圆周运动及其应用
圆周运动规律及应用+答案

圆周运动的规律及其应用一、 匀速圆周运动的基本规律1.匀速圆周运动的定义:作 的物体,如果在相等时间内通过的 相等,则物体所作的运动就叫做匀速圆周运动。
2.匀速圆周运动是:速度 不变, 时刻改变的变速运动;是加速度 不变, 时刻改变的变加速运动。
3.描述匀速圆周运动的物理量 线速度:r Tr t s v ωπ===2,方向沿圆弧切线方向,描述物体运动快慢。
角速度:Tt πθω2== 描述物体转动的快慢。
转速n :每秒转动的圈数,与角速度关系n πω2= 向心加速度: v r rv a ωω===22描述速度方向变化快慢,其方向始终指向圆心。
向心力:向心力是按 命名的力,任何一个力或几个力的合力只要它的 是使物体产生 ,它就是物体所受的向心力.向心力的方向总与物体的运动方向 ,只改变线速度 ,不改变线速度 .==ma F v m r m rv m ωω==22。
二、 匀速圆周运动基本规律的应用【基础题】例1:上海锦江乐园新建的“摩天转轮”,它的直径达98m ,世界排名第五,游人乘坐时,转轮始终不停地匀速转动,每转一周用时25min.下列说法中正确的是 ( )A . 每时每刻,每个人受到的合力都不等于零 B. 每个乘客都在做加速度为零的匀速运动C. 乘客在乘坐过程中对座位的压力始终不变D. 在乘坐过程中每个乘客的线速度保持不变【同步练习】1.一物体作匀速圆周运动,在其运动过程中,不发生变化的物理量是( )A .线速度B . 角速度C .向心加速度D .合外力2.质量一定的物体做匀速圆周运动时,如所需向心力增为原来的8倍,以下各种情况中可能的是( )A. 线速度和圆半径增大为原来的2倍B. 角速度和圆半径都增大为原来的2倍C. 周期和圆半径都增大为原来的2倍D. 频率和圆半径都增大为原来的2倍3.用细线将一个小球悬挂在车厢里,小球随车一起作匀速直线运动。
当突然刹车时,绳上的张力将( )A. 突然增大B. 突然减小C. 不变D. 究竟是增大还是减小,要由车厢刹车前的速度大小与刹车时的加速度大小来决定4.汽车驶过半径为R 的凸形桥面,要使它不至于从桥的顶端飞出,车速必须小于或等于( )A. 2RgB. RgC. Rg 2D. Rg 35.做匀速圆周运动的物体,圆半径为R ,向心加速度为a ,则以下关系式中不正确的是( )A. 线速度aR v =B. 角速度R a =ωC. 频率R a f π2=D. 周期aR T π2= 6.一位滑雪者连同他的滑雪板共70kg ,他沿着凹形的坡底运动时的速度是20m/s ,坡底的圆弧半径是50m ,试求他在坡底时对雪地的压力。
圆周运动的规律及其应用(开课)

§2-2讲、圆周运动的 规律及其应用
一、教学目标: ●掌握竖直面内圆周运动问题在最高点和最
低点的处理方法,能从运动、受力、能量的 角度分析绳球模型和杆球模型。
●掌握水平面内圆周运动临界问题的处理方法。
考点三 常见竖直平面内的圆周运动最高点临界问题
竖直平面内的圆周运动,是典型的变速圆周运动, 对于物体在竖直平面内做变速圆周运动的问题,中 学物理中只研究物体通过最高点和最低点的情况, 并且经常出现有关最高点的临界问题.
【典例4】 如图所示,质量为m的木块,用一轻
绳拴着,置于很大的水平转盘上,细绳穿过转盘
中央的细管,与质量也为m的小球相连,木块到 中央的距离为r=0.5 m,圆盘匀速转动,要保持 木块与转盘相对静止。求:(g取10 m/s2)
1、若水平转盘光滑,求ω1 。
2、若水平转盘与木块间的最大摩擦 m
力是木块重力的0.2倍,且剪断细线。
两种模型:
绳球模型
杆球模型
绳球模型 等效模型
讨论:
1、受力 2、运动 3、能量
杆球模型 等效模型
讨论:
1、受力 2、运动 3、能量
【典例3】(多选)如图所示,一内壁光滑的半径
为R的圆筒固定,横截面在竖直平面内,圆筒内 最低点有一小球.现给小球2.2mgR的初动能,使
小球从最低点开始沿筒壁运动,则小球沿筒壁运 动过程中( ). A.小球可以到达轨道的最高点 B.小球不能到达轨道的最高点 C.要使小球做完整圆周运动, 小球的最小初速度大于 5gR D.要使小球做完整圆周运动, 小球的最小初速度等于 4gR
ω
求ω2的最大不能超过多少? 力是木块重力的0.2倍,不剪断细线。 求ω3的范围。
高考物理一轮复习课件:第四章 第3讲 圆周运动及其应用

【审题视点】 (1)开始时,棒与A、B有相对滑动先求出 棒加速的时间和位移. (2)棒匀速时与圆柱边缘线速度相等,求出棒重心匀速运 动到A正上方的时间.
