误的判定个数是( ) A .4个 B .3个 C .2个 D .1个11.下列说法正确的有 ( )①0是绝对值最小的有理数; ②-a 是负数;③任一个有理数的绝对值都是正数; ④数轴上原点两侧的数互为相反数.A .1个B .2个C .3个D .4个12.拒绝“餐桌浪费”,刻不容缓.节约一粒米的帐:一个人一日三餐少浪费一粒米,全国一年就可以节省3240万斤,这些粮食可供9万人吃一年.“3240万”这个数据用科学记数法表示为( )A .0.324×108B .32.4×106C .3.24×107D .324×108二、填空题13.规定*是一种运算符号,且a*b=ab-2a ,例1*2=1×2-2×1=0,则4*(-2*3)=_. 14.比较大小:13-________12-(填入“>”“=”“<”) 15.为了求239912222++++⋅⋅⋅+的值,可设239912222S =++++⋅⋅⋅+,则23422222S =++++⋅⋅⋅1002+,因此100221S S -=-,所以23991001222221++++⋅⋅⋅+=-.请仿照以上推理计算出2144++3202044++⋅⋅⋅+= ________ .16.《算法统宗》是我国明代数学著作,它记载了多位数相乘的方法,如图1给出了3425850⨯=的步骤:①将34,25分别写在方格的上边和右边;②把上述各数字乘积的十位(不足写0)与个位分别填入小方格中斜线两侧;③沿斜线方向将数字相加,记录在方格左边和下边;④将所得数字从左上到右下依次排列(满十进一).若图2中a ,b ,c ,d 均为自然数,且c ,d 都不大于5,则a 的值为________,该图表示的乘积结果为________.17.已知数轴上A 、B 两点所对应的数分别是1和3,P 为数轴上任意一点,对应的数为x .(1)则A 、B 两点之间的距离为________;(2)式子|1||3||2017||2019|x x x x -+-++-+-的最小值为________. 18.有一数值转换器,原理如图所示,若开始输入x 的值是7,可以得出第1次输出的结果是12,第2次输出的结果是6,依次继续下去…,第2021次输出的结果是__________.19.计算3339(2)⎡⎤-÷⨯--⎣⎦的结果为__________.20.已知|2||1|0x y -++=,则3xy =_________.三、解答题21.计算:()2020313121468⎛⎫-+-⨯+- ⎪⎝⎭ . 22.计算.(1)()202042421239⎡⎤⎛⎫---⨯---- ⎪⎢⎥⎝⎭⎣⎦(2)2131518246824⎛⎫⎛⎫⎛⎫-⨯-++-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭23.计算:(1)-8+14-9+20(2)-72-5×(-2) 3+10÷(1-2) 1024.计算:(1)1132446⎛⎫--⨯- ⎪⎝⎭; (2)2320211(2)(4)(1)2⎛⎫----⨯-+- ⎪⎝⎭. 25.如图,已知数轴上A 、B 两点所表示的数分别为﹣2和6(1)求线段AB 的长;(2)已知点P 为数轴上点A 左侧的一个动点,且M 为PA 的中点,N 为PB 的中点.请你画出图形,并探究MN 的长度是否发生改变?若不变,求出线段MN 的长;若改变,请说明理由.26.计算:(1)119( 2.25)( 5.1)44810⎛⎫⎛⎫-+-++-+- ⎪ ⎪⎝⎭⎝⎭; (2)157(36)2612⎛⎫+-⨯- ⎪⎝⎭;(3)()32(1)(5)325-⨯-÷-+⨯-.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】首先确定原点位置,进而可得C 点对应的数.【详解】解:∵点A 、B 表示的数互为相反数,∴原点在线段AB 的中点处,∴点C 对应的数是-2.故选:B .【点睛】本题主要考查了数轴,关键是正确确定原点的位置.2.D解析:D【分析】根据数轴上a 、b 的位置结合有理数的运算法则即可判断.【详解】解:由数轴可知:b <0<a ,|b |>|a |,∴﹣b >a ,∴a +b <0,a ﹣b >0,b a<0,b <﹣a <0<a <﹣b . 故选:D .【点睛】本题考查数轴的定义,解题的关键是正确理解数轴与有理数之间的关系,本题属于基础题型. 3.D解析:D【分析】根据两数进行☆运算时,同号两数运算取正号,再把绝对值相加,异号两数运算取负号,再把绝对值相加,0和任何数进行☆运算,或任何数和0进行☆运算,等于这个数的绝对值,解答即可.【详解】解:(-11)☆[0☆(–12)]=(-11)☆(+12)=-(11+12)=-23,故选D .