最优风险资产组合公式

合集下载

数理金融学作业1最优投资组合的计算(1):不存在无风险资产情形

数理金融学作业1最优投资组合的计算(1):不存在无风险资产情形

数理⾦融学作业1最优投资组合的计算(1):不存在⽆风险资产情形最优投资组合的计算(1):不存在⽆风险资产情形1.(1)什么是最⼩⽅差资产组合?(2)写出标准的最⼩⽅差资产组合的数学模型。

(即不存在⽆风险资产时期望收益率为p r 的模型)(3)求解该模型,即求权重表达式及最⼩⽅差表达式(4)已知市场上有两种证券,它们的收益率向量为12(,)T X X X =,假设X 服从联合正态分布,其期望收益率向量为()(1,2,0.5)T E X m ==,X 的协⽅差矩阵为230350001轾犏犏=犏犏臌,设某投资者的投资选择组合为12(,)T w w w =求由这两种证券组成的均值-⽅差最优资产组合(允许卖空)12(,)T w w w =与其对应的最⼩⽅差,并画出有效前沿图。

2.解:(1)最⼩⽅差资产组合是指对确定的期望收益率⽔平有最⼩的⽅差之资产组合。

(2)对⼀定期望收益率p r ,选择资产组合使其总风险最⼩的数学模型为:211min 22..()11TpT p p T w w s t E X w r ws m ==壮??(3)应⽤标准的拉格朗⽇乘数法求解:令其中1l 和2l 为待定参数,最优解应满⾜的⼀阶条件为:121210;0;110;TT p T Lw w Lr w Lw l m l m l l ?=-=-???=-???得最优解:*112(1)w l m l -=? ?。

令111,11,TTT a b m m m m ---===邋1211,T c ac b -=D =-?则12,.p p r c ba rb l l --==DD最⼩⽅差资产组合⽅差为:2**21()Tp p c b ww r c cs ==-+D ? 当p b r c =时,资产组合达到最优组合,最优组合*1 11w c-= ?,最优组合⽅差为:*21p cs =。

(4)由题意知,230350001轾犏犏=犏犏臌,所以,1530350001-轾-犏犏=-犏犏臌?,()(1,2,0.5)T E X m == 1151 1.25,10.5,42T T a b m m m --\======邋129112,4T c ac b -==D =-=?。

ch07风险资产与无风险资产之间的资本配置

ch07风险资产与无风险资产之间的资本配置

计值。其中对角线是
n
个方差的估计
2 i

n2
n
n(n
1)
个非对角线
上的元素为任意两种证券收益的协方差的估计值。一旦估计工作完
成,任意一个每种证券权重为 wi 的风险投资组合的期望收益和方差都 可以通过协方差举证或以下公式计算得到:
n
nn
E(rp )
E
(ri
),
2 i
wiwjCov(ri , ri )
Var(w
D
rD
+w
E
rE
)
2 p
w
D
2
D
+w
E
2
E
2w Dw ECov(rD,rE )
2 p
w
D
2
D
+w
E
2
E
2wDw E D E DE
该方差公式表明,如果协方差为负,组合方差将减小。尽管协方差项是
正的,投资组合的标准差仍然低于个别证券标准差的加权平均值,除非
两种证券完全正相关(ρ=1)。当完全正相关(ρDE=1)时:
相关的资产。
当ρ= -1 时,一个完全套头头寸可以通过选择投资组合权重:
wD D wE E 0
其解为:wD
E D
E
, wE
D D E
1 wD
该权重将使投资组合的标准差趋向 0。
表 7-1 两种共同基金描述性统计
7-6
表7-2 通过协方差矩阵计算投资组合方差
相邻协方差矩阵 边界相乘协方差矩阵
wE 求,以使资本配置线斜率 SP
E(rp ) rf
P
最大(最高夏普比)?其中

