19_20学年新教材高中数学第一章集合与常用逻辑用语1.2.1命题与量词1.2.2全称量词命题与存在

合集下载

2021_2022学年新教材高中数学第1章集合与常用逻辑用语1.2常用逻辑用语1.2.2全称量词命题

2021_2022学年新教材高中数学第1章集合与常用逻辑用语1.2常用逻辑用语1.2.2全称量词命题
第一章 集合与常用逻辑用语
1.2 常用逻辑用语 1.2.2 全称量词命题与存在量
词命题的否定
学习任务
核心素养
1.能正确写出一个命题的否定,并判断其真 1.通过对命题的否定的
假. 认识,提升数学抽象的素
2.理解含有一个量词的命题的否定的意义, 养.
会对含有一个量词的命题进行否定.(重点) 2.通过对含有一个量词
(3)命题的否定:所有的偶函数都不是单调函数,是真命题.
类型 4 全称量词命题与存在量词命题中的求参问题
1.关于 x 的不等式 ax2+bx+c>0(a>0)恒成立的条件是什么? [提示] 判别式 Δ=b2-4ac<0. 2.关于 x 的方程 ax2+bx+c=0(a≠0)有实根的条件是什么? [提示] 判别式 Δ=b2-4ac≥0.
如何对一个命题进行否定?
[提示] 否定一个命题是对这个命题结论的否定,要灵活应用常 见关键词对应的否定词.另外,命题和它的否定真假性相反,可运用 此结构检查所写命题的否定是否正确.
[跟进训练] 1.写出下列命题的否定形式,并判断其真假. (1)p:面积相等的三角形都是全等三角形; (2)p:若 m2+n2=0,则实数 m,n 全为零; (3)p:实数 a,b,c 满足 abc=0,则 a,b,c 中至少有一个为 0.
3.下列命题的否定为假命题的是( ) A.∃x∈R,x2+2x+2≤0 B.∀x∈R,x3<1 C.所有能被 3 整除的整数都是奇数 D.任意一个梯形的对角线都不互相平分
1234 5
D [对于选项 A,因为 x2+2x+2=(x+1)2+1>0,所以∃x∈R, x2+2x+2≤0 是假命题,故其否定为真命题;
类型 1 命题的否定 【例 1】 写出下列命题的否定,并判断其真假. (1)p:y=sin x 是周期函数; (2)p:实数的绝对值都大于 0; (3)p:菱形的对角线垂直平分; (4)p:若 xy=0,则 x=0 或 y=0.

2021_2022学年新教材高中数学第一章集合与常用逻辑用语1.2.2全称量词命题与存在量词命题的否

2021_2022学年新教材高中数学第一章集合与常用逻辑用语1.2.2全称量词命题与存在量词命题的否

1.辨析记忆(对的打“√”,错的打“×”).
(1)命题 p 的否定是 p.( √ )
提示:命题 p 与 p 互为否定.
(2)∃ x∈M,p(x)与∀ x∈M, p(x)的真假性相反.( √ )
提示:存在量词命题 p 与其否定 p 一真一假.
(3)从存在量词命题的否定看,是对“量词”和“p(x)”同时否定.( × )
学情诊断·课堂测评
1.(2021·太原高一检测)设命题 p:所有正方形都是平行四边形,则 p 为( ) A.所有正方形都不是平行四边形 B.有的平行四边形不是正方形 C.有的正方形不是平行四边形 D.不是正方形的四边形不是平行四边形 【解析】选 C.“所有”改为“存在”(或“有的”),“都是”改为“不都是”(或“不是”),即 p 为有的正方形不是平行四边形.
(3)r:在同圆中,有的等弧所对的圆周角不相等. 【解析】 r:在同圆中,任意等弧所对的圆周角相等. 由 r 是假命题可知 r 为真命题. (4)s:存在 k∈R,函数 y=kx+b 随 x 的值增大而减小.
【解析】 s:任意 k∈R,函数 y=kx+b 随 x 的值增大而增大或不变.当 k<0 时, 函数 y=kx+b 随 x 的值增大而减小,所以 s 是真命题, s 是假命题.
【思路导引】量词和结论都改变.
【解析】.选 B.已知命题 p:∃ x>2,x3-8>0,那么 p 是∀ x>2,x3-8≤0.
2.已知命题 p:存在 k∈R,使得函数 y=(k-3)x+k 的图像不经过定点 M,若命 题 p 是假命题,则点 M 的坐标为________. 【思路导引】依据原命题和其否定一真一假解答. 【解析】因为命题 p 是假命题,所以 p 是真命题,即任意 k∈R,使得函数 y=(k -3)x+k 的图像经过定点 M,易知点 M 的坐标为(-1,3). 答案:(-1,3)

高一上数学必修一第一章《命题与量词》知识点梳理

高一上数学必修一第一章《命题与量词》知识点梳理

高一上必修一第一章《集合与常用逻辑用语》知识点梳理1.2.1 命题与量词【学习目标】1、了解命题的概念2、能判断一些简单命题的真假。

3、理解全称量词与存在量词的概念。

4、学会判断全称量词命题与存在量词命题的方法。

【学习重点】1、能判断一些简单命题的真假。

2、学会判断全称量词命题与存在量词命题的方法。

【学习难点】1、掌握全称量词命题与存在量词命题真假性的判定。

2、能正确地对含有一个量词的命题进行否定。

一、命题我们在初中的时候就已经学习过数学中的命题,知道类似“对顶角相等”这样的可供真假判断的陈述语句就是命题,而且,判断为真的语句称为真命题,判断为假的语句称为假命题.数学中的命题,还经常借助符号和式子来表达.例如,命题“9的算术平方根是3”可表示为“9=3”.值得注意的是,一个命题,要么是真命题,要么是假命题,不能同时既是真命题又是假命题,也不能模棱两可、无法判断是真命题还是假命题.【尝试与发现】 为了方便叙述,命题可以用小写英文字母表示,如若记 p: A (A ∪B ),Z Q.则可知p 是一个真命题.二、量词在数学中,有很多命题都是针对特定集合而言的,例如:(1)任意给定实数x ,x ≥0;(2)存在有理数x ,使得3x 一2=0;(3)每一个有理数都能写成分数的形式;(4)所有的自然数都大于或等于零;(5)实数范围内,至少有一个x 使得意义;(6)方程x²=2在实数范围内有两个解;(7)每一个直角三角形的三条边长都满足勾股定理.不难看出,命题(1)(3)(4)(7)陈述的是指定集合中的所有元素都具有特定性质,命题(2)(5)(6)陈述的是指定集合中的某些元素具有特定性质.一般地,“任意”“所有”“每一个”在陈述中表示所述事物的全体,称为全称量词,用符号“∀”表示.含有全称量词的命题,称为全称量词命题.因此,全称量词命题就是形如“对集合M 中的所有元素x ,r(x)”的命题,可简记为例如,“任意给定实数x ,x ≥0”是一个全称量词命题,可简记为∀x ∈R ,x²≥0.“存在”“有”“至少有一个”在陈述中表示所述事物的个体或部分,称为存在量词,用符号“∃”表示。

2019(新课标)高中数学人教B版目录(全)新版

2019(新课标)高中数学人教B版目录(全)新版

2.1.1 等式的性质与方程的解集
4.6 函数的应用 (二)
2.1.2 一元二次方程的解集及其根与 系数的关系
4.7
数学建模活动:生长规律的描述
2.1.3 方程组的解集