【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 4.A解析:A【分析】根据有理数的减法运算法则计算即可.【详解】解:(-3)-(-5)=-3+5=2故选:A .【点睛】本题考查了有理数的减法运算法则,解题的关键是熟练掌握有理数的减法运算法则. 5.B解析:B【分析】先将8000万化成80000000,再用科学记数法表示即可.【详解】解:8000万=80000000=7810⨯,故选:B .【点睛】本题主要考察了用科学记数法表示一个大于10的数,解题的关键是熟练掌握科学记数法的表示方法.6.C解析:C【分析】根据数轴可以得到a<0,c>b>0,|c|>|a|>|b|,再根据有理数的乘除法法则,有理数的加法法则及绝对值的性质即可得出答案.【详解】解:由数轴可得a<0,c>b>0,|c|>|a|>|b|,∴①0abc <,故①错误;②∵c>b ,∴b-c<0,∵a<0,∴0a b c +-<,故②错误;③∵a<0,∴1a a =-,∵c>b>0,∴1b b =,1c c =,∴||1111||||a b c a b c++=-++=,故③正确;④∵a<0,b>0,∴a-b<0,∴|a-b|=b-a ,∵a<0,c>0,且|c|>|a|,∴c+a>0,∴|c+a|=c+a ,∵c>b>0,∴b-c<0,∴|b-c|=c-b ,∴||||||2a b c a b c b a c a c b a --++-=---+-=-,故④正确.∴③④两个正确.故选C .【点睛】本题考查了利用数轴判断式子的正负,有理数的运算法则,绝对值的性质等知识.解题的关键是灵活运用所学知识解决问题.7.B解析:B【分析】利用A 、B 、C 在数轴上的位置,确定符号和绝对值,进而对各个选项做出判断.【详解】解:由题意得,a <0,b <0,c >0,且|a|<|b|,|c|<|b|,因此:A .b a c <<,正确,故此项不符合题意;B .-a >b ,不正确,故此项符合题意;C .0a b +<,正确,故此项不符合题意;D .c-a <0,正确,故此项不符合题意;故选:B【点睛】考查有理数、数轴、绝对值等知识,根据点在数轴上的位置确定符号和绝对值是解决问题的关键.8.C解析:C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:3500000=3.5×106,故选:C .【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.9.C解析:C【分析】温度上升是加法,温度下降是减法,据此列式计算即可.【详解】由题意得:-2+12-8=2(℃),故选:C .【点睛】此题考查有理数加减法解决实际问题,正确理解上升与下降的含义列算式计算是解题的关键.10.B解析:B【分析】根据绝对值的性质依次判断即可.【详解】解:①若a b =,则,b a =±且0b ≥,所以b a ≥,正确;②若2,5a b ==-时,a b >,但a <b ,原说法错误;③若a b =,则a b =±,原说法错误;④若2,5a b ==-时,a b <,但a b >,原说法错误;故选:B .【点睛】本题考查了绝对值的定义及其相关性质.牢记以下规律:(1)|a|=-a 时,a≤0;(2)|a|=a 时,a≥0;(3)任何一个非0的数的绝对值都是正数.11.A解析:A【分析】根据绝对值,可判断①③,根据正负数可判断②,根据相反数,可判断④.【详解】解:①|0|=0,任何非0的绝对值都大于0,故①正确;②当a≤0时,-a 是非负数,故②错误;③0的绝对值是0,0无正负之分,故③错误;④数轴上原点两侧的数符号相反,但不一定是互为相反数,此结论错误正确的结论只有1个,故选:A【点睛】本题主要考查数轴,有理数,相反数,解题的关键是掌握有理数的有关概念、数轴的概念等知识点.12.C解析:C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将3240万用科学记数法表示为:3.24×107.故选:C .本题考查了科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.正确掌握知识点是解题的关键;二、填空题13.-16【分析】结合题意根据有理数混合运算的性质计算即可得到答案【详解】根据题意得:故答案为:-16【点睛】本题考查了有理数运算的知识;解题的关键是熟练掌握有理数混合运算的性质从而完成求解解析:-16【分析】结合题意,根据有理数混合运算的性质计算,即可得到答案.【详解】根据题意得:()4*2*3-()42*324=⨯--⨯()()423228=⨯-⨯-⨯--⎡⎤⎣⎦()4648=⨯----⎡⎤⎣⎦()428=⨯--88=--16=-故答案为:-16.