【解析】 棒开始与 A、B 两轮有相对滑动,棒受向左摩 擦力作用, 做匀加速运动, 末速度 v =ωr=8×0.2 m/s=1.6 m/s, v 2 加速度 a=μg=1.6 m/s ,时间 t1=a =1 s, 1 2 t1 时间内棒运动位移 s1=2at1=0.8 m. 此后棒与 A、B 无相对运动,棒以 v =ωr 做匀速运动,再 s2 运动 s2=s-s1=0.8 m, 重心到 A 的正上方需要的时间 t2= v = 0.5 s,故所求时间 t=t1+t2=1.5 s.
【针对训练】 3.洗衣机的脱水桶采用带动衣物旋转的 方式脱水,下列说法中错误的是( ) A.脱水过程中,衣物是紧贴桶壁的 B.水会从桶中甩出是因为水滴受到 的向心力很大的缘故 C.加快脱水桶转动角速度, 脱水效果会更好 D.靠近中心的衣物的脱水效果 不如周边的衣物的脱水效果好 【解析】 水滴依附衣物的附着力是一定的,当水滴因做圆 周运动所需的向心力大于该附着力时,水滴被甩掉,B项错误 ;脱水过程中,衣物做离心运动而甩向桶壁,A项正确;角速 度增大,水滴所需向心力增大,脱水效果更好,C项正确;周 边的衣物因圆周运动的半径R更大,在ω一定时,所需向心力 比中心的衣物大,脱水效果更好,D项正确. 【答案】 B
【解析】 因为汽车通过最低点时, 演员具有向上的加速 v 度,故处于超重状态,A 正确;由 ω= r 可得汽车在环形车道 上的角速度为 2 rad/s,D 错误; v2 0 由 mg=m 可得 v 0= gr≈7.7 m/s,C 错误;由 mg+F= r v2 m r 可得汽车通过最高点时对环形车道的压力为 1.4×104 N, B 正确.
圆周运动轨迹方程及其应用

圆周运动轨迹方程及其应用圆周运动是一种最基本的运动方式之一,它的轨迹是一个圆形。
许多物理学和工程学领域都会涉及到圆周运动,而这些领域都需要对圆周运动的轨迹方程及其应用有深入的认识。
一、圆周运动的基本概念圆周运动指的是物体在圆形轨道上做匀速直线运动的一种运动方式。
在圆周运动中,物体的位移、速度和加速度都发生了变化。
位移是指物体从初始位置到终止位置所经过的路程,它可以用一个矢量表示。
速度是指物体在单位时间内沿着轨道移动的路程,它也可以用一个矢量表示。
加速度是指物体在单位时间内速度的变化率,它可以用一个矢量表示。
二、圆周运动轨迹方程的推导对于一个半径为r的圆,在圆心处建立坐标系,可以推导出圆周运动的轨迹方程。
假设物体在运动过程中沿圆周方向与x轴正半轴之间的夹角为θ,则物体的位置可以表示为:x=r*cosθy=r*sinθ上式就是圆周运动的轨迹方程。
这个方程非常重要,因为它可以描述物体在圆周运动中的位置。
三、圆周运动的速度与加速度由于圆周运动的轨迹是一个圆形,所以物体的速度和加速度也会随着位置的变化而变化。
速度可以用位移与时间的比值来计算,即V=dS/dt。
对于圆周运动,物体在任意位置的速度大小都是相同的,因为它的速度是一个常量。
加速度可以用速度与时间的比值来计算,即A=dV/dt。
对于圆周运动,物体在圆形轨道上的加速度是一个向心加速度,它的大小可以用下式计算:a=v^2/r上式中,v代表速度大小,r代表圆形轨道的半径。
向心加速度的方向指向圆心,所以它也被称为离心加速度。
四、圆周运动的应用圆周运动的轨迹方程和速度、加速度的计算公式在许多领域中都有广泛的应用。
在物理学中,圆周运动常常涉及到匀速转动和重力运动等问题。
物理学家可以通过对圆周运动的分析来解决这些问题。
在工程学中,圆周运动常常涉及到机器人的运动轨迹控制、磁盘驱动器的设计等。
工程师可以通过对圆周运动的轨迹方程和速度、加速度的计算公式的应用来解决这些问题。
2013山东高考一轮复习第四章第3讲第3讲 圆周运动及其应用

3.如图4-3-1所示,在双人花样滑冰
自 主 落 实 · 固 基 础
运动中,有时会看到被男运动员拉 着的女运动员离开地面在空中做圆
锥摆运动的பைடு நூலகம்彩场面,假设体重为
G的女运动员做圆锥摆运动时和水 平冰面的夹角约为30°,重力加速
随 堂 检 测 · 紧 练 兵
考 点 突 破 · 提 知 能
度为g,对该女运动员,下列结论正
菜 单
课 时 知 能 训 练
一轮复习 · 新课标 · 物理 (山东专用)
自 主 落 实 · 固 基 础
1.某型石英表中的分针与时针可视为做匀速转动,分针的长度是 时针长度的1.5倍,则下列说法中正确的是( )
A.分针的角速度与时针的角速度相等 B.分针的角速度是时针的角速度的60倍 C.分针端点的线速度是时针端点的线速度的18倍 D.分针端点的向心加速度是时针端点的向心加速度的1.5倍
考 点 突 破 · 提 知 能
A.质点运动的线速度越来越大
B.质点运动的加速度越来越大
C.质点运动的角速度越来越大 D.质点所受的合外力越来越大
课 时 知 能 训 练
菜
单
一轮复习 · 新课标 · 物理 (山东专用)
自 主 落 实 · 固 基 础
考 点 突 破 · 提 知 能
【解析】 由 走 的迹 度 于 过 轨长 s 与用时 所 的间 t 成比 正, 所 质 运的 速 大不 ,项 以 点 动线 度小 变选 A 错由可 质运 ;图知点 动 v2 的半径越来越小,根据 a= ,质点的加速度越来越大,选项 B r v 正确;根据 ω= , 点 动 角度 来大 选 质 运 的速 越 越 , 项 C 正确; r 根据 F=ma 可知质点的合外力越来越大,选项 D 正确.