第五章 统计与概率
2.2 不等式
5.1 统计
2.2.1 不等式及其性质
2.2.2 不等式的解集 2.2.3 一元二次不等式的解法 2.2.4 均值不等式及其应用 第三章 函数 3.1 函数的概念与性质
6.2.3 平面向量的坐标及其运算 6.3 平面向量线性运算的应用 本书拓展阅读目录 对数发明起源的简介 素数个数与对数 指数运算与生活哲学 我国古代统计工作简介 用样本估计总体的失败案例 “黄金72小时”中的概率 向量的推广与应用
人教B版 (2019)必修三 第七章 三角函数 7.1 任意角的概念与弧度制
6.1.1 向量的概念
自主招生中的充分条件与必要条件
6.1.2 向量的加法
《九章算术》中的代数成就简介
6.1.3 向量的减法
函数定义的演变过程简介
6.1.4数乘向量
物理中的变化率
6.1.5 向量的线性运算
付出与收获的关系
6.2 向量基本定理与向量的坐标
二分法在搜索中的应用
6.2.1 向量基本定理
6.2.2 直线上向量的坐标及其运算
10.2 复数的运算
1.2.5 空间中的距离
10.2.1 复数的加法与减法
第二章 平面解析几何
10.2.2 复数的乘法与除法
2.1坐标法
10.3 复数的三角形式及其运算
2.2 直线及其方程
第十一章 立体几何初步
2.2.1直线的倾斜角 与斜率
11.1 空间几何体

数学人教版高一必修一电子课本

数学人教版高一必修一电子课本
数学人教版高一必修一电子课本
第一章 集合与常用逻辑用语
1.1集合
1.1.1集合及其表示方法
1.1.2集合的基本关系
1.1.3集合的基本运算
1.2 常用逻辑用语
1.2.1命题与量词
1.2.2 全称量词命题与存在量词命题的否定
1.2.3 充分条件、必要条件
第二章 等式与不等式
2.1等式
2.1.1 等式的性质与方程的解集
2.1.2一元二次方程的解集及其根与系数的关系
2.1.3方程组的解集
2.2不2.2.2不等式的解集
2.2.3一元二次不等式的解法
2.2.4均值不等式及其应用
第三章 函数
3.1函数的概念与性质
3.1.1 函数及其表示方法
3.1.2 函数的单调性
3.1.3 函数的奇偶性
3.2函数与方程、不等式之间的关系
3.3函数的应用(一)
3.4数学建模活动:决定苹果的最佳出售时间点

人教B版(2019)高中数学必修第一册课程目录与教学计划表

人教B版(2019)高中数学必修第一册课程目录与教学计划表

人教B版(2019)高中数学必修第一册课程目录与教学计划表
教材课本目录是一本书的纲领,是教与学的路线图。

不管是做教学计划、实施教学活动,还是做学习计划、复习安排、工作总结,都离不开目录。

目录是一本书的知识框架,要做到心中有书、胸有成竹,就从目录开始吧!
课程目录教学计划、进度、课时安排第一章集合与常用逻辑用语
1.1集合
1.1.1集合及其表示方法
1.1.2集合的基本关系
1.1.3集合的基本运算
本节综合与测试
1.2 常用逻辑用语
1.2.1命题与量词
1.2.2 全称量词命题与存在量词命题的否定
1.2.3 充分条件、必要条件
本节综合与测试
本章综合与测试
第二章等式与不等式
2.1等式
2.1.1 等式的性质与方程的解集
2.1.2一元二次方程的解集及其根与系数的关系
2.1.3方程组的解集
本节综合与测试
2.2不等式
2.2.1不等式及其性质
2.2.2不等式的解集
2.2.3一元二次不等式的解法
2.2.4均值不等式及其应用
本节综合与测试
本章综合与测试
第三章函数
3.1函数的概念与性质
3.1.1 函数及其表示方法
3.1.2 函数的单调性
3.1.3 函数的奇偶性
本节综合与测试
3.2函数与方程、不等式之间的关系
3.3函数的应用(一)
3.4数学建模活动:决定苹果的最佳出售时间点本章综合与测试
本册综合。