【点睛】本题考查了有理数运算的知识;解题的关键是熟练掌握有理数混合运算的性质,从而完成求解.14.>【分析】两个负数绝对值大的其值反而小【详解】解:∵||=||=而<∴>故答案为:>【点睛】本题主要考查了有理数的大小比较解题时注意:正数都大于0负数都小于0正数大于一切负数两个负数比较大小绝对值大 解析:>【分析】两个负数,绝对值大的其值反而小.【详解】解:∵|13-|=13,|12-|=12,而13<12, ∴13->12-. 故答案为:>.本题主要考查了有理数的大小比较,解题时注意:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.15.【分析】设从而可得两式相减即可得出答案【详解】设则因此所以即故答案为:【点睛】本题考查了含乘方的有理数混合运算的规律型问题读懂题干所给的求和方法是解题关键 解析:2021413- 【分析】设23202014444A +++⋅⋅⋅+=+,从而可得3202142444444A ++⋅⋅⋅+=++,两式相减即可得出答案.【详解】设23202014444A +++⋅⋅⋅+=+,则3202142444444A ++⋅⋅⋅+=++,因此,2021441A A -=-, 所以2021413A -=, 即202123202041444413-++++⋅+=⋅⋅, 故答案为:2021413-. 【点睛】本题考查了含乘方的有理数混合运算的规律型问题,读懂题干所给的求和方法是解题关键.16.510【分析】先根据a 为自然数故3与a 相乘得3a 由3a 加一个数等于4得到a=1再根据cd 都不大于5得到b=5故可根据运算法则求解【详解】如图由3a 加一个数等于4可得a=1∵cd 都不大于5∴b=5故运解析:510【分析】先根据a 为自然数,故3与a 相乘得3a ,由3a 加一个数等于4,得到a=1,再根据c ,d 都不大于5,得到b=5,故可根据运算法则求解.【详解】如图,由3a 加一个数等于4可得a=1,∵c ,d 都不大于5,∴b=5,故运算如下图,故3415510⨯=故答案为:1;510.【点睛】此题主要考查有理数运算的应用,解题的关键是根据题意找到运算特点进行求解. 17.2;【分析】(1)根据两点间的距离公式解题即可;(2)由绝对值的几何意义表示数x 到数的距离要使式子取得最小值则应找到与最小数和最大数距离相等的x 的值即可解题【详解】(1)两点之间的距离为3-1=2故解析:2; 510050.【分析】(1)根据两点间的距离公式解题即可;(2)由绝对值的几何意义,||x a -表示数x 到数a 的距离,要使式子取得最小值,则应找到与最小数和最大数距离相等的x 的值,即可解题.【详解】(1)A 、B 两点之间的距离为3-1=2,故答案为:2;(2)由已知条件可知,||x a -表示数x 到数a 的距离,只有当x 到1的距离等于x 到2019的距离时,式子即可取最小值,∴当1201910102x +==时,|1||3||2017||2019|x x x x -+-++-+-取最小值, 最小值为:|10101||10103||10102017||10102019|-+-++-+-=1009+1007+1005+1+1++1005+1007+1009=2(1009+1007+1005+1)⨯(10091)505=22+⨯⨯ 510050=【点睛】本题考查数轴、绝对值、两点间的距离等知识,是重要考点,难度一般,掌握相关知识是解题关键.18.4【分析】根据计算程序将每次的结果依次计算出来发现规律:每7次为一个循环组利用得到答案【详解】每次输出的结果为:第1次:12第2次:6第3次:3第4次:8第5次:4第6次:2第7次:7第8次:12每 解析:4【分析】根据计算程序将每次的结果依次计算出来,发现规律:每7次为一个循环组,利用202172885÷=得到答案.【详解】每次输出的结果为:第1次:12,第2次:6,第3次:3,第4次:8,第5次:4,第6次:2,第7次:7,第8次:12,,每7次为一个循环组,∵202172885÷=,∴第2021次输出的结果与第5次输出的结果相同,即为4,故答案为:4.【点睛】此题考查数字类规律探究,有理数的运算,掌握图形中的计算程序图的计算过程,发现计算结果的规律并运用规律解决问题是解题的关键.19.【分析】先算乘方再算乘除然后进行加减运算【详解】解:原式=-27÷9×8=-3×8=-24故答案:-24【点睛】本题考查了有理数的混合运算解题的关键是掌握有理数混合运算的运算法则:先算乘方再算乘除然解析:24-【分析】先算乘方,再算乘除,然后进行加减运算.解:原式=-27÷9×8=-3×8=-24故答案:-24.