圆周运动中的开普勒三定律及其应用

圆周运动中的开普勒三定律及其应用开普勒三定律是描述行星或其他天体围绕太阳或其他星体转动的规律。
这些定律由德国天文学家约翰内斯·开普勒在16世纪末和17世纪初提出,并被广泛地应用于天文学和物理学研究中。
本文将详细介绍开普勒的三个定律,并探讨他们在天文学和其他领域中的重要应用。
第一定律:行星轨道为椭圆开普勒第一定律,也称为椭圆定律,指出行星(或其他天体)的轨道是一个椭圆,而不是一个完美的圆。
椭圆有两个焦点,太阳位于其中一个焦点上。
行星沿着这个椭圆轨道绕太阳旋转,离太阳的距离不是恒定不变的,而是根据其位置在椭圆的不同部位而有所变化。
这一定律的应用非常广泛。
在行星轨道动力学研究中,人们利用这一定律来计算行星的轨道参数,例如离心率(eccentricity)、主轴长度(semi-major axis)等。
此外,在太空飞行和轨道设计中,开普勒第一定律也被广泛应用。
它帮助科学家们预测和计划宇宙飞船的轨迹,确保任务的成功执行。
第二定律:面积速度相等开普勒第二定律,也称为面积定律,描述了在相同时间内,行星与太阳连线所扫过的面积是相等的。
简单来说,当行星靠近太阳时,它的速度会增加,而当行星离太阳较远时,它的速度会减慢。
这是因为在椭圆轨道上,行星与太阳之间的引力会导致行星的运动速度变化。
该定律的重要应用之一是在行星运动轨迹的研究中。
通过分析行星运动的速度变化,我们可以推导出行星与太阳之间的引力变化规律。
此外,开普勒第二定律在卫星轨道和人造卫星的运行中也发挥着关键作用。
它帮助科学家们计算出卫星的速度和运动轨迹,确保卫星能够准确地进行通信、地球观测等任务。
第三定律:调和定律开普勒第三定律,也称为调和定律,是开普勒三定律中最具有普遍意义的定律。
它表明,太阳系中每个行星的公转周期的平方与其离太阳平均距离的立方成正比。
换句话说,较远离太阳的行星需要更长的时间来绕太阳旋转。
这一定律的应用非常广泛,尤其是在天文学与天体物理学领域。
圆周运动

圆周运动的规律及其应用,圆周运动的描述(考纲要求Ⅰ)1.匀速圆周运动(1)定义:做圆周运动的物体,若在相等的时间内通过的圆弧长相等,就是匀速圆周运动.(2)特点:加速度大小不变,方向始终指向圆心,是变加速运动.(3)条件:合外力大小不变、方向始终与速度方向垂直且指向圆心.2.描述圆周运动的物理量描述圆周运动的物理量主要有线速度、角速度、周期、频率、转速、向心加速度、向心力等,现比较如下表:判断正误,正确的划“√”,错误的划“×”.(1)匀速圆周运动是速度不变的曲线运动.()(2)做匀速圆周运动的物体向心加速度与半径成反比.()(3)做匀速圆周运动的物体角速度与转速成正比.()(4)比较物体沿圆周运动的快慢看线速度,比较物体绕圆心转动的快慢看周期、角速度.( ),匀速圆周运动的向心力 (考纲要求 Ⅱ)1.作用效果:向心力产生向心加速度,只改变速度的方向,不改变速度的大小.2.大小:F =m v 2r =mω2r =m 4π2T 2r =mωv =4π2mf 2r .3.方向:始终沿半径方向指向圆心,时刻在改变,即向心力是一个变力. 4.来源向心力可以由一个力提供,也可以由几个力的合力提供,还可以由一个力的分力提供.,离心现象1.定义:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,就做逐渐远离圆心的运动.2.本质:做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞出去的趋势.图4-3-13.受力特点当F =mrω2时,物体做匀速圆周运动; 当F =0时,物体沿切线方向飞出;当F <mrω2时,物体逐渐远离圆心,F 为实际提供的向心力,如图4-3-1所示.判断正误,正确的划“√”,错误的划“×”.(1)随圆盘一起匀速转动的物块受重力、支持力和向心力的作用.( )(2)做圆周运动的物体所受合外力突然消失,物体将沿圆周切线方向做匀速直线运动.( )(3)摩托车转弯时,如果超过一定速度,摩托车将发生滑动,这是因为摩托车受到沿半径方向向外的离心力作用.( )基 础 自 测1.(多选)下列关于匀速圆周运动的说法中,正确的是( ). A .线速度不变 B .角速度不变C .加速度为零D .周期不变2.(多选)质点做匀速圆周运动,则( ). A .在任何相等的时间里,质点的位移都相同 B .在任何相等的时间里,质点通过的路程都相等C .