圆锥曲线文科高考习题含答案
高考数学(文科)异构异模复习考案撬分法习题 第十章 圆锥曲线与方程 10-5-1 Word版含答案

1.一种作图工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且DN =ON =1,MN =3.当栓子D 在滑槽AB 内作往复运动时,带动N 绕O 转动一周(D 不动时,N 也不动),M 处的笔尖画出的曲线记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(1)求曲线C 的方程;(2)设动直线l 与两定直线l 1:x -2y =0和l 2:x +2y =0分别交于P ,Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探究:△OPQ 的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.解 (1)设点D (t,0),(|t |≤2),N (x 0,y 0),M (x ,y ),依题意,MD →=2DN →,且|DN →|=|ON →|=1,所以(t -x ,-y )=2(x 0-t ,y 0),且⎩⎪⎨⎪⎧x 0-t 2+y 20=1,x 20+y 20=1.即⎩⎪⎨⎪⎧t -x =2x 0-2t ,y =-2y 0,且t (t -2x 0)=0.由于当点D 不动时,点N 也不动,所以t 不恒等于0, 于是t =2x 0,故x 0=x4,y 0=-y2,代入x 20+y 20=1,可得x 216+y 24=1,即所求的曲线C 的方程为x 216+y 24=1.(2)(ⅰ)当直线l 的斜率不存在时,直线l 为x =4或x =-4,都有S △OPQ =12×4×4=8.(ⅱ)当直线l 的斜率存在时,设直线l :y =kx +m ⎝⎛⎭⎪⎫k ≠±12, 由⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=16,消去y ,可得(1+4k 2)x 2+8kmx +4m 2-16=0.因为直线l 总与椭圆C 有且只有一个公共点,所以Δ=64k 2m 2-4(1+4k 2)(4m 2-16)=0,即m 2=16k 2+4.①又由⎩⎪⎨⎪⎧y =kx +m ,x -2y =0,可得P ⎝ ⎛⎭⎪⎫2m 1-2k ,m 1-2k ;同理可得Q ⎝ ⎛⎭⎪⎫-2m 1+2k ,m 1+2k .由原点O 到直线PQ 的距离为d =|m |1+k2和|PQ |=1+k 2|x P -x Q |,可得S △OPQ =12|PQ |·d =12|m ||x P -x Q |=12·|m |·⎪⎪⎪⎪⎪⎪2m 1-2k +2m 1+2k =⎪⎪⎪⎪⎪⎪2m 21-4k 2.②将①代入②得,S △OPQ =⎪⎪⎪⎪⎪⎪2m 21-4k 2=8|4k 2+1||4k 2-1|. 当k 2>14时,S △OPQ =8⎝ ⎛⎭⎪⎫4k 2+14k 2-1=8⎝ ⎛⎭⎪⎫1+24k 2-1>8;当0≤k 2<14时,S △OPQ =8⎝ ⎛⎭⎪⎫4k 2+11-4k 2=8⎝ ⎛⎭⎪⎫-1+21-4k 2. 因0≤k 2<14,则0<1-4k 2≤1,21-4k 2≥2,所以S △OPQ =8⎝ ⎛⎭⎪⎫-1+21-4k 2≥8, 当且仅当k =0时取等号.所以当k =0时,S △OPQ 的最小值为8.综合(ⅰ)(ⅱ)可知,当直线l 与椭圆C 在四个顶点处相切时,△OPQ 的面积取得最小值8.2.如图,设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22.(1)求椭圆的标准方程;(2)设圆心在y 轴上的圆与椭圆在x 轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.解 (1)设F 1(-c,0),F 2(c,0),其中c 2=a 2-b 2. 由|F 1F 2||DF 1|=22得|DF 1|=|F 1F 2|22=22c . 从而S △DF 1F 2=12|DF 1||F 1F 2|=22c 2=22,故c =1.从而|DF 1|=22,由DF 1⊥F 1F 2 得|DF 2|2=|DF 1|2+|F 1F 2|2=92,因此|DF 2|=322.所以2a =|DF 1|+|DF 2|=22,故a =2,b 2=a 2-c 2=1. 因此,所求椭圆的标准方程为x 22+y 2=1. (2)如图,设圆心在y 轴上的圆C 与椭圆x 22+y 2=1相交,P 1(x 1,y 1),P 2(x 2,y 2)是两个交点,y 1>0,y 2>0,F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2.由圆和椭圆的对称性,易知x 2=-x 1,y 1=y 2,|P 1P 2|=2|x 1|.由(1)知F 1(-1,0),F 2(1,0),所以F 1P 1→=(x 1+1,y 1),F 2P 2→=(-x 1-1,y 1).再由F 1P 1⊥F 2P 2得-(x 1+1)2+y 21=0.由椭圆方程得1-x 212=(x 1+1)2,即3x 21+4x 1=0,解得x 1=-43或x 1=0.当x 1=0时,P 1,P 2重合,此时题设要求的圆不存在.当x 1=-43时,过P 1,P 2分别与F 1P 1,F 2P 2垂直的直线的交点即为圆心C .由F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2,知CP 1⊥CP 2.又|CP 1|=|CP 2|,故圆C 的半径|CP 1|=22|P 1P 2|=2|x 1|=423. 3.在平面直角坐标系xOy 中,点M 到点F (1,0)的距离比它到y 轴的距离多1.记点M 的轨迹为C .(1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点P (-2,1).求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.解 (1)设点M (x ,y ),依题意得|MF |=|x |+1,即x -2+y 2=|x |+1,化简整理得y 2=2(|x |+x ).故点M 的轨迹C 的方程为y2=⎩⎪⎨⎪⎧4x ,x ≥0,0,x <0.(2)在点M 的轨迹C 中,记C 1:y 2=4x ,C 2:y =0(x <0). 依题意,可设直线l 的方程为y -1=k (x +2).由方程组⎩⎪⎨⎪⎧y -1=kx +,y 2=4x ,可得ky 2-4y +4(2k +1)=0.①(ⅰ)当k =0时,此时y =1. 把y =1代入轨迹C 的方程,得x =14.故此时直线l :y =1与轨迹C 恰好有一个公共点⎝ ⎛⎭⎪⎫14,1. (ⅱ)当k ≠0时,方程①的判别式为Δ=-16(2k 2+k -1).② 设直线l 与x 轴的交点为(x 0,0),则由y -1=k (x +2),令y =0,得x 0=-2k +1k.③(a)若⎩⎪⎨⎪⎧Δ<0,x 0<0,由②③解得k <-1或k >12.即当k ∈(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞时,直线l 与C 1没有公共点,与C 2有一个公共点,故此时直线l 与轨迹C 恰好有一个公共点.(b)若⎩⎪⎨⎪⎧Δ=0,x 0<0,或⎩⎪⎨⎪⎧Δ>0,x 0≥0,由②③解得k ∈⎩⎨⎧⎭⎬⎫-1,12或-12≤k <0.即当k ∈⎩⎨⎧⎭⎬⎫-1,12时,直线l 与C 1只有一个公共点,与C 2有一个公共点.当k ∈⎣⎢⎡⎭⎪⎫-12,0时,直线l 与C 1有两个公共点,与C 2没有公共点.故当k ∈⎣⎢⎡⎭⎪⎫-12,0∪⎩⎨⎧⎭⎬⎫-1,12时,直线l 与轨迹C 恰好有两个公共点.(c)若⎩⎪⎨⎪⎧Δ>0,x 0<0,由②③解得-1<k <-12或0<k <12.即当k ∈⎝ ⎛⎭⎪⎫-1,-12∪⎝ ⎛⎭⎪⎫0,12时,直线l 与C 1有两个公共点,与C 2有一个公共点,故此时直线l 与轨迹C 恰好有三个公共点.综合(ⅰ),(ⅱ)可知,当k ∈(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞∪{0}时,直线l 与轨迹C 恰好有一个公共点;当k ∈⎣⎢⎡⎭⎪⎫-12,0∪⎩⎨⎧⎭⎬⎫-1,12时,直线l 与轨迹C 恰好有两个公共点;当k ∈⎝⎛⎭⎪⎫-1,-12∪⎝ ⎛⎭⎪⎫0,12时,直线l 与轨迹C 恰好有三个公共点.4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(5,0),离心率为53.点击观看解答视频(1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.解 (1)由题意知c =5,e =c a =53, ∴a =3,b 2=a 2-c 2=4, 故椭圆C 的标准方程为x 29+y 24=1.(2)设两切线为l 1,l 2,①当l 1⊥x 轴或l 1∥x 轴时,对应l 2∥x 轴或l 2⊥x 轴,可知P (±3,±2).②当l 1与x 轴不垂直且不平行时,x 0≠±3,设l 1的斜率为k ,且k ≠0,则l 2的斜率为-1k ,l 1的方程为y -y 0=k (x -x 0),与x 29+y24=1联立, 整理得(9k 2+4)x 2+18(y 0-kx 0)kx +9(y 0-kx 0)2-36=0, ∵直线l 1与椭圆相切, ∴Δ=0,即9(y 0-kx 0)2k 2-(9k 2+4)·=0, ∴(x 20-9)k 2-2x 0y 0k +y 20-4=0,∴k 是方程(x 20-9)x 2-2x 0y 0x +y 20-4=0的一个根, 同理,-1k是方程(x 20-9)x 2-2x 0y 0x +y 20-4=0的另一个根,∴k ·⎝ ⎛⎭⎪⎫-1k =y 20-4x 20-9,整理得x 20+y 20=13,其中x 0≠±3,∴点P 的轨迹方程为x 2+y 2=13(x ≠±3).检验P (±3,±2)满足上式. 综上,点P 的轨迹方程为x 2+y 2=13.。