【点睛】本题考查了有理数的混合运算,解题的关键是掌握有理数混合运算的运算法则:先算乘方,再算乘除,然后进行加减运算;有括号先算括号.20.【分析】根据非负数的性质列式计算即可得解【详解】解:∵∴∴∴故答案为:【点睛】本题考查了非负数的性质解题的关键是掌握非负数的性质:有限个非负数的和为零那么每一个加数也必为零解析:6-【分析】根据非负数的性质列式计算即可得解.【详解】解:∵|2||1|0x y -++=,∴20,10x y -=+=,∴2,1x y ==-,∴332(1)6xy =⨯⨯-=-.故答案为:6-.【点睛】本题考查了非负数的性质.解题的关键是掌握非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.三、解答题21.1102-. 【分析】 原式利用乘法分配律以及乘方的意义计算即可得到结果.【详解】 解:()2020313121468⎛⎫-+-⨯+- ⎪⎝⎭ =3131212121468-⨯+⨯-⨯+ =99212-+-+ =1102-.此题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.22.(1)1199-;(2)9-.【分析】(1)先计算乘方和括号内的运算,然后计算乘法和加减运算即可;(2)先计算乘方、运用乘法分配律进行计算,然后计算加减乘除运算,即可得到答案.【详解】解:(1)()202042421239⎡⎤⎛⎫---⨯---- ⎪⎢⎥⎝⎭⎣⎦ 24161239⎡⎤=--⨯+-⎢⎥⎣⎦ 841639=--- 1199=-; (2)2131518246824⎛⎫⎛⎫⎛⎫-⨯-++-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 13158(24)4468⎛⎫=-⨯++-⨯- ⎪⎝⎭2(18415)=-+--+ 2(7)=-+-9=-.【点睛】本题考查了有理数的加减乘除混合运算,解题的关键是熟练掌握运算法则,正确的进行计算.23.(1)17;(2)1.【分析】(1)原式利用加法结合律相加即可求出值;(2)原式先计算乘方运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解:(1)814920--++()()=891420--++=17-+34=17(2)2310752+()(1012)--⨯-÷-()1=4958+10--⨯-÷=49+40+10-=1【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.(1)-5;(2)8【分析】(1)先按照乘法分配律进行计算,然后依次进行计算即可;(2)先计算乘方,再计算乘除,后计算加减;【详解】解:(1)1132446⎛⎫--⨯- ⎪⎝⎭ 113242446⎛⎫=--⨯-⨯- ⎪⎝⎭364=--+5=-.(2)2320211(2)(4)(1)2⎛⎫----⨯-+- ⎪⎝⎭ 1(8)(4)(1)4=---⨯-+- 8(1)1=---811=+-8=.【点睛】本题考查了有理数的混合运算,正确掌握有理数的运算法则是解题的关键;25.(1)8;(2)见解析;MN 的长度不会发生改变,线段MN =4.【分析】(1)数轴上两点之间的距离等于较大数与较小数的差;(2)根据中点的意义,利用线段的和差可得出答案.【详解】解:(1)AB =|﹣2﹣6|=8,答:AB 的长为8;(2)MN 的长度不会发生改变,线段MN =4,理由如下:如图,因为M 为PA 的中点,N 为PB 的中点,所以MA =MP =12PA ,NP =NB =12PB , 所以MN =NP ﹣MP=12PB ﹣12PA =12(PB ﹣PA ) =12AB =12×8 =4.【点睛】本题考查了数轴上两点之间的距离,数轴上线段中点的意义,熟练掌握两点间距离计算方法,灵活运用中点的意义是解题的关键.26.(1)1128-;(2)27-;(3)5.【分析】(1)先将小数化为分数,再将同分母分数相加,将最终的结果相加;(2)运用乘法分配律计算后,再相加减即可;(3)先计算乘方和括号,再从左到右乘除即可.【详解】解:(1)原式=11119(2)(5)44104810⎛⎫⎛⎫-+-++-+- ⎪ ⎪⎝⎭⎝⎭ =11191[(2)][(5)]44410108⎛⎫⎛⎫-++-+-+- ⎪ ⎪⎝⎭⎝⎭=12(6)48⎛⎫-+-+- ⎪⎝⎭ =1128-;(2)原式=157(36)(36)(36)2612⨯-+⨯--⨯- =18(30)(21)-+---=4821-+=27-;(3)原式=()(1)(5)910-⨯-÷-+=(1)(5)1-⨯-÷=5.【点睛】本题考查有理数的混合运算.熟练掌握有理数的混合运算的运算顺序和每一步的运算法则是解题关键.。