在任何相等的时间里,连接质点和圆心的半径转过的角度都相等D .在任何相等的时间里,质点运动的平均速度都相同 3.(单选)下列关于离心现象的说法正确的是( ). A .当物体所受的离心力大于向心力时产生离心现象B .做匀速圆周运动的物体,当它所受的一切力都突然消失后,物体将做背离圆心的圆周运动C .做匀速圆周运动的物体,当它所受的一切力都突然消失后,物体将沿切线做直线运动D .做匀速圆周运动的物体,当它所受的一切力都突然消失后,物体将做曲线运动 4.(单选)汽车在公路上行驶一般不打滑,轮子转一周,汽车向前行驶的距离等于车轮的周长,某国产轿车的车轮半径约为30 cm ,当该型号轿车在高速公路上行驶时,驾驶员面前的速率计的指针指在“120 km/h ”上,可估算出该车车轮的转速约为( ). A .1 000 r/s B .1 000 r/minC .1 000 r/h D .2 000 r/s.5.(单选)甲、乙两质点均做匀速圆周运动,甲的质量与运动半径分别是乙的一半,当甲转动80转时,乙正好转过60转,则甲与乙所受的向心力大小之比为( ). A .1∶4 B .4∶1C .4∶9D .9∶4热点一 描述圆周运动的各物理量间的关系 1.圆周运动各物理量间的关系 2.对公式v =ωr 的理解 当r 一定时,v 与ω成正比. 当ω一定时,v 与r 成正比. 当v 一定时,ω与r 成反比. 3.对a =v 2r =ω2r =ωv 的理解在v 一定时,a 与r 成反比;在ω一定时,a 与r 成正比.【典例1】(多选)如图4-3-2所示为皮带传动装置,右轮的半径为r ,a 是它边缘上的一点,左侧是一轮轴,大轮的半径是4r ,小轮的半径是2r ,b 点在小轮上,到小轮中心的距离为r ,c 点和d 点分别位于小轮和大轮的边缘上,若在传动过程中皮带不打滑,则( ). A .a 点和b 点的线速度大小相等 B .a 点和b 点的角速度大小相等 C .a 点和c 点的线速度大小相等 D .a 点和d 点的向心加速度大小相等 反思总结常见的三种传动方式及特点1.皮带传动:如图4-3-3甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即v A =v B .图4-3-32.摩擦传动:如图4-3-4甲所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即v A =v B .图4-3-43.同轴传动:如图4-3-4乙所示,两轮固定在一起绕同一转轴转动,两轮转动的角速度大小相等,即ωA =ωB .【跟踪短训】1.(2013·桂林模拟)(单选)如图4-3-5所示,B 和C 是一组塔轮,即B 和C 半径不同,但固定在同一转动轴上,其半径之比为R B ∶R C =3∶2,A 轮的半径大小与C 轮相同,它与B 轮紧靠在一起,当A 轮绕过其中心的竖直轴转动时,由于摩擦作用,B 轮也随之无滑动地转动起来.a 、b 、c 分别为三轮边缘的三个点,则a 、b 、c 三点在运动过程中的( ).A .线速度大小之比为3∶2∶2B .角速度之比为3∶3∶2C .转速之比为2∶3∶2图4-3-2图4-3-5D .向心加速度大小之比为9∶6∶4热点二 匀速圆周运动中的动力学问题)1.向心力的来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力. 2.向心力的确定(1)确定圆周运动的轨道所在的平面,确定圆心的位置.(2)分析物体的受力情况,找出所有的力沿半径方向指向圆心的合力就是向心力. 【典例2】(2013·重庆卷,8)如图4-3-6所示,半径为R 的半球形陶罐,固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O 的对称轴OO ′重合.转台以一定角速度ω匀速旋转,一质量为m 的小物块落入陶罐内,经过一段时间后,小物块随陶罐一起转动且相对罐壁静止,它和O 点的连线与OO ′之间的夹角θ为60°,重力加速度大小为g . (1)若ω=ω0,小物块受到的摩擦力恰好为零,求ω0;(2)若ω=(1±k )ω0,且0<k ≪1,求小物块受到的摩擦力大小和方向.【跟踪短训】2.(多选)铁路转弯处的弯道半径r 是根据地形决定的.弯道处要求外轨比内轨高,其内、外轨高度差h 的设计不仅与r 有关.还与火车在弯道上的行驶速度v 有关.