2020年高中新教材目录

2020年高中新教材目录数学必修第一册(A版)第一章集合与常用逻辑用语1.1集合的概念 (2)1.2集合间的基本关系 (7)1.3集合的基本运算 (10)阅读与思考集合中元素的个数 (15)1.4充分条件与必要条件 (17)阅读与思考集合命题与充分条件、必要条件..241.5全称量词与存在量词 (26)小结 (33)复习参考题1 (34)第二章一元二次函数、方程和不等式2.1等式性质与不等式性质.......... 3 72.2基本不等式.................... 4 42.3二次函数与一元二次方程、不等式5 0小结............................. 5 6复习参考题2 (57)第三章函数的概念与性质阅读与思考函数概念的发展历程 (75)3.2函数的基本性质 (76)信息技术应用用计算机绘制函数图象87 3.3幂函数 (89)探究与发现探究函数y = x + 1/x的图象与性质 (92)3.4函数的应用(一) (93)文献阅读与数学写作函数的形成与发展97小结 (99)复习参考题3 (100)第四章指数函数与对数函数4.1指数 (104)4.2指数函数 (111)阅读与思考放射性物质的衰减 (115)信息技术应用探究指数函数的性质1204.3对数 (122)阅读与思考对数的发明 (128)4.4对数函数 (130)探究与发现互为反函数的两个函数图象间的关系 (135)阅读与思考中外历史上的方程求解147 文献阅读与数学写作对数概念的形成与发展 (157)小结 (158)复习参考题4 (159)数学建模建立函数模型解决实际问题 (162)第五章三角函数5.1任意角和弧度制 (168)5.2三角函数的概念 (177)阅读与思考三角学与天文学 (186)5.3诱导公式 (188)5.4三角函数的图象与性质 (196)探究与发现函数y=Asin(3x + 5)及函数y = Acos(3x +牛)的周期 (203)探究与发现利用单位圆的性质研究正弦函数、余弦函数的性质.• (208)5.5三角恒等变换 (215)信息技术应用利用信息技术制作三角函数表 (224)5.6函数丫二人$岫乂 +牛) (231)阅读与思考振幅、周期、频率、相位 (250)小结 (251)复习参考题5 (253)部分中英文词汇索引 (258)数学必修第一册(B版)第一章集合与常用逻辑用语1.1集合1.1.1集合及其表示方法 (3)1.1.2集合的基本关系 (9)1.1.3集合的基本运算 (14)1.2常用逻辑用语1.2.1命题与量词 (22)1.2.2全称量词命题与存在量词命题的否定..271.2.3充分条件、必要条件 (30)本章小结 (37)第二章等式与不等式2.1等式2.1.1等式的性质与方程的解集 (43)2.1.2一元二次方程的解集及其根与系数的关系 (47)2.1.3方程组的解集 (51)2.2不等式2.2.1不等式及其性质 (58)2.2.2不等式的解集 (64)2.2.3一元二次不等式的解法 (68)2.2.4均值不等式及其应用 (72)本章小结 (79)第三章函数3.1函数的概念与性质3.1.1函数及其表示方法 (85)3.1.2函数的单调性 (95)3.1.3函数的奇偶性 (104)3.2函数与方程、不等式之间的关系 (112)3.3函数的应用(一) (121)3.4数学建模活动:决定苹果的最佳出售时间点..125本章小结 (131)本书拓展阅读目录罗素悖论与第三次数学危机 (11)数学中的猜想 (23)自主招生中的充分条件与必要条件 (33)《九章算术》中的代数成就简介 (52)函数定义的演变过程简介 (86)物理中的变化率 (99)付出与收获的关系 (101)二分法在搜索中的应用 (118)数学必修第二册(A版)第六章平面向量及其应用6.1平面向量的概念 (2)阅读与思考向量及向量符号的由来 (6)6.2平面向量的运算 (7)6.3平面向量基本定理及坐标表示 (25)6.4平面向量的应用 (38)阅读与思考海伦和秦九韶 (55)小结 (57)复习参考题6 (59)数学探究用向量法研究三角形的性质 (63)第七章复数7.1复数的概念 (68)7.2复数的四则运算 (75)阅读与思考代数基本定理 (81)7.3*复数的三角表示 (83)探究与发现1的n次方根 (91)小结 (93)复习参考题7 (94)第八章立体几何初步8.1基本立体图形 (97)8.2立体图形的直观图 (107)阅读与思考画法几何与蒙日 (112)8.3简单几何体的表面积与体积 (114)探究与发现祖暅原理与柱体、锥体的体积 (121)8.4空间点、直线、平面之间的位置关系 (124)8.5空间直线、平面的平行 (133)8.6空间直线、平面的垂直 (146)阅读与思考欧几里得《原本》与公理化方法 (165)文献阅读与数学写作*几何学的发展166小结 (167)复习参考题8 (169)第九章统计9.1随机抽样 (173)阅读与思考如何得到敏感性问题的诚实反应 (185)信息技术应用统计软件的应用 (189)9.2用样本估计总体 (192)阅读与思考统计学在军事中的应用----二战时德国坦克总量的估计问题 (208)阅读与思考大数据 (217)9.3统计案例公司员工的肥胖情况调查分析 (218)小结 (220)复习参考题9 (222)第十章概率10.1随机事件与概率 (226)10.2事件的相互独立性 (246)10.3频率与概率 (251)阅读与思考孟德尔遗传规律 (259)小结 (261)复习参考题10 (263)部分中英文词汇索引 (265)数学必修第二册(B版)第四章指数函数、对数函数与幂函数4.1指数与指数函数4.1.1实数指数幂及其运算 (3)4.1.2指数函数的性质与图像 (9)4.2对数与对数函数4.2.1对数运算 (15)4.2.2对数运算法则 (20)4.2.3对数函数的性质与图像 (24)4.3指数函数与对数函数的关系 (30)4.4幂函数 (33)4.5增长速度的比较 (38)4.6函数的应用(二) (42)4.7数学建模活动:生长规律的描述 (46)4.8结 (50)第五章统计与概率5.1统计5.1.1数据的收集 (55)5.1.2数据的数字特征 (61)5.1.3数据的直观表示 (68)5.1.4用样本估计总体 (77)5.2数学探究活动:由编号样本估计总数及其模拟 (90)5.3概率5.3.1样本空间与事件 (93)5.3.2事件之间的关系与运算 (98)5.3.3古典概型 (102)5.3.4频率与概率 (108)5.3.5随机事件的独立性 (114)5.4统计与概率的应用 (119)本章小结 (126)第六章平面向量初步6.1平面向量及其线性运算6.1.1向量的概念 (133)6.1.2向量的加法 (137)6.1.3向量的减法 (142)6.1.4数乘向量 (145)6.1.5向量的线性运算 (147)6.2向量基本定理与向量的坐标6.2.1向量基本定理 (152)6.2.2直线上向量的坐标及其运算 (157)6.2.3平面向量的坐标及其运算 (160)6.3平面向量线性运算的应用 (168)本章小结 (172)本书拓展阅读目录对数发明起源的简介 (17)素数个数与对数 (18)指数运算与生活哲学 (40)我国古代统计工作简介 (57)用样本估计总体的失败案例 (82)“黄金7 2小时”中的概率 (96)向量的推广与应用 (163)数学必修第三册(B版)第七章三角函数7.1任意角的概念与弧度制7.1.1角的推广 (3)7.1.2弧度制及其与角度制的换算 (8)7.2任意角的三角函数7.2.1三角函数的定义 (14)7.2.2单位圆与三角函数线 (18)7.2.3同角三角函数的基本关系式 (22)7.2.4诱导公式 (27)7.3三角函数的性质与图像7.3.1正弦函数的性质与图像 (36)7.3.2正弦型函数的性质与图像 (43)7.3.3余弦函数的性质与图像 (50)7.3.4正切函数的性质与图像 (54)7.3.5已知三角函数值求角 (57)7.4数学建模活动:周期现象的描述...