北师大版初中数学七年级上册 第2章 有理数及其运算测试卷(3)含答案

《第二章有理数及其运算》章末测试卷一、把正确的答案选在括号里(每题3分)1.某地一天最高气温23摄氏度,最低气温﹣5摄氏度,这天的温差是()摄氏度.A.18 B.28 C.﹣28 D.﹣182.两个有理数a与b,a+b=0,a与b的关系是()A.一正一负B.互为倒数C.互为相反数D.都是零3.下列各对数中,互为相反数的是()A.﹣0.01和0.1 B.和C.﹣0.125和 D.﹣0.125和84.如果两个数的积为负数,和也为负数,那么这两个数()A.都是负数B.都是正数C.一正一负,且负数的绝对值大D.一正一负,且正数的绝对值大5.设a是最小的自然数,b是最小的正整数,c是最大的负整数,则a、b、c三数之和为()A.﹣1 B.0 C.1 D.26.下列说法正确的是()A.﹣a一定是负数B.a的绝对值等于aC.﹣b是b的相反数D.0的倒数为07.4个有理数相乘,积的符号是负号,则这4个有理数中,负数有()A.1个或3个B.1个或2个C.2个或4个D.3个或4个8.若|x﹣2|+|y+6|=0,则x+y的值是()A.4 B.﹣4 C.﹣8 D.89.把数轴上表示数2的点移动3个单位后,表示的数为()A.5 B.1 C.5或1 D.5或﹣110.若一个有理数的绝对值等于3,则这个数可能是()A.3 B.﹣3 C.±3 D.无法确定二、填空题(每空3分)11.计算:|﹣(+4.8)|=;0﹣(﹣2019)=.12.一艘潜艇正在水下执行任务,所处位置记作﹣50米,距它正上方30米处,有一条鲨鱼正好游过,这条鲨鱼所处位置为米.13.平方得的数是,立方得﹣8的数是.14.绝对值不大于3的所有整数是,其和是,积是.15.我校勤工俭学基地预计今年可收入12800,把这个数用科学记数法表示为:.三、解答题16.(8分)把下列各数填在相应的横线上.,﹣3.15,6,,﹣7,0,﹣100,50%,78,π(1)正整数:6,78(2)整数:6,﹣7,0,﹣100,78(3)负分数:﹣3.15(4)非负数:,6,,050%,78,π.17.(8分)把下列各数表示到数轴上,并将它们从小到大用“<”连接.﹣1,0,4,﹣3,2.5.18.(16分)计算题:(1)﹣20﹣(﹣15)+(﹣12)﹣(+5);(2)(﹣+)×(﹣24);(3);(4)﹣12﹣[1+12÷(﹣6)]2×(﹣)2.19.(6分)某校对七年级男生进行俯卧撑测试,以能做7个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩如下:2、﹣1、0、3、﹣2、﹣3、1、0(1)这8名男生共做了多少个俯卧撑?(2)这8名男生的达标率是百分之几?20.(8分)某年国庆节日,学校放假八日,高速公路免费通行,各地风景区游人如织.其中,闻名于西南的珠江源头风景区,在9月30日的游客人数为1000人,接下来的七天中,每天的游客人数变化如表(正数表示比前一天多的人数,负数表示比前一天少的人数).(1)10月3日的人数为1151人.(2)假期里,游客人数最多的是10月2日,达到1209人.游客人数最少的是10月7日,达到1011人.(3)请问珠江源头风景区在这八天内一共接待了多少游客?参考答案一、把正确的答案选在括号里(每题3分)1.某地一天最高气温23摄氏度,最低气温﹣5摄氏度,这天的温差是()摄氏度.A.18 B.28 C.﹣28 D.﹣18【考点】有理数的减法.【分析】根据有理数的减法,可得答案.【解答】解:由题意,得23﹣(﹣5)=23+5=28,故选:B.【点评】本题考查了有理数的减法,利用有理数的减法:减去一个数等于加上这个数的相反数是解题关键.2.两个有理数a与b,a+b=0,a与b的关系是()A.一正一负B.互为倒数C.互为相反数D.都是零【考点】倒数;相反数.【分析】根据互为相反数的和为零,可得答案.【解答】解:由,a+b=0,a与b的关系互为相反数,故选:B.【点评】本题考查了相反数,利用互为相反数的和为零是解题关键.3.下列各对数中,互为相反数的是()A.﹣0.01和0.1 B.和C.﹣0.125和 D.﹣0.125和8【考点】相反数.【分析】根据相反数的定义,可以得到哪个选项是正确.【解答】解:﹣0.01和0.1不是相反数,和互为倒数,不是相反数,﹣0.125和互为相反数,﹣0.125和8不是互为相反数,故选C.【点评】本题考查相反数,解题的关键是明确相反数的定义.4.如果两个数的积为负数,和也为负数,那么这两个数()A.都是负数B.都是正数C.一正一负,且负数的绝对值大D.一正一负,且正数的绝对值大【考点】有理数的乘法;有理数的加法.【分析】两个数的积为负数说明这两数异号,和也为负数说明这两数中负数的绝对值大.【解答】解:∵两个数的积为负数,∴这两数异号;又∵和也为负数,∴这两数中负数的绝对值较大.故选C.【点评】本题主要考查了有理数的加法与乘法的符号法则.两数相乘,异号得负;绝对值不相等的异号两数相加,取绝对值较大的加数的符号.5.设a是最小的自然数,b是最小的正整数,c是最大的负整数,则a、b、c三数之和为()A.