高中数学文科圆锥曲线试题及解答

高中数学文科圆锥曲线试题及解答一.基础题组1. 【2013课标全国,文5】设椭圆C :2222=1x y a b+(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( ).A.13 C .12 D【答案】:D2. 【2012全国新课标,文4】设F 1,F 2是椭圆E :22221x y a b+=(a >b >0)的左、右焦点,P 为直线32a x =上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( ) A .12 B .23 C .34 D .45【答案】C 【解析】设直线32a x =与x 轴交于点M ,则∠PF 2M =60°,在Rt △PF 2M 中,PF 2=F 1F 2=2c ,232aF M c =-,故22312cos6022a cF M PF c -︒===,解得34c a =,故离心率34e =. 3. 【2010全国新课标,文5】中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为(【答案】:D4. 【2006全国,文5】已知ABC ∆的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是( )(A )23 (B )6 (C )43 (D )12答案】C5. 【2005全国,文5】抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为( )(A) 2(B) 3(C) 4(D) 5【答案】D6. 【2005全国,文6】双曲线22149x y -=的渐近线方程是( )(A) 23y x =±(B) 49y x =±(C) 32y x =±(D) 94y x =±【答案】C【解析】由题意知:2,3a b ==,∴双曲线22149x y -=的渐近线方程是32y x =±.7. 【2014全国,文20】(本小题满分12分)设12,F F 分别是椭圆22221(0)x y a b a b +=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N .(Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求,a b .8. 【2013课标全国,文20】(本小题满分12分)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为y 轴上截得线段长为(1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为2,求圆P 的方程. 【解析】:(1)设P (x ,y ),圆P 的半径为r .由题设y 2+2=r 2,x 2+3=r 2.从而y 2+2=x 2+3. 故P 点的轨迹方程为y 2-x 2=1.9. 【2010全国新课标,文20】设F 1、F 2分别是椭圆E :x 2+22y b=1(0<b <1)的左、右焦点,过F 1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB|,|BF 2|成等差数列. (1)求|AB|;(2)若直线l 的斜率为1,求b 的值.即43x 2-x 1|.则89=(x 1+x 2)2-4x 1x 2=224222224(1)4(12)8(1)1(1)b b b b b b =+++---,解得b =2 10. 【2005全国,文22】 (本小题满分14分)设),(),,(2211y x B y x A 两点在抛物线22x y =上,l 是AB 的垂直平分线, (Ⅰ)当且仅当21x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论; (Ⅱ)当3,121-==x x 时,求直线l 的方程.即l 的斜率存在时,不可能经过焦点1(0,)8F ……………………………………8分 所以当且仅当12x x +=0时,直线l 经过抛物线的焦点F …………………………9分 (Ⅱ)当121,3x x ==-时,二.能力题组1. 【2014全国,文10】设F 为抛物线2:=3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则 AB =( )(A (B )6 (C )12 (D )C2. 【2013课标全国,文10】设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF |=3|BF |,则l 的方程为( ).A .y =x -1或y =-x +1B .y 1)x -或y =1)x -C .y 1)x -或y =1)x -D .y 1)x -或y =1)x -【答案】:C3. 【2012全国新课标,文10】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,||AB =C 的实轴长为( )A B . C .4 D .8【答案】 C【解析】设双曲线的方程为22221x y a a-=,抛物线的准线为x =-4,且||AB =A (-4,,B (-4,-),将点A 坐标代入双曲线方程得a 2=4,故a =2,故实轴长为4.4. 【2006全国,文9】已知双曲线22221x y a b-=的一条渐近线方程为43y x =,则双曲线的离心率为( )(A )53 (B )43 (C )54 (D )32【答案】A5. 【2005全国,文9】已知双曲线1222=-y x 的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=则点M 到x 轴的距离为( )A .43B .53C .23D .3【答案】C6. 【2012全国新课标,文20】设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD 的面积为42p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.当m 的斜率为33时,由已知可设n :y =33x +b ,代入x 2=2py ,得x 2-33px -2pb =0.由于n 与C 只有一个公共点,故∆=43p 2+8pb =0,解得6p b =-. 因为m 的截距12p b =,1||3||b b =,所以坐标原点到m ,n 距离的比值为3. 当m的斜率为3-时,由图形对称性可知,坐标原点到m ,n 距离的比值为3. 三.拔高题组1. 【2010全国,文12】已知椭圆C :22x a +22y b =1(a >b >0),过右焦点F 且斜率为k (k>0)的直线与C 相交于A 、B 两点,若AF =3FB ,则k 等于( ) A ..2【答案】:B2. 【2007全国,文11】已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率为( )(A) 13(B)33 (C)21 (D)23【答案】:D 【解析】∵椭圆的长轴长是短轴长的2倍,∴2a b =,∴224a b =,又∵222b ac =-,∴222244()a b a c ==-,∴2234a c =,∴2234c a =,∴c e a ==3. 【2007全国,文12】设F 1,F 2分别是双曲线1922=-y x 的左右焦点,若点P 在双曲线上,且120PF PF ∙=,则12||PF PF +=( )(A)10(B)102(C)5 (D) 52【答案】:B4. 【2006全国,文11】过点(-1,0)作抛物线21y x x =++的切线,则其中一条切线为( ) (A )220x y ++= (B )330x y -+= (C )10x y ++= (D )10x y -+=【答案】D 【解析】5. 【2005全国,文10】设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( )A .2D 1【答案】D【解析】22221x y a b +=,2(,0)F c ,则垂线x c =,22221c y a b +=,∴2224222222(1)()c a c b y b b a a a-=-==, ∴2||b y a =,22b PF a =,122F F c =,所以22b c a=,即a²-c²=2ac,即c²+2ac -a²=0,∴c a ==-,∴1c a =-±0<e<1,所以1c e a ==-6. 【2010全国,文15】已知抛物线C :y 2=2px (p >0)的准线为l ,过M (1,0)l 相交于点A ,与C 的一个交点为B ,若AM =MB ,则p =________.【答案】:27. )【2010全国,文22】已知斜率为1的直线l 与双曲线C :22x a-22y b =1(a >0,b >0)相交于B 、D 两点,且BD 的中点为M (1,3). (1)求C 的离心率;(2)设C 的右顶点为A ,右焦点为F ,|DF |·|BF |=17,证明过A 、B 、D 三点的圆与x 轴相切. 【解析】:(1)由题设知,l 的方程为y =x +2.代入C 的方程,并化简,得 (b 2-a 2)x 2-4a 2x -4a 2-a 2b 2=0,设B (x 1,y 1)、D (x 2,y 2),则x 1+x 2=2224a b a -,x 1x 2=-222224a a b b a +-, ①由M (1,3)为BD 的中点知122x x +=1,故 12×2224a b a-=1,即b 2=3a 2, ②故c 2a ,所以C 的离心率e =ca=2.故|BD |x 1-x 2|=6.连结MA ,则由A (1,0),M (1,3)知|MA |=3,从而MA =MB =MD ,且MA ⊥x 轴,因此以M 为圆心,MA 为半径的圆经过A 、B 、D 三点,且在点A 处与x 轴相切.所以过A 、B 、D 三点的圆与x 轴相切.8. 【2006全国,文22】(本小题满分12分)已知抛物线24x y =的焦点为F ,A 、B 是抛物线上的两动点,且(0).AF FB λλ=>过A 、B 两点分别作抛物线的切线,设其交点为M 。