•• (64)本章小结 (66)第八章向量的数量积与三角恒等变换8.1向量的数量积8.1.1向量数量积的概念 (71)8.1.2向量数量积的运算律 (76)8.1.3向量数量积的坐标运算 (81)8.2三角恒等变换8.2.1两角和与差的余弦 (87)8.2.2两角和与差的正弦、正切 (90)8.2.3倍角公式 (96)8.2.4三角恒等变换的应用 (99)本章小结 (107)本书拓展阅读目录更多三角函数及关系式 (25)向量的数量积与三角形的面积 (84)正弦型函数与信号处理 (103)数学必修第四册(B版)第九章解三角形9.1正弦定理与余弦定理9.1.1正弦定理 (3)9.1.2余弦定理89.2正弦定理与余弦定理的应用 (13)9.3数学探究活动:得到不可达两点之间的距离 (17)本章小结 (19)第十章复数10.1复数及其几何意义10.1.1复数的概念 (25)10.1.2复数的几何意义 (29)10.2复数的运算10.2.1复数的加法与减法 (33)10.2.2复数的乘法与除法 (36)10.3复数的三角形式及其运算 (43)本章小结 (50)第十一章立体几何初步11.1空间几何体11.1.1空间几何体与斜二测画法 (55)11.1.2构成空间几何体的基本元素 (60)11.1.3多面体与棱柱 (66)11.1.4棱锥与棱台 (72)11.1.5旋转体 (76)11.1.6祖暅原理与几何体的体积 (82)11.2平面的基本事实与推论 (91)11.3空间中的平行关系11.3.1平行直线与异面直线 (96)11.3.2直线与平面平行 (100)11.3.3平面与平面平行 (103)11.4空间中的垂直关系11.4.1直线与平面垂直 (110)11.4.2平面与平面垂直 (116)本章小结 (123)本书拓展阅读目录秦九韶的“三斜求积术” (11)利用复数产生分形图 (40)四元数简介 (47)我国古代数学中球的体积公式 (86)生物学必修1分子与细胞第一章走进细胞第1节细胞是生命活动的基本单位 (2)第2节细胞的多样性和统一性 (9)探究•实践使用高倍显微镜观察^种细胞 (9)生物科技进展人工合成生命的探索 (12)第二章组成细胞的分子第1节细胞中的元素和化合物 (16)探究•实践检测生物组织中的糖类、脂肪和蛋白质 (18)第2节细胞中的无机物 (20)第3节细胞中的糖类和脂质 (23)第4节蛋白质是生命活动的主要承担者 (28)生物科学史话世界上第一个人工合成蛋白质的诞生 (33)第5节核酸是遗传信息的携带者 (34)第三章细胞的基本结构第1节细胞膜的结构和功能 (40)第2节细胞器之间的分工合作 (47)探究•实践用高倍显微镜观察叶绿体和细胞质的流动 (50)第3节细胞核的结构和功能 (54)探究•实践尝试制作真核细胞的三维结构模型 (57)生物科技进展世界上首例体细胞克隆猴的诞生 (58)第四章细胞的物质和输入输出第1节被动运输 (62)探究•实践探究植物细胞的吸水和失水 (64)生物科学史话人类对通道蛋白的探索历程 (68)第2节主动运输与胞吞、胞吐 (69)第五章细胞的能量供应和利用第1节降低化学反应活化能的酶 (76)一酶的作用和本质 (76)探究•实践比较过氧化氢在不同条件下的分解 (77)二酶的特性 (81)探究•实践淀粉酶对淀粉和蔗糖的水解作用 (81)探究•实践影响酶活性的条件 (82)科学・技术・社会酶为生活添姿彩..85第2节细胞的能量“货币” ATP (86)第3节细胞呼吸的原理和应用 (90)探究•实践探究酵母菌细胞呼吸的方式..90第4节光合作用与能量转化 (97)一捕获光能的色素和结构 (97)探究•实践绿叶中色素的提取和分离 (98)二光合作用的原理和应用 (102)探究•实践探究环境因素对光合作用强度的影响 (105)第六章细胞的生命历程第1节细胞的增殖 (110)探究•实践观察根尖分生区组织细胞的有丝分裂 (116)第2节细胞的分化 (118)科学・技术・社会骨髓移植和中华骨髓库 (122)第3节细胞的衰老和死亡 (123)生物科技进展秀丽隐杆线虫与细胞凋亡研究 (127)与生物学有关的职业病理科医师 (128)附录生物学实验室的基本安全规则 (131)生物学必修2遗传与进化第一章遗传因子的发现第1节孟德尔的豌豆杂交实验(一) (2)探究•实践性状分离比的模拟实验 (6)第2节孟德尔的豌豆杂交(二) (9)与生物学有关的职业育种工作者 (14)第二章基因和染色体的关系第1节减数分裂和受精作用一减数分裂 (18)探究•实践观察蝗虫精母细胞减数分裂装片 (24)二受精作用 (25)探究•实践建立减数分裂中染色体变化的模型 (25)科学・技术・社会人类辅助生殖技术..28在染色体上 (29)科学家的故事染色体遗传理论的奠基人摩尔根 (33)第3节伴性遗传 (34)第三章基因的本质第1节DNA是主要的遗传物质 (42)生物科技进展生物信息学及其应用..47第2节DNA的结构 (48)探究•实践制作DNA双螺旋结构模型51科学・技术・社会DNA指纹技术 (52)第四章基因的表达指导蛋白质的合成 (64)生物科学史话遗传密码的破译 (70)第2节基因表达与性状的关系 (71)科学・技术・社会基因工程的应用 (76)第五章基因突变及其它变化第1节基因突变和基因重组 (80)生物科技进展基因组编辑 (85)科学・技术・社会精准医疗 (86)第2节染色体变异 (87)探究•实践低温诱导植物细胞染色体数目的变化 (89)第3节人类遗传病 (92)探究•实践调查人群中的遗传病 (93)与生物学有关的职业遗传咨询师.96第六章生物的进化第1节生物有共同祖先的证据 (100)科学・技术・社会理想的“地质时钟”105与生物学有关的职业化石标本的制作人员 (105)第2节自然选择与适应的形成 (106)第3节种群基因组成的变化与物种的形成..110物理必修第一册第一章运动的描述1.质点参考系 (11)2.时间位移 (14)3.位置变化快慢的描述一一速度 (19)4.速度变化快慢的描述一一加速度 (25)第二章匀变速直线运动的研究1.实验:探究小车速度随时间变化的规律..342.匀变速直线运动的速度与时间的关系 (37)3.匀变速直线运动的位移与时间的关系 (40)4.自由落体运动 (45)第三章相互作用力1.重力与弹力 (55)2.摩擦力 (60)3.牛顿第三定律 (64)4.力的合成和分解 (68)5.共点力的平衡 (72)第四章运动和力的关系1.牛顿第一定律 (79)2.实验:探究加速度与力、质量的关系 (83)3.牛顿第二定律 (88)4.力学单位制 (93)5.牛顿运动定律的应用 (97)6.超重和失重 (101)课题研究 (108)学生实验 (112)索引 (116)化学必修第一册第一章物质及其变化第一节物质的分类及转化 (6)第二节离子反应 (13)第三节氧化还原反应 (20)整理与提升 (27)第二章海水中的重要元素——钠和氯第一节钠及其化合物 (32)第二节氯及其化合物 (41)第三节物质的量 (49)整理与提升 (58)实验活动1配制一定物质的量浓度的溶液..61第三章铁金属材料第一节铁及其化合物 (64)第二节金属材料 (73)整理与提升.............. 整实验活动2铁及其化合物的性质 (84)第四章物质结构元素周期律 (84)第一节原子结构与元素周期表 (86)第二节元素周期律 (101)第三节化学键 (107)整理与提升 (111)实验活动3同周期、同主族元素性质的递变115附录I实验室突发事件的应对措施和常见废弃物的处理方法 (116)附录口一些化学品安全使用标识 (117)附录印名词索引 (119)附录V部分酸、碱和盐的溶解性表(室温)120附录V 一些常见元素中英文名称对照表..121附录VI相对原子质量表 (122)元素周期表地理必修第一册第一章宇宙中的地球第一节地球的宇宙环境 (2)第二节太阳对地球的影响 (8)第三节地球的历史 (14)第四节地球的圈层结构 (21)问题研究火星基地应该是什么样子.25第二章地球上的大气第一节大气的组成和垂直分层 (28)第二节大气受热过程和大气运动 (34)问题研究何时“蓝天”常在 (42)第三章地球上的水第一节水循环 (46)第二节海水的性质 (50)第三节海水的运动问题研究能否淡化海冰解决环渤海 (57)地区淡水短缺问题 (63)第四章地貌第一节常见地貌类型 (66)第二节地貌的观察 (76)问题研究如何提升我国西南喀斯特峰丛山地的经济发展水平 (79)第五章制备与土壤第一节植被 (82)第二节土壤 (88)问题研究如何让城市不再“看海” (96)第六章自然灾害第一节气象灾害 (100)第二节地质灾害 (106)第三节防灾减灾 (110)第四节地理信息技术在防灾减灾中的应用 (114)问题研究救灾物资储备库应该建在哪里 (120)附录一本书主要地理词汇中英文对照表122附录二本套书常用地图图例 (124)体育与健康必修全一册。