﹣1 B.0 C.1 D.2【考点】有理数的加法;有理数.【分析】最小的自然数是0,最小的正整数是1,最大的负整数是﹣1,依此可得a、b、c,再相加可得三数之和.【解答】解:由题意可知:a=0,b=1,c=﹣1,a+b+c=0.故选:B.【点评】考查了有理数的加法,此题的关键是知道最小的自然数是0,最小的正整数是1,最大的负整数是﹣1.6.下列说法正确的是()A.﹣a一定是负数B.a的绝对值等于aC.﹣b是b的相反数D.0的倒数为0【考点】倒数;相反数;绝对值.【分析】根据各个选项中的说法可以判断哪个选项是正确的.【解答】解:当a=﹣2时,﹣a=2,故选项A错误;当a=﹣2时,|﹣2|=2,故选项B错误;﹣b的相反数是b,故选项C正确;0没有倒数,故选项D错误;故选C.【点评】本题考查倒数、相反数、绝对值,解题的关键是明确它们各自的定义.7.4个有理数相乘,积的符号是负号,则这4个有理数中,负数有()A.1个或3个B.1个或2个C.2个或4个D.3个或4个【考点】有理数的乘法.【专题】计算题.【分析】根据多个数字相乘积为负数,得到负因式个数为奇数个,即可确定出结果.【解答】解:4个有理数相乘,积的符号是负号,则这4个有理数中,负数有1个或3个.故选A.【点评】此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.8.若|x﹣2|+|y+6|=0,则x+y的值是()A.4 B.﹣4 C.﹣8 D.8【考点】非负数的性质:绝对值.【分析】根据已知等式,利用非负数的性质求出x,y的值,即可确定出x+y的值.【解答】解:∵|x﹣2|+|y+6|=0,∴x﹣2=0,y+6=0,解得x=2,y=﹣6,则x+y=2﹣6=﹣4.故选:B.【点评】此题考查了代数式求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.9.把数轴上表示数2的点移动3个单位后,表示的数为()A.5 B.1 C.5或1 D.5或﹣1【考点】数轴.【专题】计算题.【分析】在数轴上找出表示2的点,向左或向右移动3个单位即可得到结果.【解答】解:把数轴上表示数2的点移动3个单位后,表示的数为5或﹣1.故选D【点评】此题考查了数轴,熟练掌握数轴的意义是解本题的关键.10.若一个有理数的绝对值等于3,则这个数可能是()A.3 B.﹣3 C.±3 D.无法确定【考点】绝对值.【分析】根据绝对值的意义得到|3|=3,|﹣3|=3.【解答】解:∵|3|=3,|﹣3|=3,∴绝对值等于3的有理数为±3.故选C.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.二、填空题(每空3分)11.计算:|﹣(+4.8)|= 4.8;0﹣(﹣2019)=2019.【考点】有理数的减法.【分析】首先将绝对值里面的进行化简,然后再去掉绝对值符号即可;根据有理数的减法法则计算即可求解.【解答】解:|﹣(+4.8)|=4.8;0﹣(﹣2014)=2014.故答案为:4.8;2014.【点评】本题考查了绝对值的求法,有理数的减法,属于基础题,比较简单.12.一艘潜艇正在水下执行任务,所处位置记作﹣50米,距它正上方30米处,有一条鲨鱼正好游过,这条鲨鱼所处位置为﹣20米.【考点】正数和负数.【分析】潜艇所在高度是﹣50米,如果一条鲨鱼在艇上方30m处,根据有理数的加法法则即可求出鲨鱼所在高度.【解答】解:∵潜艇所在高度是﹣50米,鲨鱼在潜艇上方30米处,∴鲨鱼所在高度为﹣50+30=﹣20(米).故答案为:﹣20.【点评】此题主要考查了正负数能够表示具有相反意义的量、有理数的加法等知识,解题关键是正确理解题意,根据题意列出算式解决问题.13.平方得的数是±,立方得﹣8的数是﹣2.【考点】有理数的乘方.【专题】计算题.【分析】利用平方根及立方根的定义即可得到结果.【解答】解:平方得的数是±,立方得﹣8的数是﹣2.故答案为:﹣;﹣2.【点评】此题考查了有理数的乘方,熟练掌握平方根及立方根的定义是解本题的关键.14.绝对值不大于3的所有整数是±3,±2,±1,0,其和是0,积是0.【考点】绝对值;有理数的加法;有理数的乘法.【分析】首先找出绝对值不大于3的所有整数为:±3,±2,±1,0,再求和与积即可.【解答】解:绝对值不大于3的所有整数是:±3,±2,±1,0,3+2+1+0+(﹣1)+(﹣2)+(﹣3)=0,3×2×1×0×(﹣1)×(﹣2)×(﹣3)=0,故答案为::±3,±2,±1,0;0;0.【点评】此题主要考查了绝对值,关键是掌握绝对值的概念,数轴上某个数与原点的距离叫做这个数的绝对值.15.我校勤工俭学基地预计今年可收入12800,把这个数用科学记数法表示为:1.28×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:12800=1.28×104,故答案为:1.28×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.三、解答题16.