【最新】高中数学-2018高考数学(文科)习题 第十章 圆锥曲线与方程 10-4 word版含答案

1.过点P (-2,0)的直线与抛物线C :y 2=4x 相交于A 、B 两点,且|PA |=12|AB |,则点A 到抛物线C 的焦点的距离为( )A.53 B.75 C.97 D .2答案 A解析 设A (x 1,y 1)、B (x 2,y 2),分别过点A 、B 作直线x =-2的垂线,垂足分别为点D 、E .∵|PA |=12|AB |,∴⎩⎪⎨⎪⎧3x 1+2=x 2+2,3y 1=y 2,又⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,得x 1=23,则点A 到抛物线C 的焦点的距离为1+23=53.2.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )A.334 B.938C.6332D.94答案 D解析 由已知得F ⎝ ⎛⎭⎪⎫34,0,故直线AB 的方程为y =tan30°·⎝ ⎛⎭⎪⎫x -34,即y =33x -34. 设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =33x -34, ①y 2=3x , ②将①代入②并整理得13x 2-72x +316=0,∴x 1+x 2=212,∴线段|AB |=x 1+x 2+p =212+32=12.又原点(0,0)到直线AB 的距离为d =3413+1=38. ∴S △OAB =12|AB |d =12×12×38=94.3.已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( )点击观看解答视频A.12 B.23 C.34 D.43答案 D解析 由题意可知准线方程x =-p2=-2,∴p =4,∴抛物线方程为y 2=8x .由已知易得过点A 与抛物线y 2=8x 相切的直线斜率存在,设为k ,且k >0,则可得切线方程为y -3=k (x +2).联立方程⎩⎪⎨⎪⎧y -3=kx +2,y 2=8x ,消去x 得ky 2-8y +24+16k =0.(*)由相切得Δ=64-4k (24+16k )=0,解得k =12或k =-2(舍去),代入(*)解得y =8,把y =8代入y 2=8x ,得x =8,即切点B 的坐标为(8,8),又焦点F 为(2,0),故直线BF 的斜率为43.4.已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( )A .2B .3 C.1728D.10答案 B解析 设AB 所在直线方程为x =my +t .由⎩⎪⎨⎪⎧x =my +t ,y 2=x ,消去x ,得y 2-my -t =0.设A (y 21,y 1),B (y 22,y 2)(不妨令y 1>0,y 2<0), 故y 21+y 22=m ,y 1y 2=-t . 而OA →·OB →=y 21y 22+y 1y 2=2. 解得y 1y 2=-2或y 1y 2=1(舍去). 所以-t =-2,即t =2. 所以直线AB 过定点M (2,0).而S △ABO =S △AMO +S △BMO =12|OM ||y 1-y 2|=y 1-y 2,S △AFO =12|OF |×y 1=12×14y 1=18y 1,故S △ABO +S △AFO =y 1-y 2+18y 1=98y 1-y 2.由98y 1-y 2=98y 1+(-y 2)≥298y 1×-y 2=298×2=3, 得S △ABO +S △AFO 的最小值为3,故选B.5.在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,则实数c 的最大值为________.答案22解析 直线x -y +1=0与双曲线x 2-y 2=1的一条渐近线x -y =0平行,这两条平行线之间的距离为22,又P 为双曲线x 2-y 2=1右支上的一个动点,点P 到直线x -y +1=0的距离大于c 恒成立,则c ≤22,即实数c 的最大值为22. 6.设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点.若|FQ |=2,则直线l 的斜率等于________.答案 ±1解析 设直线AB 方程为x =my -1(m ≠0),A (x 1,y 1),B (x 2,y 2),联立直线和抛物线方程,整理得,y 2-4my +4=0,由根与系数关系得y 1+y 2=4m ,y 1y 2=4.故Q (2m 2-1,2m ).由|FQ |=2知2m2+2m 2-1-12=2,解得m 2=1或m 2=0(舍去),故直线l 的斜率等于±1(此时直线AB 与抛物线相切,为满足题意的极限情况).7.已知动点P 到直线l :x =-1的距离等于它到圆C :x 2+y 2-4x +1=0的切线长(P 到切点的距离).记动点P 的轨迹为曲线E .(1)求曲线E 的方程;(2)点Q 是直线l 上的动点,过圆心C 作QC 的垂线交曲线E 于A ,B 两点,设AB 的中点为D ,求|QD ||AB |的取值范围.解 (1)由已知得,圆心为C (2,0),半径r = 3.设P (x ,y ),依题意可得|x +1|=x -22+y 2-3,整理得y 2=6x .故曲线E 的方程为y 2=6x .(2)设直线AB 的方程为my =x -2,则直线CQ 的方程为y =-m (x -2),可得Q (-1,3m ). 将my =x -2代入y 2=6x 并整理可得y 2-6my -12=0, 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=6m ,y 1y 2=-12,D (3m 2+2,3m ),|QD |=3m 2+3. |AB |=2 31+m23m 2+4,所以⎝ ⎛⎭⎪⎫|QD ||AB |2=3m 2+343m 2+4=14⎝ ⎛⎭⎪⎫1-13m 2+4∈⎣⎢⎡⎭⎪⎫316,14,故|QD ||AB |∈⎣⎢⎡⎭⎪⎫34,12. 8.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点(0,2),且离心率e =22.点击观看解答视频(1)求椭圆E 的方程;(2)设直线l :x =my -1(m ∈R )交椭圆E 于A ,B 两点,判断点G ⎝ ⎛⎭⎪⎫-94,0与以线段AB 为直径的圆的位置关系,并说明理由.解 解法一:(1)由已知得,⎩⎪⎨⎪⎧b =2,c a =22,a 2=b 2+c 2.解得⎩⎨⎧a =2,b =2,c = 2.所以椭圆E 的方程为x 24+y 22=1.(2)设点A (x 1,y 1),B (x 2,y 2),AB 的中点为H (x 0,y 0).由⎩⎪⎨⎪⎧x =my -1,x 24+y22=1得(m 2+2)y 2-2my -3=0, 所以y 1+y 2=2m m 2+2,y 1y 2=-3m 2+2, 从而y 0=mm 2+2.所以|GH |2=⎝ ⎛⎭⎪⎫x 0+942+y 20=⎝ ⎛⎭⎪⎫my 0+542+y 20=(m 2+1)y 20+52my 0+2516.|AB |24=x 1-x 22+y 1-y 224=1+m2y 1-y 224=1+m2[y 1+y 22-4y 1y 2]4=(1+m 2)(y 20-y 1y 2),故|GH |2-|AB |24=52my 0+(1+m 2)y 1y 2+2516=5m 22m 2+2-31+m2m 2+2+2516=17m 2+216m 2+2>0,所以|GH |>|AB |2.故点G ⎝ ⎛⎭⎪⎫-94,0在以AB 为直径的圆外. 解法二:(1)同解法一.(2)设点A (x 1,y 1),B (x 2,y 2),则GA →=⎝ ⎛⎭⎪⎫x 1+94,y 1, GB →=⎝⎛⎭⎪⎫x 2+94,y 2.由⎩⎪⎨⎪⎧x =my -1,x 24+y22=1得(m 2+2)y 2-2my -3=0,所以y 1+y 2=2m m 2+2,y 1y 2=-3m 2+2, 从而GA →·GB →=⎝ ⎛⎭⎪⎫x 1+94⎝ ⎛⎭⎪⎫x 2+94+y 1y 2=⎝ ⎛⎭⎪⎫my 1+54⎝ ⎛⎭⎪⎫my 2+54+y 1y 2=(m 2+1)y 1y 2+54m (y 1+y 2)+2516=-3m 2+1m 2+2+52m 2m 2+2+2516=17m 2+216m 2+2>0, 所以cos 〈GA →,GB →〉>0.