第一章集合与常用逻辑用语-1.2集合(试题及答案解析)

第一章集合与常用逻辑用语§1.2.1 命题与量词一、选择题1.已知下列语句:①一束美丽的花;②x>3;③2是一个偶数;④若x=2,则x2−5x+6=0.其中是命题的个数是 ( )A.1 B.2 C.3 D.42.下列命题中为真命题的是()A.平行直线的倾斜角相等 B.平行直线的斜率相等C.互相垂直的两直线的倾斜角互补 D.互相垂直的两直线的斜率互为相反数3.下列命题中是全称量词命题的是()A.圆有内接四边形 B.√3>√2C.存在x0∈(0,1),使2x0=1D.若三角形的三边长分别为3、4、5,则这个三角形为直角三角形4.下列全称量词命题中真命题的个数是()①末位是0或5的整数,可以被5整除;②钝角都相等;③三棱锥的底面是三角形.A.0 B.1 C.2 D.35.下列存在量词命题中真命题的个数是()①∃x∈R,x≤0;②至少有一个整数,它既不是合数,也不是素数;③∃x{x|x是无理数},x2是无理数。

A.0 B.1 C.2 D.36.下列是全称量词命题且是真命题的是( )A.∀x∈R,x2>0 B.∀x∈Q,x2∈QC.∃x0∈R,x02>1 D.∀x,y∈R,x2+y2>07..下列存在量词命题中,假命题是()A.∃x∈Z,x2−2x−3=0 B.至少有一个x∈Z,x能被2和3整除C.存在两个相交平面垂直于同一条直线 D.∃x∈{x是无理数},x2是有理数8.下列四个命题中,既是存在量词命题又是真命题的是( )A.斜三角形的内角是锐角或钝角B.至少有一个实数x0,使x02>0C.任一无理数的平方必是无理数D.存在一个负数x>29.给出命题“方程x2+ax+1=0没有实数根”,则使该命题为真命题的a的一个值可以是( ) A.4 B.2 C.1 D.-310.已知“命题p:∃x∈R,使得ax2+2x+1<0成立”为真命题,则实数a满足( )A.[0,1) B.(-∞,1) C.[1,+∞) D.(-∞,1]二、填空题1、下列语句为命题的有________.①x∈R,x>2;②梯形是不是平面图形呢?③22 018是一个很大的数;④4是集合{2,3,4}中的元素;⑤作△ABC≌△A′B′C′2、命题p:∃x0∈R,x20+2x0+5<0是________(填“全称命题”或“特称命题”),它是________命题(填“真”或“假”)三、解答题11.已知命题“∃x∈[1,2],使x2+2x+a≥0”为真命题,求a的取值范围.12.是否存在整数,使得命题“∀x∈R,m2−m<x2+x+1”是真命题?若存在,求出m的值;若不存在,请说明理由.第一章集合与简易逻辑§1.2.2 全称量词命题与存在量词命题的否定一、选择题1.已知命题p:“∃a>0,有a+1a<2成立”,则命题¬p为()A.∀a≤0,有a+1a ≥2成立B.∀a>0,有a+1a≥2成立C.∃a>0,有a+1a ≥2成立D.∃a>0,有a+1a>2成立2.已知命题p:∀x∈R,e x≥1+sin x.则命题¬p为()A.∀x∈R,e x<1+sin x B.∀x∈R,e x≤1+sin xC.∃x0∈R,e x0≤1+sin x0D.∃x0∈R,e x0<1+sin x03.若命题p:∃x∈Z,e x<1,则¬p为()A.∀x∈Z,e x<1B.∀x∈Z,e x≥1C.∀x∉Z,e x<1D.∀x∉Z,e x≥1 4.命题“若a2+b2=0则a=0且b=0”的否定是()A.若a2+b2≠0,则a≠0且b≠0.B.若a2+b2=0,则ab≠0.C.若a2+b2≠0,则a≠0或b≠0.D.若a2+b2=0,则a2+b2≠0. 5.命题“存在x0∈R,使得x03>x02”的否定是()A.对任意x∈R,都有x3>x2B.不存在x0∈R,使得x03≤x02C.对任意x∈R,都有x3≤x2D.存在x0∈R,使得x03≤x02二、填空题6.命题“∀x∈R,3x2−2x+1>0”的否定是__________.7.命题:“∃x∈R,x2−ax+1<0”的否定为__________.8.若命题“存在x<2017,x>a”是假命题,则实数a的取值范围是__________.三、解答题9.写出下列命题的否定,并判断其真假:(1)任何有理数都是实数;(2)存在一个实数a,能使a2+1=0成立.10.已知命题“∃x∈[1,2],使x2+2x+a≥0”为真命题,求a的取值范围.11.是否存在整数m,使得命题“∀x∈R,m2−m<x2+x+1”是真命题?若存在,求出m的值;若不存在,请说明理由.12.已知命题p:∀x∈[0,1],x2−a≥0,命题q:∃x0∈R,x02+2ax0+a+2=0,若命题p,q至少有一个是真命题,求实数a的取值范围.第一章集合与简易逻辑§1.2.3 充分条件、必要条件一、选择题1.命题“正方形的四条边都相等”中的条件是( )A.正方形B.正方形的四条边C.四条边D.四条边都相等2.如果命题“p⇒q”是真命题,那么①p是q的充分条件②p是q的必要条件③q是p的充分条件④q是p的必要条件,其中一定正确的是( )A.①③B.①④ C.②③D.②④3.已知p:A=ϕ,q:A∩B=ϕ,则p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.若a >0,b >0,则“a +b ≤4”是 “ab ≤4”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件5.已知p:x >0,q:x 2>0,则( ) A . q 是p 的充分条件 B . q 是p 的必要条件 C .命题是真命题D .命题是假命题 6.对任意的实数a,b,c ,在下列命题中的真命题是( )A .“ac >bc ”是“a >b ”的必要不充分条件B .“ac =bc ”是“a =b ”的必要不充分条件C .“ac >bc ”是“a >b ”的充分不必要条件D .“ac =bc ”是“a =b ”的充分不必要条件 二、填空题7.设x ∈R ,则“x =1”是“x 3=8.“a 2=b 2”是“a =充分也不必要).9.已知s 是r 的充分条件,r 是p 的充分条件,p 是s 充分条件,则s 是p 的________________条件. 10.已知A ={x|1≤x ≤2},{|}B x x a =<,如果B 的充分条件是A ,则实数a 的取值范围是_________. 三、解答题11.试判断“p:x =1”是“q:x 3−x 2−x +1=0”的充分条件还是必要条件?并给出证明.12.已知P ={x |x 2−3x +2≤0},S ={x |1−m ≤x ≤1+m }.(1)是否存在实数m ,使x ∈P 是x ∈S 的充要条件?若存在,求出m 的取值范围,若不存在,请说明理由;(2)是否存在实数m ,使x ∈P 是x ∈S 的必要条件?若存在,求出m 的取值范围,若不存在,请说明理由.答案与解析§1.2.1 命题与量词一、选择题1.已知下列语句:①一束美丽的花;②x>3;③2是一个偶数;④若x=2,则x2−5x+6=0.其中是命题的个数是 ( )A.1 B.2 C.3 D.4【答案】B【解析】①陈述句,但未表示判断;②表示判断,但是缺少必要的陈述条件;③是陈述句有判断,是命题;④是陈述句,也有判断,是命题.故选B.2.下列命题中为真命题的是()A.平行直线的倾斜角相等 B.平行直线的斜率相等C.互相垂直的两直线的倾斜角互补 D.互相垂直的两直线的斜率互为相反数【答案】A【解析】∵当两直线平行时,它们与x轴的夹角相等,即直线的倾斜角相等,故A成立.∵当两平行直线都与x轴垂直时,直线的倾斜角都为90°,斜率都不存在,故B不成立.∵互相垂直的两直线,当其中一条和x轴垂直,另一条和x轴平行时,它们的倾斜角一个为90度,另一个为0度,并不互补,故C不成立.∵互相垂直的两直线,当其中一条和x轴垂直,另一条和x轴平行时,它们的斜率一个为0,另一个不存在,故D不成立.故选 A.3.下列命题中是全称量词命题的是()A.圆有内接四边形 B.√3>√2C.存在x0∈(0,1),使2x0=1D.若三角形的三边长分别为3、4、5,则这个三角形为直角三角形【答案】A【解析】含有存在量词“有些”“至少”“存在”的命题都是特称命题;含有全称量词“任意”“所有”“全部”的命题都是全称量词命题.A中命题即为所有的圆都有内接四边形,是全称量词命题.其余三个命题均不是全称量词命题.故选A.4.下列全称量词命题中真命题的个数是()①末位是0或5的整数,可以被5整除;②钝角都相等;③三棱锥的底面是三角形.A.0 B.1 C.2 D.3【答案】C【解析】①正确;②错误,钝角不一定都相等,如120°,150°是钝角,但不相等;③正确,三棱锥四个面都是三角形.5.下列存在量词命题中真命题的个数是()①∃x∈R,x≤0;②至少有一个整数,它既不是合数,也不是素数;③∃x∈{x|x是无理数},x2是无理数。