(8分)把下列各数填在相应的横线上.,﹣3.15,6,,﹣7,0,﹣100,50%,78,π(1)正整数:6,78(2)整数:6,﹣7,0,﹣100,78(3)负分数:﹣3.15(4)非负数:,6,,050%,78,π.【考点】有理数.【分析】根据题目中的数据可以分别得到正整数、整数、负分数、非负数分别包括哪些数.【解答】解:(1)正整数:6,78;(2)整数:6,﹣7,0,﹣100,78;(3)负分数:﹣3.15;(4)非负数:,6,,050%,78,π.故答案为:(1)6,78;(2)6,﹣7,0,﹣100,78;(3)﹣3.15;(4),6,,050%,78,π.【点评】本题考查有理数,解题的关键是明确有理数的划分,可以判断一个数属于哪一类型.17.(8分)把下列各数表示到数轴上,并将它们从小到大用“<”连接.﹣1,0,4,﹣3,2.5.【考点】有理数大小比较;数轴.【分析】首先在数轴上表示出各数的位置,再根据当数轴方向朝右时,右边的数总比左边的数大利用<连接即可.【解答】解:如图所示:,﹣3<﹣1<0<2.5<4.【点评】此题主要考查了有理数的比较大小,关键是掌握当数轴方向朝右时,右边的数总比左边的数大.18.(16分)计算题:(1)﹣20﹣(﹣15)+(﹣12)﹣(+5);(2)(﹣+)×(﹣24);(3);(4)﹣12﹣[1+12÷(﹣6)]2×(﹣)2.【考点】有理数的混合运算.【分析】(1)先去括号,再从左到右依次计算即可;(2)根据乘法分配律进行计算即可;(3)先算乘除,再算加减即可;(4)先算括号里面的,再算乘方,乘除,最后算加减.【解答】解:(1)原式=﹣20+15﹣12﹣5=﹣5﹣12﹣5=﹣22;(2)原式=×(﹣24)﹣×(﹣24)+×(﹣24)=﹣8+6﹣9=﹣11;(3)原式=23×(﹣5)﹣(﹣3)×=23×(﹣5)+118=﹣115+118=3;(4)原式=﹣1﹣[1﹣2]2×(﹣)2=﹣1﹣[﹣]2×=﹣1﹣×=1﹣1=0.【点评】本题考查的是实数的混合运算,熟知实数混合运算的法则是解答此题的关键.19.(6分)某校对七年级男生进行俯卧撑测试,以能做7个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩如下:2、﹣1、0、3、﹣2、﹣3、1、0(1)这8名男生共做了多少个俯卧撑?(2)这8名男生的达标率是百分之几?【考点】正数和负数.【分析】(1)根据题意可以求得这8名男生共做了多少个俯卧撑;(2)根据题目中的数据可以计算出这8名男生的达标率.【解答】解:(1)7×8+[2+(﹣1)+0+3+(﹣2)+(﹣3)+1+0]=56+0=56(个)即这8名男生共做了56个俯卧撑;(2)达标率是:,即这8名男生的达标率是62.5%.【点评】本题考查正数和负数,解题的关键是明确正数和负数在题目中的实际含义.20.(8分)某年国庆节日,学校放假八日,高速公路免费通行,各地风景区游人如织.其中,闻名于西南的珠江源头风景区,在9月30日的游客人数为1000人,接下来的七天中,每天的游客人数变化如表(正数表示比前一天多的人数,负数表示比前一天少的人数).(1)10月3日的人数为1151人.(2)假期里,游客人数最多的是10月2日,达到1209人.游客人数最少的是10月7日,达到1011人.(3)请问珠江源头风景区在这八天内一共接待了多少游客?【考点】正数和负数.【分析】(1)根据表格可以解答本题;(2)根据表格中的数据可以解答本题;(3)根据表格可以解答本题.【解答】解:(1)10月3日的人数为:1000+31+178﹣58=1151(人),故答案为:1151;(2)由表格可知,10月2日人数最多,最多为:1000+31+178=1209(人),由表格可知,10月7日人数最少,最少为:1000+31+178﹣58﹣8﹣1﹣16﹣115=1011(人),故答案为:2,1209,7,1011;(3)1000+1000×7+(31+178﹣58﹣8﹣1﹣16﹣115)=1000+7000+11=8011(名)即珠江源头风景区在这八天内一共接待了8011名游客.【点评】本题考查正数和负数,解题的关键是明确题意,找出所求问题需要的条件.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 有理数及其运算 全章水平测试卷
一、填空题
1、如果+20%表示增加20%,那么-6%表示_____________.
2、计算:2-(-1)2=_______.
3、某食品包装袋注明:“净重:50±5克”,它的含义是净重在_____克到_____
克之间.
4、一个点从数轴上的原点出发,向左移动4个单位长度,再向右移动3个单位
长度达到点P,则点P表示的数是________.
5、冰箱开始启动时内部温度是10℃,如果每小时冰箱内部的温度降低5℃,那
么4小时后,冰箱内部的温度是_______.
6、绝对值大于2而小于5的所有整数的和为______,积为________.
7、若一个数的平方等于9,则这个数是______;若一个数的立方等于-27,则
这个数是_______.
8、已知,且xy<0,则的值等于______.21,4yx
y