又GA →,GB →不共线,所以∠AGB 为锐角.故点G ⎝ ⎛⎭⎪⎫-94,0在以AB 为直径的圆外. 9.已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.解 (1)设F (c,0),由条件知,2c =233,得c = 3.又ca =32,所以a =2,b 2=a 2-c 2=1. 故E 的方程为x 24+y 2=1.(2)当l ⊥x 轴时不合题意,故设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2). 将y =kx -2代入x 24+y 2=1,得(1+4k 2)x 2-16kx +12=0.当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2=8k ±24k 2-34k 2+1. 从而|PQ |=k 2+1|x 1-x 2|=4k 2+1·4k 2-34k 2+1. 又点O 到直线PQ 的距离d =2k 2+1,所以△OPQ 的面积S △OPQ =12d ·|PQ |=44k 2-34k 2+1. 设 4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t. 因为t +4t ≥4,当且仅当t =2,即k =±72时等号成立,且满足Δ>0.所以,当△OPQ 的面积最大时,l 的方程为y =72x -2或y =-72x -2. 10.圆x 2+y 2=4的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图).双曲线C 1:x 2a 2-y 2b2=1过点P 且离心率为 3.(1)求C 1的方程;(2)椭圆C 2过点P 且与C 1有相同的焦点,直线l 过C 2的右焦点且与C 2交于A ,B 两点,若以线段AB 为直径的圆过点P ,求l 的方程.解 (1)设切点坐标为(x 0,y 0)(x 0>0,y 0>0),则切线斜率为-x 0y 0,切线方程为y -y 0=-x 0y 0(x -x 0),即x 0x +y 0y =4.此时,两个坐标轴的正半轴与切线围成的三角形面积为S =12·4x 0·4y 0=8x 0y 0.由x 20+y 20=4≥2x 0y 0,知当且仅当x 0=y 0=2时x 0y 0有最大值,即S 有最小值,因此点P 的坐标为(2,2).由题意知⎩⎪⎨⎪⎧2a 2-2b2=1,a 2+b 2=3a 2,解得a 2=1,b 2=2,故C 1的方程为x 2-y 22=1.(2)由(1)知C 2的焦点坐标为(-3,0),(3,0),由此设C 2的方程为x 23+b 21+y 2b 21=1,其中b 1>0.由P (2,2)在C 2上,得23+b 21+2b 21=1,解得b 21=3.因此C 2的方程为x 26+y 23=1.显然,l 不是直线y =0.设l 的方程为x =my +3,点A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =my +3,x 26+y 23=1,得(m 2+2)y 2+23my -3=0,又y 1,y 2是方程的根,因此⎩⎪⎨⎪⎧y 1+y 2=-23mm 2+2, ①y 1y 2=-3m 2+2. ②由x 1=my 1+3,x 2=my 2+3,得⎩⎪⎨⎪⎧x 1+x 2=m y 1+y 2+23=43m 2+2, ③x 1x 2=m 2y 1y 2+3my 1+y 2+3=6-6m 2m 2+2. ④因为AP →=(2-x 1,2-y 1),BP →=(2-x 2,2-y 2). 由题意知AP →·BP →=0,所以x 1x 2-2(x 1+x 2)+y 1y 2-2(y 1+y 2)+4=0.⑤ 将①,②,③,④代入⑤式整理,得 2m 2-26m +46-11=0,解得m =362-1或m =-62+1.因此直线l 的方程为x -⎝ ⎛⎭⎪⎫362-1y -3=0或x +⎝ ⎛⎭⎪⎫62-1y -3=0. 11.如图,已知两条抛物线E 1:y 2=2p 1x (p 1>0)和E 2:y 2=2p 2x (p 2>0),过原点O 的两条直线l 1和l 2,l 1与E 1,E 2分别交于A 1,A 2两点,l 2与E 1,E 2分别交于B 1,B 2两点.(1)证明:A 1B 1∥A 2B 2;(2)过O 作直线l (异于l 1,l 2)与E 1,E 2分别交于C 1,C 2两点.记△A 1B 1C 1与△A 2B 2C 2的面积分别为S 1与S 2,求S 1S 2的值.解 (1)证明:设直线l 1,l 2的方程分别为y =k 1x ,y =k 2x (k 1,k 2≠0),则由⎩⎪⎨⎪⎧y =k 1x ,y 2=2p 1x ,得A 1⎝⎛⎭⎪⎫2p1k 21,2p 1k 1, 由⎩⎪⎨⎪⎧y =k 1x ,y 2=2p 2x ,得A 2⎝⎛⎭⎪⎫2p 2k 21,2p 2k 1. 同理可得B 1⎝⎛⎭⎪⎫2p 1k 22,2p 1k 2,B 2⎝ ⎛⎭⎪⎫2p 2k 22,2p 2k 2. 所以A 1B 1→=⎝⎛⎭⎪⎫2p 1k 22-2p 1k 21,2p 1k 2-2p 1k 1 =2p 1⎝ ⎛⎭⎪⎫1k 22-1k 21,1k 2-1k 1.A 2B 2→=⎝⎛⎭⎪⎫2p 2k 22-2p 2k 21,2p 2k 2-2p 2k 1 =2p 2⎝ ⎛⎭⎪⎫1k 22-1k 21,1k 2-1k 1.故A 1B 1→=p 1p 2A 2B 2→,所以A 1B 1∥A 2B 2.(2)由(1)知A 1B 1∥A 2B 2,同理可得B 1C 1∥B 2C 2,C 1A 1∥C 2A 2.所以△A 1B 1C 1∽△A 2B 2C 2. 因此S1S2=⎝ ⎛⎭⎪⎫|A 1B 1→||A 2B 2→|2.又由(1)中的A 1B 1→=p 1p 2A 2B 2→知|A 1B 1→||A 2B 2→|=p 1p 2.故S 1S 2=p 21p 22.。
(word版)高中数学——圆锥曲线试题(含答案),文档

启智辅导高考圆锥曲线试题精选一、选择题:〔每题5分,计50分〕1、(2021x2y2的焦距为〔〕海南、宁夏文)双曲线1102A.32B.42332.〔2004全国卷Ⅰ文、理〕椭圆x2y21的两个焦点为F1、F2,过F1作垂直于x轴的4直线与椭圆相交,一个交点为P,那么|PF2|=〔〕A.3B.37D.4 2C.23.〔2006辽宁文〕方程2x25x20的两个根可分别作为〔〕A.一椭圆和一双曲线的离心率B.两抛物线的离心率C.一椭圆和一抛物线的离心率D.两椭圆的离心率4.〔2006四川文、理〕直线y=x-3与抛物线y24x交于A、B两点,过A、B两点向抛物线的准线作垂线,垂足分别为P、Q,那么梯形APQB的面积为〔〕〔A〕48.〔B〕56〔C〕64〔D〕72.x2y21的右焦点为圆心,且与其渐近线相切的圆的方程是5.(2007福建理)以双曲线169()A. B.C. D.6.〔2004全国卷Ⅳ理〕椭圆的中心在原点,离心率e 1,且它的一个焦点与抛物线y22 4x的焦点重合,那么此椭圆方程为〔〕A .x2y2x2y2x2y21D.x22141B.61C.y 3824x2y22,有一个焦点与抛物线7.〔2005湖北文、理〕双曲线1(mn0)离心率为y2m n4x的焦点重合,那么mn的值为〔〕A.3B.3C.16D.8168x232316y1的左焦点在抛物线28.(2021重庆文)假设双曲线p2y=2px的准线上,那么p的值为3()(A)(B)3(C)4(D)4229.〔2002北京文〕椭圆x2y2和双曲线x2y23m212m21有公共的焦点,那么5n23n2双曲线的渐近线方程是〔〕A.x 15B.y15C.x3D.y3 y x y4x 22410.〔2003春招北京文、理〕在同一坐标系中,方程x2y2与ax by20(a b0)的曲线大致是a2b21y y y()yO O O Ox x x x A B C D高考圆锥曲线试题精选第1页共8页启智辅导二、填空题:〔每题 5分,计20分〕11.〔2005上海文〕假设椭圆长轴长与短轴长之比为 2,它的一个焦点是215,0,那么椭圆的标准方程是_________________________12.(2021江西文)双曲线x 2 y 21(a 0,b 0)的两条渐近线方程为 y3x ,a 2b 23假设顶点到渐近线的距离为 1,那么双曲线方程为.x 2 y 21的中心为顶点,且以该双曲线的右焦点为焦点的13.〔2007上海文〕以双曲线45抛物线方程是.14.(2021天津理)圆C 的圆心与抛物线y 24x 的焦点关于直线yx 对称.直线4x 3y20 与圆C 相交于A,B 两点,且 AB6,那么圆C 的方程为.三、解答题:〔15—18题各13分,19、20 题各14 分〕x 2 y 2 1(a b 0)的两个焦点为F 1,F 2,点P 在椭圆C 上,15.〔2006北京文〕椭圆C:2b 2a且PF 1F 1F 2,|PF 1| 4,|PF 2|14. 〔Ⅰ〕求椭圆 C 的方程;33(Ⅱ)假设直线l 过圆x 2+y 2+4x-2y=0的圆心M, 交椭圆C 于A,B 两点,且A 、B 关于点M 对称,求直线l 的方程..16.〔2005重庆文〕中心在原点的双曲线 C 的右焦点为〔2,0〕,右顶点为 ( 3,0)〔1〕求双曲线 C 的方程; 〔2〕假设直线l:y kx 2与双曲线C 恒有两个不同的交点A 和B ,且OAOB 2〔其中O 为原点〕.求k 的取值范围.高考圆锥曲线试题精选 第2页 共8页启智辅导(2007安徽文)设F 是抛物线G :x 2=4y 的焦点.(Ⅰ)过点P 〔0,-4〕作抛物线 G 的切线,求切线方程:(Ⅱ)设A 、B 为抛物线G 上异于原点的两点,且满足FA ·FB0,延长AF 、BF 分别交抛物线G 于点C ,D ,求四边形ABCD 面积的最小值.18.(2021辽宁文) 在平面直角坐标系xOy 中,点P 到两点(0,3),(0,3) 的距离之和等于4,设点P 的轨迹为C .〔Ⅰ〕写出C 的方程; uuu r〔Ⅱ〕设直线yuuuruuur kx1与C 交于A ,B 两点.k 为何值时OAOB ?此时AB 的值是多少?高考圆锥曲线试题精选 第3页 共8页启智辅导22y〔2002广东、河南、江苏〕A、B是双曲线x-2=1上的两点,点N(1,2)是线段AB的中点求直线AB的方程;如果线段AB的垂直平分线与双曲线相交于C、D两点,那么A、B、C、D四点是否共圆?为什么?20.〔2007福建理)如图,点F〔1,0〕,直线l:x=-1,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且=。