下列说法正确的是( ).A .速率v 一定时,r 越小,要求h 越大B .速率v 一定时,r 越大,要求h 越大C .半径r 一定时,v 越小,要求h 越大D .半径r 一定时,v 越大,要求h 越大物理建模 6.竖直平面内圆周运动的“轻绳、轻杆”模型1.模型条件(1)物体在竖直平面内做变速圆周运动.(2)“轻绳模型”在轨道最高点无支撑,“轻杆模型”在轨道最高点有支撑. 2.模型特点图4-3-6该类问题常有临界问题,并伴有“最大”“最小”“刚好”等词语,现对两种模型分析比较如下:【典例3】(单选)如图4-3-7所示,2012年8月7日伦敦奥运会体操男子单杠决赛,荷兰选手宗德兰德荣获冠军.若他的质量为60 kg ,做“双臂大回环”,用双手抓住单杠,伸展身体,以单杠为轴做圆周运动.此过程中,运动员到达最低点时手臂受的总拉力至少约为(忽略空气阻力,g =10 m/s 2)( ). A .600 N B .2 400 N C .3 000 N D .3 600 N图4-3-7即学即练(单选)如图4-3-8所示,两段长均为L 的轻质线共同系住一个质量为m 的小球,另一端分别固定在等高的A 、B 两点,A 、B 两点间距也为L ,今使小球在竖直平面内做圆周运动,当小球到达最高点时速率为v ,两段线中张力恰好均为零,若小球到达最高点时速率为2v ,则此时每段线中张力大小为( ). A.3mg B .23mg C .3mg D .4mgA 对点训练——练熟基础知识题组一 匀速圆周运动的运动学问题1.(多选)在“天宫一号”的太空授课中,航天员王亚平做了一个有趣实验.在T 形支架上,用细绳拴着一颗明黄色的小钢球.设小球质量为m ,细绳长度为L .王亚平用手指沿切线方向轻推小球,小球在拉力作用下做匀速圆周运动.测得小球运动的周期为T ,由此可知A .小球运动的角速度ω=T /(2π) B .小球运动的线速度v =2πL /T C .小球运动的加速度a =2π2L /T 2 D .细绳中的拉力为F =4m π2L /T 22.(单选)2013年6月20日上午10时,中国载人航天史上的首堂太空授课开讲.航天员做了一个有趣实验:T 形支架上,用细绳拴着一颗明黄色的小钢球.航天员王亚平用手指沿切线方向轻推小球,可以看到小球在拉力作用下在某一平面内做圆周运动.从电视画面上可估算出细绳长度大约为32 cm ,小球2 s 转动一圈.由此可知王亚平使小球沿垂直细绳方向获得的速度为 ( ). A .0.1 m/s B .0.5 m/s C .1 m/sD .2 m/s题组二 匀速圆周运动的动力学问题3.(单选)如图4-3-9所示,是某课外研究小组设计的可以用来测量转盘转速的装置.该装置上方是一与转盘固定在一起有横向均匀刻度的标尺,带孔的小图4-3-8球穿在光滑细杆与一轻弹簧相连,弹簧的另一端固定在转动轴上,小球可沿杆自由滑动并随转盘在水平面内转动.当转盘不转动时,指针指在O 处,当转盘转动的角速度为ω1时,指针指在A 处,当转盘转动的角速度为ω2时,指针指在B 处,设弹簧均没有超过弹性限度.则ω1与ω2的比值为( ). A.12B.12C.14D.134.(2013·扬州中学期中考试)(单选)如图4-3-10所示,在匀速转动的水平盘上,沿半径方向放着用细线相连的质量相等的两物体A 和B ,它们与盘间的动摩擦因数相同,当圆盘转速加快到两物体刚好没有发生滑动时,烧断细线,则两物体的运动情况将是( ). A .两物体均沿切线方向滑动B .两物体均沿半径方向滑动,远离圆心C .两物体仍随圆盘一起做匀速圆周运动,不会滑动D .物体A 仍随圆盘做匀速圆周运动,物体B 沿曲线运动,远离圆心5.(2013·江苏卷,2)(单选)如图4-3-11所示,“旋转秋千”中的两个座椅A 、B 质量相等,通过相同长度的缆绳悬挂在旋转圆盘上.不考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下列说法正确的是( ).A .A 的速度比B 的大B .A 与B 的向心加速度大小相等C .悬挂A 、B 的缆绳与竖直方向的夹角相等D .悬挂A 的缆绳所受的拉力比悬挂B 的小题组三 离心现象6.(单选)世界一级方程式锦标赛新加坡大奖赛赛道单圈长5.067公里,共有23个弯道,如图4-3-12所示,赛车在水平路面上转弯时,常常在弯道上冲出跑道,则以下说法正确的是( ).A .