高中数学新教材必修一第一章 《集合与常用逻辑用语》全套课件PPT

是不同的对象,相同的对象归入一个集合时,仅算一个元
素. 如:应把集合{1,2,2}改写成 {1,2}
(3)无序性:集合中的元素是平等的,没有先后顺序,因
此判定两个集合是否一样,仅需比较它们的元素是否一 样,不需考查排列顺序是否一样.
如:集合{1,2,3}和{1,3,2}表示同一集合。
注:集合的相等:构成两个集合的元素完全一样
新课引入
问题:
温故而知新
3.在初中我们学过哪些集合?
代数:整数的集合、实数的集合、有理数的集合、 不等式(如x-7>3)的解集等;
几何:点的集合等。 4.在初中,我们用集合描述过什么? 在初中几何中, 如线段AB的中垂线是……
圆是……。
学习新知
1、集合的含义:
(1)1~20以内的所有质数;
(2)我国从2000~2019年所发射的所有人造卫星;
集合的分类:(1)有限集 (2)无限集
当堂达标
练习巩固 提高能力
1. 用符号“∈”或“ ”填空
(1) 3.14 Q (2) Q
(3) 0 N+ (5) 2 3 Q
(4) (-2)0 N+ (6) 2 3 R
练习:课本P5第2题.
学习新知
5、集合的常用表示方法:
5、集合的常用表示方法:
记作:
规定:空集是任何集合的子集;
空集是任何非空集合的真子集。
例题示范
运用知识,注重规范
例1、写出集合{a, b}的所有子集,并指出哪些是它
的真子集. ,{a},{b},{a, b}
练习:课本第8页第1题
推广:设一个有限集A中的元素个数为n个,则集 合A的子集的个数为2n个。 其中真子集的个数为 2n-1 个, 非空子集的个数为 2n-1 个, 非空真子集的个数为 2n-2 个。