2021高考数学(文科)总复习刷题小卷练习:直线与圆锥曲线的综合(含答案)

高考数学(文科)总复习刷题小卷练习:直线与圆锥曲线的综合(含答案)刷题小卷练33直线与圆锥曲线的综合小题基础练○33一、选择题1.直线y=kx-k+1与椭圆x29+y24=1的位置关系为()A.相交B.相切C.相离D.不确定答案:A解析:通解将直线y=kx-k+1与椭圆x29+y24=1联立,整理得(4+9k2)x2+18k(1-k)x+9(1-k)2-36=0,则Δ=[18k(1-k)]2-4(4+9k2)[9(1-k)2-36]=144(8k2+2k+3)>0,所以直线与椭圆相交.优解因为直线y=kx-k+1过定点(1,1),又点(1,1)在椭圆内部,所以直线与椭圆相交.2.已知直线y=kx+1与双曲线x2-y24=1交于A,B两点,且|AB|=82,则实数k的值为()A.±7 B.±3或±41 3C.±3 D.±41 3答案:B解析:由直线与双曲线交于A,B两点,得k≠±2.将y=kx+1代入x2-y24=1得,(4-k2)x2-2kx-5=0,则Δ=4k2+4(4-k2)×5>0,解得k2<5.设A(x1,y1),B(x2,y2),则x1+x2=2k4-k2,x1x2=-54-k2,所以|AB|=1+k2·⎝⎛⎭⎪⎫2k4-k22+204-k2=82,解得k =±3或±413.3.[2019·兰州模拟]已知直线y =kx -k -1与曲线C :x 2+2y 2=m (m >0)恒有公共点,则m 的取值范围是( )A .[3,+∞)B .(-∞,3]C .(3,+∞)D .(-∞,3) 答案:A解析:直线y =kx -k -1恒过定点(1,-1).因为直线y =kx -k -1与曲线C :x 2+2y 2=m (m >0)恒有公共点,则曲线C 表示椭圆,点(1,-1)在椭圆内或椭圆上,所以12+2×(-1)2≤m ,所以m ≥3,故选A.4.[2019·宁波九校联考(二)]过双曲线x 2-y2b 2=1(b >0)的左顶点A 作斜率为1的直线l ,若l 与双曲线的两条渐近线分别交于B ,C ,且2AB→=BC →,则该双曲线的离心率为( ) A.10 B.103C. 5D.52 答案:C解析:由题意可知,左顶点A (-1,0).又直线l 的斜率为1,所以直线l 的方程为y =x +1,若直线l 与双曲线的渐近线有交点,则b ≠1.又双曲线的两条渐近线的方程分别为y =-bx ,y =bx ,所以可得x B =-1b +1,x C =1b -1.由2AB →=BC →,可得2(x B -x A )=x C -x B ,故2×⎝ ⎛⎭⎪⎫-1b +1+1=1b -1-⎝ ⎛⎭⎪⎫-1b +1,得b =2,故e =12+221= 5.5.[2019·浙江八校联考(二)]抛物线y =ax 2与直线y =kx +b (k ≠0)交于A ,B 两点,且这两点的横坐标分别为x 1,x 2,直线与x 轴交点的横坐标是x 3,则( )A .x 3=x 1+x 2B .x 1x 2=x 1x 3+x 2x 3C .x 1+x 2+x 3=0D .x 1x 2+x 2x 3+x 3x 1=0 答案:B解析:由⎩⎪⎨⎪⎧y =ax 2,y =kx +b ,消去y 得ax 2-kx -b =0,可知x 1+x 2=k a ,x 1x 2=-b a ,令kx +b =0得x 3=-bk ,所以x 1x 2=x 1x 3+x 2x 3.故选B.6.[2019·长春检测]椭圆4x 2+9y 2=144内有一点P (3,2),则以P 为中点的弦所在直线的斜率为( )A .-23B .-32C .-49D .-94 答案:A解析:设以P 为中点的弦所在直线与椭圆交于点A (x 1,y 1),B (x 2,y 2),斜率为k ,则4x 21+9y 21=144,4x 22+9y 22=144,两式相减得4(x 1+x 2)(x 1-x 2)+9(y 1+y 2)(y 1-y 2)=0,又x 1+x 2=6,y 1+y 2=4,y 1-y 2x 1-x 2=k ,代入解得k =-23.故选A.7.[2019·福建福州外国语学校适应性考试]已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的焦距为25,抛物线y =14x 2+14与双曲线C 的渐近线相切,则双曲线C 的方程为( )A.x 28-y 22=1B.x 22-y 28=1C .x 2-y 24=1 D.x24-y 2=1 答案:D解析:由题意可得c =5,得a 2+b 2=5,双曲线的渐近线方程为y =±b a x .将渐近线方程和抛物线方程y =14x 2+14联立,可得14x 2±b a x +14=0,由渐近线和抛物线相切可得Δ=b 2a 2-4×14×14=0,即有a 2=4b 2,又a 2+b 2=5,解得a =2,b =1,可得双曲线的方程为x 24-y 2=1.故选D.8.[2019·唐山市五校联考]直线l 与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)交于A ,B 两点,M 是线段AB 的中点,若l 与OM (O 是原点)的斜率的乘积等于1,则此双曲线的离心率为( )A .3B .2 C. 3 D. 2 答案:D解析:设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),代入双曲线的方程,得⎩⎨⎧x 21a 2-y 21b 2=1,x 22a 2-y 22b 2=1,两式相减得(x 1+x 2)(x 1-x 2)a 2-(y 1+y 2)(y 1-y 2)b 2=0,又⎩⎪⎨⎪⎧x 0=x 1+x 22,y 0=y 1+y22,所以x 0a 2=y 0(y 1-y 2)b 2(x 1-x 2),所以b 2a 2=y 0(y 1-y 2)x 0(x 1-x 2)=k OM k l =1,所以e 2=1+b 2a2=2,所以e =2,故选D.二、非选择题9.若直线y =52x +b 和曲线4x 2-y 2=36有两个不同的交点,则b 的取值范围是________.答案:⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫92,+∞解析:联立直线方程和曲线方程,消去y 得,-94x 2-5bx -b 2-36=0,由直线和曲线有两个不同的交点,所以Δ=25b 2-9(b 2+36)>0,解得b <-92或b >92.10.直线x -y -1=0与抛物线y 2=4x 交于A ,B 两点,过线段AB 的中点作直线x =-1的垂线,垂足为M ,则MA →·MB→=________.答案:0解析:设A (x 1,x 1-1),B (x 2,x 2-1),由⎩⎪⎨⎪⎧y =x -1,y 2=4x得x 2-6x +1=0,则x 1+x 2=6,x 1x 2=1,故AB 的中点C (3,2),M (-1,2),又MA →=(x 1+1,x 1-3),MB →=(x 2+1,x 2-3),所以MA →·MB→=(x 1+1)(x 2+1)+(x 1-3)·(x 2-3)=2x 1x 2-2(x 1+x 2)+10=0.11.已知抛物线y 2=4x 的焦点为F ,过焦点的直线与抛物线交于A ,B 两点,则当|AF |+4|BF |取得最小值时,直线AB 的倾斜角的正弦值为________.答案:223解析:当直线的斜率存在时,设直线方程为y =k (x -1)(k ≠0),由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,消去y 得k 2x 2-(2k 2+4)x +k 2=0.设A (x 1,y 1),B (x 2,y 2),x 1,x 2>0,则x 1+x 2=2k 2+4k 2 ①,x 1x 2=1②,1|AF |+1|BF |=1x 1+1+1x 2+1=x 1+x 2+2x 1x 2+x 1+x 2+1=2k 2+4k 2+21+2k 2+4k 2+1=1.当直线的斜率不存在时,易知|AF |=|BF |=2,故1|AF |+1|BF |=1.设|AF |=a ,|BF |=b ,则1a +1b =1,所以|AF |+4|BF |=a +4b =⎝ ⎛⎭⎪⎫1a +1b (a +4b )=5+4b a +a b ≥9,当且仅当a =2b 时取等号,故a +4b 的最小值为9,此时直线的斜率存在,且x 1+1=2(x 2+1) ③,联立①②③得, x 1=2,x 2=12,k =±22,故直线AB 的倾斜角的正弦值为223.12.