是由于赛车行驶到弯道时,运动员未能及时转动 方向盘才造成赛车冲出跑道的B .是由于赛车行驶到弯道时,运动员没有及时加速才造成赛车冲出跑道的C .是由于赛车行驶到弯道时,运动员没有及时减速才造成赛车冲出跑道的图4-3-10图4-3-12图4-3-11D.由公式F=mω2r可知,弯道半径越大,越容易冲出跑道7.(多选)公路急转弯处通常是交通事故多发地带.如图4-3-13,某公路急转弯处是一圆弧,当汽车行驶的速率为v c时,汽车恰好没有向公路内外两侧滑动的趋势,则在该弯道处().A.路面外侧高内侧低B.车速只要低于v c,车辆便会向内侧滑动C.车速虽然高于v c,但只要不超出某一最高限度,车辆便不会向外侧滑动D.当路面结冰时,与未结冰时相比,v c的值变小题组四圆周运动的临界问题8.(2013·上海卷,6)(单选)秋千的吊绳有些磨损.在摆动过程中,吊绳最容易断裂的时候是秋千().A.在下摆过程中B.在上摆过程中C.摆到最高点时D.摆到最低点时9.(多选)如图4-3-14所示,半径为R的光滑圆形轨道竖直固定放置,小球m在圆形轨道内侧做圆周运动.对于半径R不同的圆形轨道,小球m通过轨道最高点时都恰好与轨道间没有相互作用力.下列说法中正确的有().A.半径R越大,小球通过轨道最高点时的速度越大B.半径R越大,小球通过轨道最高点时的速度越小C.半径R越大,小球通过轨道最低点时的角速度越大D.半径R越大,小球通过轨道最低点时的角速度越小10.(单选)在光滑水平面上,有一转轴垂直于此平面,交点O的上方h处固定一细绳,绳的另一端连接一质量为m的小球B,绳长l>h,小球可随转轴转动在光滑水平面上做匀速圆周运动,如图4-3-15所示.要使小球不离开水平面,转轴转速的最大值是().A.12πgh B.πghC.12πgl D.12πlg图4-3-13图4-3-15图4-3-1411.(多选)如图4-3-16所示,长为L 的轻杆一端固定质量为m 的小球,另一端固定转轴O ,现使小球在竖直平面内做圆周运动.P 为圆周轨道的最高点.若小球通过圆周轨道最低点时的速度大小为92gL ,则以下判断正确的是( ). A .小球不能到达P 点B .小球到达P 点时的速度小于gLC .小球能到达P 点,但在P 点不会受到轻杆的弹力D .小球能到达P 点,且在P 点受到轻杆向上的弹力B 深化训练——提高能力技巧12.(2013·常州市上学期期中考试)如图4-3-17所示,将一质量为m =0.1 kg 的小球自水平平台右端O 点以初速度v 0水平抛出,小球飞离平台后由A 点沿切线落入竖直光滑圆轨道ABC ,并沿轨道恰好通过最高点C ,圆轨道ABC 的形状为半径R =2.5 m 的圆截去了左上角127°的圆弧,BC 为其竖直直径,(sin 53°=0.8,cos 53°=0.6,重力加速度g 取10 m/s 2)求: (1)小球经过C 点的速度大小;(2)小球运动到轨道最低点B 时小球对轨道的压力大小; (3)v0的数值.图4-3-16图4-3-17。
专题四:第3讲 圆周运动及其应用

6.绳系着装有水的水桶,在竖直平面内做圆周运动,水的 质量 m=0.5 kg,绳长 l=60 cm,求:
(1)在最高点水不流出的最小速率;
(2)水在最高点速率 v=3 m/s 时,水对桶底的压力.
解:(1)在最高点水不流出的条件是重力不大于水做圆周运 v2 m 动所需要的向心力,即 mg≤m R 则所求最小速率 vm= Rg= 0.6×9.8 m/s=2.42 m/s.
提供圆周运动所需的向心力.
(3)离心运动的应用:离心干燥器、离心沉淀器等. (4)离心运动的防止:车辆转弯时要限速;转动的砂轮和飞
轮要限速等.
考点3 竖直平面内的圆周运动 1.竖直平面内的圆周运动的特点 变速 竖直平面内的圆周运动一般是__________圆周运动,其合 外力一般不指向圆心,它产生两个方向的效果:
运动.
(3)条件:合外力大小不变,方向始终与速度方向垂直且指
向圆心.
4.各物理量的比较
物理量 线速度v 角速度ω 向心加速度a v2 a= r 向心力F
s v= t
公式
θ ω= t 2π ω= T ω=2πf
表示转动的 快慢 rad/s v=ωr
v2 F=m r F=mω2r 4π2 F=m T2 r F=mωv
2.向心加速度 (1)物理意义:描述某点线速度方向改变的快慢.
v2 (2)大小:a= =ω2r. r
圆心 (3)方向:总是指向____________,与线速度方向垂直.