2021_2022学年新教材高中数学第一单元集合与常用逻辑用语1.2.1命题与量词学案新人教B版必修

1.2 常用逻辑用语1.2.1 命题与量词定义可供真假判断的陈述语句分类真命题:判断为真的语句假命题:判断为假的语句注意数学中的命题,经常借助符号和式子来表达一个命题,要么是真命题,要么是假命题,不能同时既是真命题又是假命题(1)全称量词:“任意”“所有”“每一个”在陈述中表示所述事物的全体,称为全称量词,用符号“∀”表示.(2)全称量词命题:含有全称量词的命题,叫做全称量词命题.(3)符号表示:“对集合M中的所有元素x,r(x)”.可简记为:∀x∈M,r(x).常见的全称量词还有哪些?提示:常见的全称量词还有“一切”“全部”“任给”“凡是”等.(1)存在量词:“存在”“有”“至少有一个”在陈述中表示所述事物的个体或部分,称为存在量词,用符号“∃”表示.(2)存在量词命题:含有存在量词的命题,叫做存在量词命题.(3)符号表示:“存在集合M中的元素x,s(x)”.可简记为:∃x∈M,s(x).常见的存在量词还有哪些?提示:常见的存在量词还有“有些”“有一个”“对某些”等.1.辨析记忆(对的打“√”,错的打“×”).(1)全称量词命题是陈述某集合中所有元素都具有某种性质的命题.( )(2)存在量词命题是陈述某集合中存在一个或部分元素具有某种性质的命题.( )(3)全称量词命题一定含有全称量词.( )提示:(1)√.全称量词命题中的全称量词表明给定X围内所有对象都具有某一性质,无一例外,强调“整体、全部”.(2)√.存在量词命题中的存在量词则表明给定X围内的对象有例外,强调“个别、部分”.(3)×.有些命题虽然没有写出全称量词,但其意义具备“任意性”,这类命题也是全称量词命题,如“正数大于0”即“所有正数都大于0”,故说法是错误的.2.下列语句是命题的是( )①三角形内角和等于180°;②2>3;③一个数不是正数就是负数;④x>2;⑤2021央视春晚真精彩啊!A.①②③B.①③④C.①②⑤D.②③⑤【解析】选A.①,②,③是陈述句,且能判断真假,因此是命题,④不能判断真假,⑤是感叹句,故④,⑤不是命题.3.(教材例题改编)下列四个命题中的真命题为( )A.∃x∈Z,1<4x<3B.∃x∈Z,5x+1=0C.∀x∈R,x2-1=0D.∀x∈R,x2+x+2>0【解析】选D.当x∈R时,x2+x+2=+>0.类型一判断命题的真假(数学抽象、逻辑推理)【典例】“对于任何实数a,|a|>-a”是假命题的一个反例可以是( )A.a=-2B.a=C.a=1D.a=2.下列命题是真命题的是( )C.函数y=ax2+x+1是二次函数∈(A∩B),则a∈B【思路导引】1.举反例说明一个命题是假命题,就是所举例子满足命题题设,而不满足结论. 2.由真子集的定义、等腰三角形的特征、二次函数的定义以及集合的运算即可得出选项. 【解析】1.选A.说明命题“对于任何实数a,|a|>-a”是假命题的一个反例可以是a=-2,当a=-2时,|a|=-a.2.选D.空集是任何非空集合的真子集,故选项A错误;等腰三角形顶角可以为钝角,故选项B错误;函数y=ax2+x+1,当a=0时是一次函数,故选项C错误;若a∈(A∩B),则a是集合A,B的公共元素,所以a∈B.判断一个命题真假的方法(1)判断一个命题是真命题,可从公理或定理出发,用逻辑推理的方法证明.(2)判断一个命题是假命题,首先分清原命题的条件与结论,然后举反例说明这个命题是假命题,就是所举例子满足命题条件,而不满足结论.判断下列命题的真假:(1)一个角的补角必大于这个角.(2)一个有理数必有两个平方根.(3)直径所对的圆周角是直角.(4)两条直线被第三条直线所截,同位角相等.(5)等式两边都加同一个数,结果仍是等式.【解析】(1)是假命题,例如设这个角是90°,它的补角是90°,而90°=90°.(2)是假命题,例如有理数-1没有平方根.(3)是真命题,这是关于圆周角的结论.(4)是假命题,两条平行直线被第三条直线所截,同位角才相等.(5)是真命题,这是等式的性质.【补偿训练】判断下列命题的真假:(1)全等的三角形必相似.(2)同角或等角的补角相等.(3)互为相反数的两个数相加得0.(4)若ab=0,则a+b=0.【解析】(1)是真命题,全等的三角形对应角相等,可推出相似.(2)是真命题,互补的两个角和为180°,由此可推出同角或等角的补角相等.(3)是真命题,由相反数的定义可知此命题是真命题.(4)是假命题,若a=0,b=4,ab=0,但a+b≠0.类型二全称量词命题与存在量词命题及其真假的判断(数学抽象、逻辑推理)【典例】1.下列命题中,是全称量词命题的有.(填序号)①至少有一个x,使x2+2x+1=0成立;②对任意的x,都有x2+2x+1=0成立;③对任意的x,都有x2+2x+1=0不成立;④存在x,使x2+2x+1=0成立;⑤矩形的对角线垂直平分.2.下列四个命题:①没有一个无理数不是实数;②空集是任何一个非空集合的真子集;③1+1<2;④至少存在一个整数x,使得x2-x+1是整数,其中是真命题的为( )A.①②③④B.①②③C.①②④D.②④【思路导引】1.有全称量词的是全称量词命题,有存在量词的是存在量词命题,当没有时,要结合命题的具体意义进行判断.①为真命题,根据空集的性质可判断②为真命题,根据实数的运算可判断③为假命题,通过举例可得④为真命题.【解析】1.①和④中用的是存在量词“至少有一个”“存在”,属于存在量词命题;②和③用的是全称量词“任意的”,属于全称量词命题,所以②,③是全称量词命题;⑤中命题“矩形的对角线垂直平分”省略量词“任意”,是全称量词命题.答案:②③⑤2.选C.因为实数由无理数和有理数构成,故所有无理数都是实数,①为真命题;因为空集是任何非空集合的真子集,故②为真命题;因为1+1=2,故③为假命题;取x=1,则x2-x+1=1是整数,故④为真命题.全称量词命题与存在量词命题的真假判断的技巧(1)全称量词命题的真假判断.要判定一个全称量词命题是真命题,必须对限定集合M中的每个元素x验证p(x)成立;但要判定全称量词命题是假命题,只要能举出集合M中的一个x=x0,使得p(x0)不成立即可(这就是通常所说的“举出一个反例”).(2)存在量词命题的真假判断.要判定一个存在量词命题是真命题,只要在限定集合M中,找到一个x=x0,使p(x0)成立即可;否则,这一存在量词命题就是假命题.【补偿训练】指出下列命题中,哪些是全称量词命题,哪些是存在量词命题,并判断真假.(1)在平面直角坐标系中,任意有序实数对(x,y)都对应一点.(2)存在一个实数,它的绝对值不是正数.(3)∃x,y∈Z,使3x-4y=20.(4)任何数的0次方都等于1.【解析】(1)全称量词命题.在平面直角坐标系中,任意有序实数对(x,y)与平面直角坐标系中的点是一一对应的,所以该命题是真命题.(2)存在量词命题.存在一个实数零,它的绝对值不是正数,所以该命题是真命题.(3)存在量词命题.取x=0,y=-5时,3×0-4×(-5)=20成立,所以该命题是真命题.(4)全称量词命题.0的0次方无意义,所以该命题是假命题.类型三全称量词命题与存在量词命题的应用(数学运算、逻辑推理)【典例】“∃x∈R,x2+2x-a<0”是真命题,则实数a的取值X围是.2.已知命题p:“∀x∈R,x2-2x+m>0”是真命题,某某数m的取值X围.【思路导引】Δ>0求a的X围.2.参数与变量分离,求函数y=-(x-1)2+1的最大值.【解析】“∃x∈R,x2+2x-a<0”是真命题,则Δ>0,即4+4a>0,解得a>-1,则实数a的取值X围是{a|a>-1}.答案:{a|a>-1}2.p:“∀x∈R,x2-2x+m>0”是真命题,即m>-x2+2x=-(x-1)2+1,x∈R恒成立,设函数y=-(x-1)2+1,由二次函数的性质知,当x=1时,y最大值=1,所以m>y最大值=1,即实数m的取值X围是(1,+∞).利用含量词的命题的真假求参数的取值X围(1)含参数的全称量词命题为真时,常与不等式恒成立有关,可根据有关代数恒等式(如x2≥0),确定参数的取值X围.(2)含参数的存在量词命题为真时,常转化为方程或不等式有解问题来处理,可借助根的判别式等知识解决.【补偿训练】(2021·某某高一检测)“∀x∈R,都有k≤x2+1恒成立”是真命题,则实数k的取值X围是. 【解析】因为x2+1≥1,即x2+1的最小值为1,要使“k≤x2+1恒成立”,只需k≤(x2+1)min,即k ≤1.答案:k≤11.下列命题中,真命题共有( )①面积相等的三角形是全等三角形;②若xy=0,则|x|+|y|=0;③若a>b,则a+c>b+c;④矩形的对角线互相垂直.【解析】选A.①,②,④是假命题,③是真命题.2.以下四个命题既是存在量词命题又是真命题的是( )B.至少有一个实数x,使x2≤0D.存在一个负数x,使>2【解析】选B.A中锐角三角形的内角是锐角或钝角是全称量词命题;B中x=0时,x2=0,所以B 既是存在量词命题又是真命题;C中因为+(-)=0,所以C是假命题;D中对于任意一个负数x,都有<0,所以D是假命题.3.下列命题中是真命题的是( )A.∃x∈R,x2+1<0B.∃x∈Z,3x+1是整数C.∀x∈R,|x|>3D.∀x∈Q,x2∈Z【解析】选B.∀x∈R,x2+1≥1;B是真命题.当x=1时,3x+1=4是整数;C是假命题.如x=2时,|x|<3;D是假命题.如x=,x2∉Z.4.已知命题p:“∃x<0,mx≥0”是真命题,则实数m的取值X围是.【解析】因为“∃x<0,mx≥0”是真命题,所以关于x的不等式mx≥0有负实数解,所以m≤0.答案:(-∞,0]5.(教材练习改编)已知p:x2+2x-m>0,若p是假命题,p是真命题,则实数m的取值X围为.【解析】若p是假命题,当x=1时,12+2×1-m≤0,解得m≥3,若p是真命题,当x=2时,22+2×2-m>0,解得m<8,求交集后实数m的取值X围为[3,8).答案:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2.1 命题与量词 1.2.2 全称量词命题与存在量词命题的否定 最新课程标准:(1)全称量词与存在量词.通过已知的数学实例,理解全称量词与存在量词的意义.(2)全称量词命题与存在量词命题的否定.①能正确使用存在量词对全称量词命题进行否定.②能正确使用全称量词对存在量词命题进行否定.

知识点一 命题 1.用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题. 2.四种命题及其关系 (1)四种命题 若原命题为“若p,则q”,则其逆命题是若q,则p;否命题是若綈p,则綈q;逆否命题是若綈q,则綈p. (2)四种命题间的关系

知识点二 全称量词和全称量词命题 全称量词 所有的、任意一个、一切、任给 符号 ∀ 全称量词命题 含有全称量词的命题 形式 “对M中任意一个x,有p(x)成立”,可简记为“∀x∈M,p(x)” 知识点三 存在量词和存在量词命题

存在量词 存在一个、至少有一个、有些、有的 符号表示 ∃ 存在量词命题 含有存在量词的命题 形式 “存在M中的一个x,使p(x)成立”,可用符号记为“∃x∈M,p(x)” 状元随笔 全称量词命题与存在量词命题的区别 (1)全称量词命题中的全称量词表明给定范围内所有对象都具有某一性质,无一例外,强调“整体、全部”. (2)存在量词命题中的存在量词则表明给定范围内的对象有例外,强调“个别、部分”. 知识点四 全称量词命题和存在量词命题的否定 1.全称量词命题:∀x∈M,p(x),它的否定:∃x∈M,綈p(x). 2.存在量词命题:∃x∈M,p(x),它的否定:∀x∈M,綈p(x). 状元随笔 全称量词命题的否定是存在量词命题,存在量词命题的否定是全称量词命题.