[2019·广东揭阳一中、汕头金山中学联考]已知抛物线y 2=2px (p >0)上一点M (1,m )到其焦点的距离为5,双曲线x 2-y2a =1(a >0)的左顶点为A ,若双曲线的一条渐近线与直线AM 垂直,则实数a =________.答案:14解析:根据抛物线的定义得1+p2=5,所以p =8,所以m =±4.由对称性不妨取M (1,4),A (-1,0),则直线AM 的斜率为2,由题意得-a ×2=-1,故a =14.课时增分练○33一、选择题1.已知抛物线y 2=16x ,直线l 过点M (2,1),且与抛物线交于A ,B 两点,|AM |=|BM |,则直线l 的方程是( )A .y =8x +15B .y =8x -15C .y =6x -11D .y =5x -9 答案:B解析:设A (x 1,y 1),B (x 2,y 2)(x 1≠x 2),代入抛物线方程得y 21=16x 1,y 22=16x 2,两式相减得,(y 1+y 2)(y 1-y 2)=16(x 1-x 2),即y 1-y 2x 1-x 2=16y 1+y 2,又y 1+y 2=2,所以k AB =8,故直线l 的方程为y =8x -15.2.直线l 与抛物线C :y 2=2x 交于A ,B 两点,O 为坐标原点,若直线OA ,OB 的斜率分别为k 1,k 2,且满足k 1k 2=23,则直线l 过定点( )A .(-3,0)B .(0,-3)C .(3,0)D .(0,3) 答案:A解析:设A (x 1,y 1),B (x 2,y 2),因为k 1k 2=23,所以y 1x 1·y 2x 2=23.又y 21=2x 1,y 22=2x 2,所以y 1y 2=6.将直线l :x =my +b 代入抛物线C :y 2=2x 得y 2-2my -2b =0,所以y 1y 2=-2b =6,得b =-3,即直线l 的方程为x =my -3,所以直线l 过定点(-3,0).3.若直线x -y +m =0与双曲线x 2-y22=1交于不同的两点A ,B ,且线段AB 的中点在圆x 2+y 2=5上,则m 的值为( )A .±2B .±2C .±1D .±3答案:C解析:设A ,B 两点的坐标分别为A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M (x 0,y 0).由⎩⎪⎨⎪⎧x 2-y 22=1,x -y +m =0,得x 2-2mx -m 2-2=0(Δ>0),∴x 0=x 1+x 22=m ,y 0=x 0+m =2m ,∵点M (x 0,y 0)在圆x 2+y 2=5上,∴m 2+(2m )2=5,∴m =±1.4.已知椭圆C :x 24+y 23=1的左、右顶点分别为M ,N ,点P 在椭圆C 上,且直线PN 的斜率为-14,则直线PM 的斜率为( )A.13 B .3 C.12 D .2 答案:B解析:由题意知M (-2,0),N (2,0),又直线PN 的斜率为-14,所以直线PN 的方程为y =-14(x -2),代入椭圆C :x 24+y 23=1可得13x 2-4x -44=0.设P (x 0,y 0),则x 0+2=413,解得x 0=-2213,y 0=1213,故直线PM 的斜率k =1213-2213+2=3,故选B.5.[2019·太原模拟]已知抛物线y 2=2px (p >0)的焦点为F ,△ABC 的顶点都在抛物线上,且满足F A →+FB →+FC →=0,则1k AB +1k BC+1k CA=( ) A .0 B .1 C .2 D .2p 答案:A解析:设点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),F ⎝ ⎛⎭⎪⎫p 2,0,则⎝ ⎛⎭⎪⎫x 1-p2,y 1+⎝ ⎛⎭⎪⎫x 2-p 2,y 2+⎝ ⎛⎭⎪⎫x 3-p 2,y 3=(0,0),故y 1+y 2+y 3=0.∵1k AB =x 2-x 1y 2-y 1=12p (y 22-y 21)y 2-y 1=y 2+y 12p ,同理可知1k BC =y 3+y 22p ,1k CA =y 3+y 12p ,∴1k AB +1k BC +1k CA =2(y 1+y 2+y 3)2p=0. 6.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)与直线y =x +3只有一个公共点,且椭圆的离心率为55,则椭圆C 的方程为( )A.4x 225+y 25=1B.x 25+y 24=1 C.x 29+y 25=1 D.x 225+y 220=1 答案:B 解析:将直线方程y =x +3代入C 的方程并整理得(a 2+b 2)x 2+6a 2x +9a 2-a 2b 2=0,由椭圆与直线只有一个公共点得,Δ=(6a 2)2-4(a 2+b 2)(9a 2-a 2b 2)=0,化简得a 2+b 2=9.又由椭圆的离心率为55,所以c a =a 2-b 2a =55,则b 2a 2=45,解得a 2=5,b 2=4,所以椭圆方程为x 25+y 24=1.7.[2019·天津红桥区月考]已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =( )A .1 B.32 C .2 D .3 答案:C解析:因为双曲线方程为x 2a 2-y 2b 2=1,所以双曲线的渐近线方程是y =±b a x .又抛物线y 2=2px (p >0)的准线方程是x =-p 2,故A ,B 两点的纵坐标分别是y =±pb 2a .因为双曲线的离心率为2,所以ca=2,所以b 2a 2=3,则b a =3,A ,B 两点的纵坐标分别是y =±pb2a =±3p 2.又△AOB 的面积为3,x 轴是∠AOB 的平分线,所以12×3p ×p2=3,解得p =2.故选C.8.[2017·全国卷Ⅰ]已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为( )A .16B .14C .12D .10 答案:A因为F 为y 2=4x 的焦点,所以F (1,0).由题意直线l 1,l 2的斜率均存在,且不为0,设l 1的斜率为k ,则l 2的斜率为-1k ,故直线l 1,l 2的方程分别为y =k (x -1),y=-1k (x -1).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 2+4k 2,x 1x 2=1, 所以|AB |=1+k 2·|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=1+k 2·2k 2+4k 22-4=4(1+k 2)k 2. 同理可得|DE |=4(1+k 2).所以|AB |+|DE |=4(1+k 2)k 2+4(1+k 2)=41k 2+1+1+k 2=8+4k 2+1k 2≥8+4×2=16,当且仅当k 2=1k 2,即k =±1时,取得等号.故选A. 二、非选择题9.[2018·北京卷]若双曲线x 2a 2-y 24=1(a >0)的离心率为52,则a =________.答案:4解析:由e =ca =a 2+b 2a 2知a 2+4a 2=⎝ ⎛⎭⎪⎫522=54,∴a 2=16.∵a >0,∴a =4. 10.[2019·沈阳监测]已知抛物线y 2=4x 的一条弦AB 恰好以P (1,1)为中点,则弦AB 所在直线的方程是________________________________________________________________________.答案:2x -y -1=0解析:设A (x 1,y 1),B (x 2,y 2),且x 1≠x 2,则y 1+y 2=2,又点A ,B 在抛物线y 2=4x 上,所以⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,两式相减,得(y 1+y 2)(y 1-y 2)=4(x 1-x 2),则y 1-y 2x 1-x 2=4y 1+y 2=2,即直线AB 的斜率k =2,所以直线AB 的方程为y -1=2(x -1),即2x -y -1=0.11.[2019·河南周口联考]已知椭圆C 1的方程为x 24+y 23=1,椭圆C 2的短轴为C 1的长轴且离心率为32.(1)求椭圆C 2的方程;(2)如图,M ,N 分别为直线l 与椭圆C 1,C 2的交点,P 为椭圆C 2与y 轴的交点,△PON 的面积为△POM 的面积的2倍,若直线l 的方程为y =kx (k >0),求k 的值.解析:(1)∵椭圆C 1的长轴在x 轴上,且长轴长为4,∴椭圆C 2的短轴在x 轴上,且短轴长为4.设椭圆C 2的方程为y 2a 2+x 2b 2=1(a >b >0),则⎩⎪⎨⎪⎧ 2b =4,b a = 1-⎝ ⎛⎭⎪⎫322=12,解得a =4,b =2,∴椭圆C 2的方程为y 216+x 24=1.(2)设M (x 1,y 1),N (x 2,y 2).由△PON 的面积为△POM 的面积的2倍,得 |ON |=2|OM |,∴|x 2|=2|x 1|.联立⎩⎪⎨⎪⎧y =kx ,x 24+y 23=1, 消去y 得x =± 124k 2+3, ∴|x 1|= 124k 2+3.同理得|x 2|= 164+k 2. ∴ 164+k 2=2 124k 2+3, 解得k =±3.∵k >0,∴k =3.。
圆锥曲线高考真题专练(含答案),推荐文档

【解析】由已知得圆
的圆心为 ( -1 ,0), 半径 =1,圆 的圆心为 (1,0), 半径
=3.