x

9、(1-2a)
2
与|3b-4|是互为相反数,则ab =_________.
10、瑞士中学教师巴尔末成功地从光谱数据中得到巴尔末公,3236,2125,1216,
5

9

式,从而打开了光谱奥妙的大门,请你按照这种规律写出第七个数据是
_________.
二、选择题
1、下列说法正确的是( )
(A)最小的整数是0
(B)有理数分为正数和负数
(C)若两个数的绝对值相等,则这两个数相等
(D)互为相反数的两个数的绝对值相等
2、在下列式子中,正确的是( )
(A) (B)
3141977

5


(C) (D)
10732417

3

3、绝对值是3,并且比-5大的整数有( )
(A)1个 (B)2个 (C) 3个(D)4个
4、计算(-1)÷(-9)×的结果是( )
9

1

(A)-1 (B)+1 (C) (D)
81181

1

5、在-(-3)、、、中,非负数有( )2.550
(A)1个 (B)2个 (C) 3个(D)4个
6、与算式32+32+3
2
的运算结果相等的是( )
(A)33 (B)23 (C) 36(D)3
8
7、五个有理数的积为负数,这5个数中负因数的个数是( )
(A)1个 (B)3个
(C)5个 (D)1个,或3个,或5个
8、某科研人员在一次试验中,发现一种代号为Ing的病菌每过60分钟便由1
个裂变成3个,经过4小时这种病菌由1个裂变成( )个.
(A)27 (B)9(C)81 (D)243
9、有理数a等于它的倒数,有理数b等于它的相反数,则a2003+b
2003
的值是
( )
(A)-1 (B)1 (C)0(D)±1
10、七年级(5)班同学在一起玩报数游戏,第一位同学从1开始报数,当报到5
的倍数时,则必须跳过该数报下一个数.如:
位置一二三四五六七八九十

报出的数
123467891112…
依此类推,第25位置上的小佳应报出的数是( )
(A)25 (B)27 (C)31(D)33
三、解答题
1、计算:(1))25.0(5)41(8

(2)2312)3221(39
2、根据所学知识,解答下列问题:
(1)在数轴上描出表示下列各数的点:-3,-2的相反数,0,,绝对值为5.0
3.5的正数,-(-1);
(2)把(1)中的各数用“<”连接起来;
(3)把(1)中的各数的相反数用“<”连接起来;
(4)把(1)中的各数的绝对值用“<”连接起来.
3、数轴上有一点M,它表示的数与3互为相反数,把它向右移动5个单位后
与点N的距离是4.
(1)求点M表示的数;
(2)求点N表示的数.

4、已知:a、b互为相反数,c、d互为倒数,x的绝对值等于2,试求
的值.
200320032
)()()(cdbaxcdbax

5、探索归纳:从-55依次加1得到一串数:-54,-53,-52,……,解答
下列问题:
(1)第100个数是什么?
(2)求这100个数的和与积.

6、小明的父亲上星期买进某公司股票1000股,每股27元,本周内每日该股票
的涨跌情况如下表(单位:元)
(注:股市周六、周日休息)
(1)星期三收盘时,每股是多少元?
(2)本周内最高价是每股多少元?最低
价是每股多少元?
(3)以上周五买进27元为0,用折线统计图表示本周该股票的涨跌情况.

7、某一食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合
标准,超过或不足的部分分别用正、负数来表示,记录如下表:

这批样品的平均质量比标准质量多还是少?多或少几克?若标准质量为450
克,则抽样检测的总质量是多少?

8、智力闯关:

星期一二三四五
每股涨跌
+4+4.5-1-2.5-3

与标准质量的差值(单位:g)
-5-20136
袋数
143453
(1)填幻方:将1,2,…9这9个数分别填入右图幻方的9个空格中,使得横、
竖、斜对角的所有3个数相加和相等.
(2)①每行、每列、每条对角线上的数的和是中心格数的______倍.
②在(1)的情况下,中心格数与所填9个数的和有什么关系?
③在(1)的情况下,每相邻三个数中的两两之差的绝对值有:,671,516
……据此,试探索任意相邻的三个数的两,781;167;213,538
两之差的绝对值有何规律?


参考答案
一、1. 减少6% 2. 1 3. 45,55 4. -1 5.-10℃
6. 0,0 7. ±3,-3 8. -8 9. 10.
3277

81

二、1. D 2. B 3. B 4. C 5. C
6. A 7. D 8. C 9. D 10. C
三、1.(1)3;(2)
4

3

2. (1)-2的相反数是2,=0.5,绝对值为3.5的正数是3.5,-(-1)=1,表5.0
示略;
(2)-3<0<0.5<1<2<3.5;
(3)-3.5<-2<-1<-0.5<0<3;
(4)5.33215.00
3. M=-3,N=-2或6.
4. 1或5
5. (1)55;(2)和为55,积为0
6. (1) 34.5元; (2) 最高价: 35.5元;最低价:29元; (3) 略
7. 平均质量比标准质量多1.2克(提示:×〔1×(-5)+4×(-
20

1

2)+4×1+5×3+3×6〕=1.2);9024克.
8. (1)见右图
(2)①3倍;②中心格数等于所填9个数的和的;③任意相邻的三个数的两两
9

1

之差的绝对值,必有两数之和等于第三个数.
618
753
294

相关文档
最新文档