[基础自测] 1.下列命题中全称量词命题的个数是( ) ①任意一个自然数都是正整数; ②所有的素数都是奇数; ③有的正方形不是菱形; ④三角形的内角和是180°. A.0 B.1 C.2 D.3 解析:命题①②含有全称量词,而命题④可以叙述为“每一个三角形的内角和都是180°”,③是存在量词命题,故有三个全称量词命题. 答案:D 2.下列命题中存在量词命题的个数是( ) ①至少有一个偶数是质数; ②∃x∈R,x2≤0; ③有的奇数能被2整除. A.0 B.1 C.2 D.3 解析:①中含有存在量词“至少”,所以是存在量词命题; ②中含有存在量词符号“∃”,所以是存在量词命题; ③中含有存在量词“有的”,所以是存在量词命题. 答案:D 3.命题“存在实数x,使x>1”的否定是( ) A.对任意实数x,都有x>1 B.不存在实数x,使x≤1 C.对任意实数x,都有x≤1 D.存在实数x,使x≤1 解析:命题“存在实数x,使x>1”的否定是“对任意实数x,都有x≤1”. 答案:C 4.“在△ABC中,若∠C=90°,则∠A,∠B都是锐角”的否命题为:________. 解析:原命题的条件:在△ABC中,∠C=90°, 结论:∠A、∠B都是锐角. 否命题是否定条件和结论. 即“在△ABC中,若∠C≠90°,则∠A,∠B不都是锐角”. 答案:“在△ABC中,若∠C≠90°,则∠A,∠B不都是锐角”

题型一 全称量词命题与存在量词命题的判断与其真假[经典例题] 例1 判断下列命题哪些是全称量词命题,并判断其真假. (1)对任意x∈R,x2>0; (2)有些无理数的平方也是无理数; (3)对顶角相等; (4)存在x=1,使方程x2+x-2=0; (5)对任意x∈{x|x>-1},使3x+4>0; (6)存在a=1且b=2,使a+b=3成立. 【解析】 (1)(3)(5)是全称量词命题,(1)是假命题,∵x=0时,x2=0.(3)是真命题.(5)是真命题.

正确地识别命题中的全称量词,是解决问题的关键. 方法归纳 (1)要判定全称量词命题是真命题,需要判断所有的情况都成立;如果有一种情况不成立,那么这个全称量词命题就是假命题. (2)要判定存在量词命题是真命题,只需找到一种情况成立即可;如果找不到使命题成立的特例,那么这个存在量词命题是假命题. 跟踪训练1 指出下列命题中,哪些是全称量词命题,哪些是存在量词命题,并判断真假: (1)若a>0,且a≠1,则对任意实数x,ax>0; (2)对任意实数x1,x2,若x1(3)存在一个x∈R,使x2+1<0. 解析:(1)(2)是全称量词命题,(3)是存在量词命题. (1)∵ax>0(a>0,a≠1)恒成立,∴命题(1)是真命题. (2)存在x1=0,x2=π,x1(3)对任意x∈R,x2+1>0.∴命题(3)是假命题. 状元随笔 判断一个命题是否为全称量词命题或存在量词命题,就是判断这个命题中是否含有全称量词或存在量词,有些命题的量词可能隐含在命题之中,这时要根据命题含义判断形式. 题型二 含有一个量词的命题的否定[教材P29例2] 例2 写出下列命题的否定,并判断所得命题的真假: (1)p:∃a∈R,一次函数y=x+a的图像经过原点; (2)q:∀x∈(-3,+∞),x2>9. 【解析】 (1)綈p:∀a∈R,一次函数y=x+a的图像不经过原点.因为当a=0时,一次函数y=x+a的图像经过原点,所以綈p是假命题. (2)綈q:∃x∈(-3,+∞),x2≤9.因为x=0时,x2=0<9,所以綈q是真命题. 先把命题否定,再判断真假.

教材反思 全称量词命题的否定是一个存在量词命题,存在量词命题的否定是一个全称量词命题,因此在书写他们的否定时,相应的全称量词变为存在量词,存在量词变为全称量词,同时否定结论. 跟踪训练2 (1)命题“对于任意的x∈R,x3-x2+1≤0”的否定是( ) A.不存在x∈R,x3-x2+1≤0 B.存在x∈R,x3-x2+1≥0 C.对任意的x∈R,x3-x2+1>0 D.存在x∈R,x3-x2+1>0 (2)命题“∃x∈R,x3-2x+1=0”的否定是( ) A.∃x∈R,x3-2x+1≠0 B.不存在x∈R,x3-2x+1≠0 C.∀x∈R,x3-2x+1=0 D.∀x∈R,x3-2x+1≠0 解析:(1)∵命题“对于任意的x∈R,x3-x2+1≤0”是全称量词命题,其否定是对应的存在量词命题,∴否定命题为:存在x∈R,x3-x2+1>0.故选D. (2)存在量词命题的否定是全称量词命题,故排除A;由命题的否定要否定结论,故排除C;由存在量词“∃”应改为全称量词“∀”,故排除B. 答案:(1)D (2)D ∀x∈M,p(x)的否定为∃x∈M,綈p(x). ∃x∈M,p(x)的否定为∀x∈M,綈p(x).

课时作业 5 一、选择题 1.下列语句不是存在量词命题的是( ) A.有的无理数的平方是有理数 B.有的无理数的平方不是有理数 C.对于任意x∈Z,2x是偶数 D.存在x∈R,2x+1是奇数 解析:A、B、D中含有存在量词是存在量词命题,C中含有全称量词是全称量词命题. 答案:C 2.判断下列命题是存在量词命题的个数( ) ①每一个一次函数都是增函数; ②至少有一个自然数小于1; ③存在一个实数x,使得x2+2x+2=0; ④圆内接四边形,其对角互补. A.1个 B.2个 C.3个 D.4个 解析:①④是全称量词命题,②③是存在量词命题. 答案:B 3.命题“∀x∈[1,2],x2-3x+2≤0”的否定为( ) A.∀x∈[1,2],x2-3x+2>0 B.∀x∉[1,2],x2-3x+2>0 C.∃x∈[1,2],x2-3x+2>0 D.∃x∉[1,2],x2-3x+2>0 解析:由全称量词命题的否定为存在量词命题知,命题“∀x∈[1,2],x2-3x+2≤0”的否定为“∃x∈[1,2],x2-3x+2>0”,故选C. 答案:C 4.已知命题p:∃x>0,x+a-1=0,若p为假命题,则实数a的取值范围是( ) A.(-∞,1) B.(-∞,1] C.(1,+∞) D.[1,+∞) 解析:因为p为假命题,所以綈p为真命题,所以∀x>0,x+a-1≠0,即x≠1-a,所以1-a≤0,即a≥1,选D. 答案:D 二、填空题 5.下列命题,是全称量词命题的是____________;是存在量词命题的是____________. ①正方形的四条边相等; ②有些等腰三角形是正三角形; ③正数的平方根不等于0; ④至少有一个正整数是偶数. 解析:①③是全称量词命题,②④是存在量词命题. 答案:①③ ②④ 6.给出下列四个命题: ①有理数是实数;②有些平行四边形不是菱形;③对任意x∈R,x2-2x>0;④有一个素数含有三个正因数. 以上命题的否定为真命题的序号是________. 解析:写出命题的否定,易知③④的否定为真命题,或者根据命题①、②是真命题,③、④为假命题,再根据命题与它的否定一真一假,可得③④的否定为真命题. 答案:③④ 7.命题“∀x∈R,|x|+x2≥0”的否定是________. 解析:全称量词命题的否定为存在量词命题,所以命题的否定为“∃x∈R,|x|+x2<0”. 答案:∃x∈R,|x|+x2<0 三、解答题 8.用量词符号表述下列命题: (1)任意一个实数乘以-1都等于它的相反数; (2)对任意实数x,都有x3>x2; (3)有些整数既能被2整除,又能被3整除; (4)某个四边形不是平行四边形. 解析:(1)∀x∈R,x·(-1)=-x. (2)∀x∈R,x3>x2. (3)∃x0∈Z,x0既能被2整除,又能被3整除. (4)∃x0∈{x|x是四边形},x0不是平行四边形.

相关文档
最新文档