3.匀速圆周运动 (1)定义:做圆周运动的物体,若在相等的时间内通过的圆 弧长相等,就是匀速圆周运动. (2)特点:加速度大小不变,方向始终指向圆心,是变加速
(2)杆球模型:有物体支撑的小球在竖直平面内做圆周运动 的情况,如图4-3-2 所示.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲 圆周运动及其应用一、选择题(本题共10小题,共70分)1.建造在公路上的桥梁大多是凸形桥,较少是水平桥,更没有凹形桥,其主要原因是( )A .为的是节省建筑材料,以减少建桥成本B .汽车以同样速度通过凹形桥时对桥面的压力要比水平或凸形桥的压力大,故凹形桥 易损坏C .可能是建造凹形桥技术上特别困难D .无法确定答案:B2.(2011·东北地区名校联考)如图4-2-21所示,质量为m 的小球在竖直平面内的光滑圆环轨道上做圆周运动.圆环半径为R ,小球经过圆环最高点时刚好不脱离圆环,则其通过最高点时 ( )A .小球对圆环的压力大小等于mgB .小球受到的向心力等于0 图4-2-21C .小球的线速度大小等于gRD .小球的向心加速度大小等于g解析:小球在最高点时刚好不脱离圆环,则圆环刚好对小球没有作用力,小球只受重力, 重力竖直向下提供向心力,根据牛顿第二定律得小球的向心加速度大小为a =mg m=g ,再 根据圆周运动规律得a =v 2R=g ,解得v =gR .答案:CD3.如图4-2-22是自行车传动结构的示意图,其中Ⅰ是半径为r 1的大齿轮,Ⅱ是半径为r 2的小齿轮,Ⅲ是半径为r 3的后轮,假设脚踏板的转速为n ,则自行车前进的速度为 ( ) 图4-2-22 A.πnr 1r 3r 2 B.πnr 2r 3r 1 C.2πnr 1r 3r 2 D.2πnr 2r 3r 1解析:前进速度即为Ⅲ轮的线速度,由同一个轮上的角速度相等,同一皮带传动的两轮边缘的线速度相等可得:ω1r 1=ω2r 2,ω3=ω2,再有ω1=2πn ,v =ω3r 3,所以v =2πnr 1r 3r 2. 答案:C4.在光滑的水平面上,用长为l 的细线拴一质量为m 的小球,以角速度ω做匀速圆周运动, 下列说法中正确的是 ( )A .l 、ω不变,m 越大线越易被拉断B .m 、ω不变,l 越小线越易被拉断C .m 、l 不变,ω越大线越易被拉断D .m 不变,l 减半且角速度加倍时,线的拉力不变解析:由向心力表达式F 线=F 向=mlω2可知,F 线上拉力越大,线越易断,故选项A 、C 正确,B 错误;若m 不变,l 减半角速度ω加倍时,线的拉力加倍,故D 错误. 答案:AC5.质量为m 的石块从半径为R 的半球形的碗口下滑到碗的最低点的过程中,如果摩擦力的作用使得石块的速度大小不变,如图4-2-23所示,那么 ( ) 图4-2-23A .因为速率不变,所以石块的加速度为零B .石块下滑过程中受的合外力越来越大C .石块下滑过程中受的摩擦力大小不变D .石块下滑过程中的加速度大小不变,方向始终指向球心解析:由于石块做匀速圆周运动,只存在向心加速度,大小不变,方向始终指向球心, D 对,A 错.由F 合=F 向=ma 向知合外力大小不变,B 错,又因石块在运动方向(切线方 向)上合力为零,才能保证速率不变,在该方向重力的分力不断减小,所以摩擦力不断减 小,C 错.答案:D6.全国铁路大面积提速后,京哈、京沪、京广、胶济等提速干线的部分区段时速可达300 公里,我们从济南到青岛乘“和谐号”列车就可以体验时速300公里的追风感觉.火车 转弯可以看成是在水平面内做匀速圆周运动,火车速度提高会使外轨受损.为解决火车 高速转弯时外轨受损这一难题,以下措施可行的是 ( )A .适当减小内外轨的高度差B .适当增加内外轨的高度差C .适当减小弯道半径D .适当增大弯道半径解析:设火车轨道平面的倾角为α时,火车转弯时内、外轨均不受损,根据牛顿第二定律有mg tan α=m v 2r,解得v =gr tan α,所以为解决火车高速转弯时外轨受损这一难题, 可行的措施是适当增加内外轨的高度差(即适当增大角α)和适当增大弯道半径r .答案:BD7.如图4-2-24所示,螺旋形光滑轨道竖直放置,P 、Q 为对应的轨道最高点,一个小球以一定速度沿轨道切线方向进入轨道,且能过轨道最高点P ,则下列说法中正确的是 ( )A .轨道对小球做正功,小球的线速度v P >v QB .轨道对小球不做功,小球的角速度ωP <ωQ 图4-2-24C .小球的向心加速度a P >a QD .轨道对小球的压力F P >F Q解析:本题考查圆周运动和机械能守恒,中档题.轨道光滑,小球在运动的过程中只受重 力和支持力,支持力时刻与运动方向垂直所以不做功,A 错;那么在整个过程中只有重力 做功满足机械能守恒,根据机械能守恒有v P <v Q ,在P 、Q 两点对应的轨道半径r P >r Q ,根据ω=v r ,a =v 2r,得小球在P 点的角速度小于在Q 点的角速度,B 正确;在P 点的向心 加速度小于在Q 点的向心加速度,C 错;小球在P 和Q 两点的向心力由重力和支持力提 供,即mg +F N =ma 向,可得P 点对小球的支持力小于Q 点对小球的支持力,D 错. 