设动圆 的圆心为 ( , ),半径为 R.
(Ⅰ)∵圆 与圆 外切且与圆 内切,∴ |PM|+|PN|=
=
=4,
由椭圆的定义可知,曲线 C是以 M, N为左右焦点,场半轴长为 2,短半轴长为
的椭圆 ( 左
由题设得 A( 1,0) , B(1,0) , | AB | 2 ,由椭圆定义可得点 E 的轨迹方程为:
x2 y2 1( y 0 ). 43
( II )当 l 与 x 轴不垂直时, 设 l 的方程为 y k( x 1)(k 0) ,M ( x1, y1) ,N ( x2 , y2 ) .
y k( x 1)
x02 3 p2
3p p
得: A(
3 p,
3p )
,直线
m:
y
2
2x p
x
3y
3p 0
2
3p 2
2
x2 2 py
x2 y
x y
3 x
3 p
3p p
切点 P(
,)
2p
p3
3
36
直线 n : y p
3 (x
3p )
3
x 3y
p0
63
3
6
坐标原点到 m, n 距离的比值为
3p : 3p 3。 26
已知 O 为坐标原点, F 为椭圆 C : x2 y2 1在 y 轴正半轴上的焦点, 过 F 且 2
则 x1
2, x2
2 ,直线 MA , MB 的斜率之和为 kMA kMB
y1
y2 .
x1 2 x2 2
《圆锥曲线》精选历届高考试题(文科)

、选择题:
2 2
椭圆x 4y=1的离心率为(
(A)仝
2
2.
设p是椭圆
(B)3
4
2 2-y1上的点.
25
B.
)
(C)二
2
3.
若焦点在x轴上的椭圆
4.
A.
+
B.
2
已知△ABC的顶点B
.10
1
=1的离心率为一,则m=(
2
c
3
C.8
X2
C在椭圆㊁
〔 )
(O 4 .3
卜y2=
1上,
边上,则△ABC勺周长是(
(A)2 3(B)6
5.如图,直线I:x -2y20过椭圆的左焦点
F1和一个顶点B,该椭圆的离心率为(
5
PR+PF2等于()
顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC
(D)12
1
A .-
5
B.
6.已知椭圆的焦点是 的轨迹是()
(A)圆(B)椭圆
7.已知F1、F2是椭圆的两个焦点,过 三角形,则这个椭圆的离心率是(
11.在平面直角坐标系xOy中,已知ABC顶点A(-4,0)和C(4,0),顶点B在椭圆1上,
259
sin A sin C
则
sin B
12.椭圆x24y^4长轴上一个顶点为A,以A为直角顶点作一个内接于椭圆的等腰直角三角形,该
三角形的面积是.
(A)空3
3
&已知以
长为(
Fi、
y
\g
JrF!O
f2X
F2、
(B)3
F1(-2,0),F2(2,0)
(A)
高中圆锥曲线试题及答案

高中圆锥曲线试题及答案一、选择题1. 若椭圆的方程为 \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\),其中 \(a > b > 0\),则该椭圆的离心率为:A. \(\sqrt{1 - \frac{b^2}{a^2}}\)B. \(\sqrt{1 + \frac{b^2}{a^2}}\)C. \(\frac{b}{a}\)D. \(\frac{a}{b}\)答案:A2. 已知双曲线的方程为 \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\),其中 \(a > 0, b > 0\),则该双曲线的渐近线方程为:A. \(y = \pm \frac{b}{a}x\)B. \(y = \pm \frac{a}{b}x\)C. \(x = \pm \frac{b}{a}y\)D. \(x = \pm \frac{a}{b}y\)答案:A3. 对于抛物线 \(y^2 = 4ax\),其焦点到准线的距离为:A. \(2a\)B. \(4a\)C. \(a\)D. \(\frac{a}{2}\)答案:A二、填空题4. 已知椭圆 \(\frac{x^2}{25} + \frac{y^2}{16} = 1\),求该椭圆的离心率。
答案:\(\frac{3}{5}\)5. 已知双曲线 \(\frac{x^2}{9} - \frac{y^2}{16} = 1\),求该双曲线的实轴长。
答案:66. 已知抛物线 \(x^2 = 4y\),求该抛物线的焦点坐标。
答案:(0, 1)三、解答题7. 已知椭圆 \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\) 与双曲线\(\frac{x^2}{m^2} - \frac{y^2}{n^2} = 1\) 有共同的焦点,求证:\(a^2 - b^2 = m^2 + n^2\)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2 1设F1F2是椭圆E:\ ab,一,…,… 3a ,一1(a b 0)的左、右焦点,P为直线x ——上一点,2F2PF1是底角为30o的等腰三角形,则E的离心率为(A)2 (B)3 (C) - (D)—等轴双曲线C的中心在原点,焦点在x轴上, C与抛物线y216x的准线交于A, B两点,AB 4 J3 ;则C的实轴长为((A) 2 (B) 2/2 (C) (D)23.已知双曲线a :与a 1(a0,b 0)的离心率为2.若抛物线 2C2:x 2py(p0)的焦点到双曲线C i的渐近线的距离为2,则抛物线C2的方程为小 2 8.3 (A) x --y3 _ 2 16--.-3 _ 2 2(B) x ----- y (C) x 8y (D) x316y4椭圆的中心在原点, 焦距为4, 一条准线为x 4,则该椭圆的方程为2(A)—162L 112(B)2x122(C)—8 (D)2x125.12012高考全国文 210】已知F1、F2为双曲线C: x 2的左、右焦点,点P在C上,| PF i | 2| PF? |,则COS F1PF2(A) 1 46.12012高考浙江文曲线的两顶点。
若M3(B)一53(C)—44(D)一58],O如图,中心均为原点。
的双曲线与椭圆有公共焦点,M , N是双N将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是A.3B.2C. . 3D. 247.12012高考四川文9】已知抛物线关于X轴对称,它的顶点在坐标原点O,并且经过点M (2, y°)。
若点M到该抛物线焦点的距离为3 ,则|OM |(2 28.12012考考四川又11】万程ay b x c 中的a,b, c {在所有这些方程所表示的曲线中,不同的抛物线共有(圆”的()2210.12012高考江西文8]椭圆三、1(a b 0)的左、右顶点分别是A, B,左、右a b焦点分别是F I , F 2。