答案:B8.如图4-2-25所示,某游乐场有一水上转台,可在水平面内匀速转动,沿半径方向面对面手拉手坐着甲、乙两个小孩,假设两小孩的质量相等,他们与盘间的动摩擦因数相同,当圆盘转速加快到两小孩刚好还未发生滑动时,某一时刻两小孩突然松手,则两小孩的运动情况是 ( )A .两小孩均沿切线方向滑出后落入水中 图4-2-25B .两小孩均沿半径方向滑出后落入水中C .两小孩仍随圆盘一起做匀速圆周运动,不会发生滑动而落入水中D .甲仍随圆盘一起做匀速圆周运动,乙发生滑动最终落入水中解析:在松手前,甲、乙两小孩做圆周运动的向心力均由静摩擦力及拉力的合力提供的, 且静摩擦力均达到了最大值.因为这两个小孩在同一个圆盘上转动,故角速度ω相同, 设此时手中的拉力为F T ,则对甲:Ff m -F T =mω2R 甲.对乙:F T +Ff m =mω2R 乙,当松手 时,F T =0,乙所受的最大静摩擦力小于所需要的向心力,故乙做离心运动,然后落入水 中.甲所受的静摩擦力变小,直至与它所需要的向心力相等,故甲仍随圆盘一起做匀速 圆周运动,选项D 正确.答案:D9.汽车甲和汽车乙质量相等,以相等速率沿同一水平弯道做匀速圆周运动,甲车在乙车的 外侧.两车沿半径方向受到的摩擦力分别为Ff 甲和Ff 乙.以下说法正确的是 ( )A .Ff 甲小于Ff 乙B .Ff 甲等于Ff 乙C .Ff 甲大于Ff 乙D .Ff 甲和Ff 乙大小均与汽车速率无关解析:本题重点考查的是匀速圆周运动中向心力的知识.根据题中的条件可知,两车在 水平面做匀速圆周运动,则地面对车的摩擦力来提供其做圆周运动的向心力,则F 向=F f ,又有向心力的表达式F 向=m v 2r,因为两车的质量相同,两车运行的速率相同,因此 轨道半径大的车的向心力小,即摩擦力小,A 正确.答案:A10.如图4-2-26所示,在倾角为α=30°的光滑斜面上,有一根长为L =0.8 m 的细绳,一端固定在O 点,另一端系一质量为m =0.2 kg的小球,沿斜面做圆周运动,若要小球能通过最高点A ,则小球在最 图4-2-26 低点B 的最小速度是 ( )A .2 m/sB .210 m/sC .2 5 m/sD .2 2 m/s答案:C二、非选择题(第11题12分,第12题18分)11.如图4-2-27所示,半径为r =20 cm 的两圆柱体A 和B ,靠电动机带动 按相同方向均以角速度ω=8 rad/s 转动,两圆柱体的转动轴互相平行且在同一平面内,转动方向已在图中标出,质量均匀的木棒水平放置其上,重 图4-2-27 心在刚开始运动时恰在B 的正上方,棒和圆柱间动摩擦因数μ=0.16,两圆柱体中心间 的距离x =1.6 m ,棒长l >2 m ,重力加速度取10 m/s 2,求从棒开始运动到重心恰在A 正 上方需多长时间?解析:棒开始与A 、B 两轮有相对滑动,棒受向左摩擦力作用,做匀加速运动,末速度v =ωr =8×0.2 m/s =1.6 m/s ,加速度a =μg =1.6 m/s 2,时间t 1=v a=1 s ,此时间内棒运 动位移x 1=12at 21=0.8 m .此后棒与A 、B 无相对运动,棒以v =ωr 做匀速运动,再运动 x 2=x -x 1=0.8 m ,重心到A 正上方时间t 2=x 2v =0.5 s ,故所求时间t =t 1+t 2=1.5 s.答案:1.5 s12.(2010·重庆理综,24)小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在坚直平面内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水平距离d 后落地,如图4-2-28所示.已知握绳的手离地面高度为d ,手与球之间的绳长为34d ,重力加速度为g .忽略手的 图4-2-28 运动半径和空气阻力.(1)求绳断时球的速度大小v 1和球落地时的速度大小v 2.(2)问绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水 平距离最大,绳长应为多少?最大水平距离为多少?解析:(1)设绳断后球飞行时间为t ,由平抛运动规律,竖直方向d -34d =12gt 2,水平方 向d =v 1t联立解得v 1=2gd由机械能守恒定律,有12m v 22=12m v 21+mg ⎝⎛⎭⎫d -34d 解得v 2= 52gd (2)设绳能承受的最大拉力大小为T ,这也是球受到绳的最大拉力大小.球做圆周运动的半径为R =34d 由圆周运动向心力公式,在其圆周运动的最低点,有F T -mg =m v 21R联立解得F T =113mg (3)设绳长为l ,绳断时球的速度大小为v 3,绳承受的最大拉力不变,有F T -mg =m v 23l得v 3= 83gl 绳断后球做平抛运动,竖直位移为d -l ,水平位移为x ,时间为t 1,有d -l =12gt 21x =v 3t 1,解得x =4 l (d -l )3当l =d 2时,x 有极大值 x m =233d答案:(1)v 1=2gd v 2= 52gd (2)113mg (3)l =d 2 x m =233d。