若|AF I |,|F I F 2|,|F I B|成等比数列,则此椭圆的离心率为A. 1B T45 C. 1 D.、、5-22y-^ =1的焦距为10 ,点P (2,1)在C 的bA 、242B 、273C 、4A、28 条 B 、32 条 C 、36 条 D 、48 条9.12012高考上海文 16】对于常数m 、n“mn 0” 是 “方程2mxny 21的曲线是椭渐近线上,则C 的方程为A. 2 2 土、1 20 5 22B 土-X=15 202 2 — 80 202 2D ±-L=120 8012. 【2102 (Wj 考福建文 5】已知双曲线2-L=1 5的右焦点为( 3,0),则该双曲线的离心率等3.14 14 13.12012高考四川文 15】2x椭圆~ay 25 1(a 为定值,且aJ5)的的左焦点为F ,直线x m 与椭圆相交于点 A、B , FAB 的周长的最大值是12则该椭圆的离心率是14.12012高考辽宁文 15】已知双曲线x 2y 2=1,点F I ,F 2为其两个焦点,点 P 为双曲线上一点,若P F 11P F 2,则I P F 1 I + I P F 2 I 的值为2,0,123} 且a,b, c 互不相同,A 、充分不必要条件B 、必要不充分条件C 、充分必要条件D 、既不充分也不必要条件11.12012高考湖南文 6】已知双曲线C :bx 2 17.12012高考重庆文14】设P 为直线y —X 与双曲线 —3aa交点,F 1是左焦点,PF 1垂直于x 轴,则双曲线的离心率 e18.12012高考安徽文14】过抛物线y 24x 的焦点F 的直线交该抛物线于 A, B 两点,若| AF | 3,贝U | BF |=2 2C 2 :— — 1有相同的渐近线,且 C 1的右焦点为F(J5,0),则a ;b4 1620.12012高考天津19】(本小题满分14分)已知椭圆+(a>b>0),点P (争事)在椭圆上。
(I)求椭圆的离心率。
(II )设A 为椭圆的右顶点,O 为坐标原点,若 Q 在椭圆上且满足|AQ|=|AO|求直线OQ 的斜率的值。
2 221.12012高考江苏19】(16分)如图,在平面直角坐标系xoy 中,椭圆当 与1(a b 0) a b的左、右焦点分别为F 1( c,0), F 2(c,0).已知(1,e)和e,1 都在椭圆上,其中e 为椭圆 的离心率.(1)求椭圆的方程;(2)设A,B 是椭圆上位于x 轴上方的两点,且直线AF I 与直线BF 2平行,AF 2与BF I 交于点P. (i )若AF 1 BF 2 冬 求直线AF I 的斜率;(ii )求证:PF 1 PF 2是定值.22.12012高考安徽文20](本小题满分13分)22如图,F I ,F 2分别是椭圆C :三+4=1 ( a ba b4米,水位下降1米后,水面宽 米.19.12012高考天津文科11】已知双曲线C 1:2X -2 a2■yy 1(a 0, b b 20)与双曲线如图, 等边三角形 OAB 的边长为85且其三个顶点均在抛物线 E: x 2=2py (p>0)上。
(1) 求抛物线 E 的方程;(2)设动直线 l 与抛物线E 相切于点P,与直线y=-1相较于点Q 。
证明 以PQ 为直径的圆恒过 y 轴上某定点。
27.12012高考上海文22](本题满分16分)本题共有3个小题,第1小的左、右焦点,A 是椭圆C 的顶点,B 是直线AF 2与椭圆C 的另一个交点, F 1 A F 2=60(I)求椭圆C 的离心率;(n )已知△ A F 1B 的面积为40 J3,求a, b 的值.23.12012高考广东文20](本小题满分14分)F i ( 1,0),且点 P(0,1)在 C i 上.(1)求椭圆Ci 的方程;形ABCD 的面积为8.(I )求椭圆M 的标准方程;(n )设直线l:y x m(m R)与椭圆M 有两个不同的交点 P,Q,l 与矩形ABCD 有两不同的交点S,T.求四!的最大值及取得最大值时 m 的值.|ST|26.12102高考福建文21](本小题满分12分)在平面直角坐标系 xOy 中,已知椭圆 C 1 :b 0)的左焦点为(2)设直线l 同时与椭圆C 1和抛物线C 2: y4x 相切,求直线 l 的方程.24.12102高考北京文19](本小题共14分)22已知椭圆C :与+多=1(a>b>0)的一个顶点为a bA (2,0),离心率为直线 y=k(x-1)与椭圆C 交与不同的两点 M,N(I)求椭圆C 的方程 (n)当^ AMN 的面积为叵时,求k 的值325.12012高考山东文21】(本小题满分13分)2 如图,椭圆M : x2a 2y_ b 21(a b 0)的离心率为q3 ,直线x a 和y题满分5分,第2小题满分5分,第3小题满分6分在平面直角坐标系xOy中,已知双曲线C :2x2 y2 1(1)设F是C的左焦点,M是C右支上一点,若MF| 2J2,求点M的坐标;(2)过C的左焦点作C的两条渐近线的平行线,求这两组平行线围成的平行四边形的面积;(3)设斜率为k ( k J2)的直线l交C于P、Q两点,若l与圆x2 y2 1相切,求证:OP^OQ28.12012高考新课标文20](本小题满分12分)设抛物线C: x2=2py(p>0)的焦点为F,准线为l, A为C上一点,已知以F为圆心,FA为半径的圆F 交l于B, D两点.(I)若/ BFD=90° , AABD的面积为472,求p的值及圆F的方程;(II )若A, B, F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m, n距离的比值.29.12012高考浙江文22]本题3黄分14分)如图,在直角坐标系xOy .. 12 5中,点P (1,-)到抛物线C:y =2px (P>0)的准线的距离为 -°点M (t, 1)是C上的定点,A, B是C上的两动点,且线段AB 被直线OM平分。
(1)求p,t的值。
(2)求4ABP面积的最大值。
30.12012高考湖南文21](本小题满分13分)在直角坐标系xOy中,已知中心在原点,离心率为1的椭圆E2x2+y2-4x+2=0 的圆心.(I )求椭圆E的方程;(II)设P是椭圆E上一点,过P作两条斜率之积为1的直线1I, l2.当直线l1, l2都与圆C2相切时,求P的坐标.31.12012高考湖北文21](本小题满分14分)设A是单位圆x2+y2=1上任意一点,l是过点A与x轴垂直的直线,D是直线l与x轴的交点,点M 在直线l上,且满足- MN的下机fUYl)」当点A在圆上运动时,记点M的轨迹为曲线Co(1)求曲线C的方程,判断曲线C为何种圆锥曲线,并求其焦点坐标。
(2)过原点斜率为K的直线交曲线C于P, Q两点,其中P在第一象限,且它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的K>0,都有PQLPH? 若存在,求m的值;若不存在,请说明理由。
32.【2012高考全国文22】(本小题满分12分) 已知抛物线C: y (x 1)2与圆M:(x 1)2(注意:在试题卷上作答无效)1 2 2(y -)2 r2(r 0)有一个公共点A,的一个焦点为圆C且在点A处两曲线的切线为同一直线1.(I)求r ;(n )设m、n是异于1且与C及M都相切的两条直线,距离。
m、n的交点为D ,求D至M的33.12012高考辽宁文20](本小题满分12分)如图,动圆C i :x2 y2 t2,1<t<3,2与椭圆C2:—y2 1相交于A, B, C, D四点,点Al, A 9分别为C2的左,右顶点。
(I )当t为何值时,矩形ABCD勺面积取得最大值?并求出其最大面积;(n)求直线AA与直线A2B交点M的轨迹方程。
34.12012高考江西文20](本小题满分13分)已知三点O (0,0), A (-2,1), B (2,1),曲线C上任意一点M (x,y)满足I W1 + 1而;.,诵 * + OB) + X(1)求曲线C的方程;(2)点Q(X0,y0)(-2<X0<2)是曲线C上动点,曲线C在点Q处的切线为I,点P的坐标是(0, -1), I与PA, PB分别交于点D, E,求△ QAB与△ PDE的面积之比。
35.12012高考四川文21](本小题满分12分)如图,动点M与两定点A( 1,0)、B(1,0)构成MAB ,且直线MA、MB的斜率之积为4,设动点M的轨迹为C。