第三章-资产组合理论和资本资产定价模型

第三章-资产组合理论和资本资产定价模型

❖ 证券市场线(SML): Sharpe, Mossin,Lintner,
在以β系数为横轴、期望收益率为纵轴的坐标中 CAPM方程表示的线性关系线即为SML
❖ 命题:若市场投资组合是有效的,则任一资产i的期 望收益满足
ri rf im 2 m ( rm-rf) =rf ( i rm-rf)
❖ 新华公司股票的β系数为1.2,无风险收益率为5%,市场上所有股票的平 均收益率为9%,则该公司股票的必要收益率应为( )。 (A) 9% (B) 9.8% (C) 10.5% (D) 11.2%
❖ (2)投资者要求收益最大化并且厌恶风险, 即投资者是理性的。
❖ (3)投资者的投资为单一投资期,多期投资 是单期投资的不断重复。
二、组合的可行集和有效集
❖ 可行集:资产组合的机会集合,即资产可构造出的
所有组合的期望收益和方差。
❖ 有效组合:给定风险水平下的具有最高收益的组合 或者给定收益水平下具有最小风险的组合。每一个 组合代表一个点。
其它所有的可能情况都在这两个边界之
中。
❖ 如某投资组合由收益呈完全负相关的两只股票构成,则( ) 。 (A) 该组合不能抵销任何非系统风险 (B) 该组合的风险收益为零 (C) 该组合的非系统性风险能完全抵销 (D) 该组合的投资收益为50%
❖ 正确答案:c
❖ 解析:把投资收益呈负相关的证券放在一起组合。一种股票的 收益上升而另一种股票的收益下降的两种股票,称为负相关股 票。投资于两只呈完全负相关的股票,该组合投资的非系统性 风险能完全抵销。
三、资产组合选择的两个阶段
❖ 资产选择决策阶段:在众多的风险证券中选 择适当的风险资产构成资产组合。
❖ 资产配置决策阶段:考虑资金在无风险资产 和风险资产组合之间的分配。

实验4:多种风险资产与无风险资产的最优投资组合决策

实验4:多种风险资产与无风险资产的最优投资组合决策

实验四:无风险资产与多种风险型资产最优投资组合的模型分析 一、实验目的通过上机实验,使学生充分理解Excel 软件系统管理和基本原理,掌握多资产投资组合优化的Excel 应用。

二、预备知识(一)相关的计算机知识: Windows 操作系统的常用操作;数据库的基础知识;Excel 软件的基本操作。

(二)实验理论预备知识现代资产组合理论发端于Markowitz(1952)提出的关于投资组合的理论。

该理论假设投资者只关心金融资产(组合)收益的均值(期望收益)和方差,在一定方差下追求尽可能高的期望收益,或者在一定的期望水平上尽可能降低投资收益的方差。

投资者的效用是关于投资组合的期望回报率和方差的函数,理性的投资者通过选择有效地投资组合以实现期望效用最大。

该理论第一次将统计学中期望与方差的概念引入投资组合的研究,提出用资产收益率的期望来衡量预期收益,用资产预期收益的标准差来度量风险的思想。

1、理论假设(Ⅰ)市场上存在n ≥2种风险资产,资产的收益率服从多元正态分布,允许卖空行为的存在。

{}12(,,,)T n ωωωωω=,代表投资到这n 种资产上的财富(投资资金)相对份额,它是n 维列向量,有11=∑=ni i ω,允许0<i ω,即卖空不受限制。

(Ⅱ) 用e 表示所有由n 种风险资产的期望收益率组成的列向量。

12(,,,)T n e R R R R == (1)p r 表示资产组合的收益率,)(p r E 和)(p r σ分别为资产组合p 的期望收益率和收益率标准差。

∑=⋅=⋅=ni ii Tp e r E 1)(μωω (2)(Ⅲ)假设n 种资产的收益是非共线性的(其经济意义为:没有任何一种资产的期望收益率可以通过其他资产的线性组合来得到,它们的期望收益是线性独立的。

)。

这样它们的方差-协方差矩阵可以表示为:⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧=nn n n n n Q σσσσσσσσσ212222111211 (3)由于总是假定非负的总体方差,它还必须是一个正定矩阵,即对于任何非0的n 维列向量a ,都有0T a Qa >。

第4章 最佳投资组合的选择

第4章  最佳投资组合的选择
i 1
VAR( R) 1% 6% 32% 6% 6% 36% 13% 6% 32%
2 2 2
0.3136%
而其标准差为:
(R) VAR(R) 0.3136% 5.6%
8
也可以使用历史数据来估计方差(即样本 方差) 设单一证券的日、月或年实际收益率为 (t=1,2,· · · ,n),则计算方差的公式为:
(Capital Allocation Line)
单一风险资产与单一无风险资产的投资组合 资本配置线的斜率等于资产组合每增加以单位标准差所 增加的期望收益,也即每单位额外风险的额外收益。因
此,我们有时候也将这一斜率称为报酬与波动性比率
二、两个风险资产构成的资产组合
rp rP wB rB wS rS

通过在无风险资产和风险资产之间合理分 配投资基金,有可能建立一个完整的资产 组合。

假设分配给风险资产P的比例为w 分配给无风险资产 F的比例是(1-w)
6-25
单一风险资产与单一无风险资产的投资组合

期望收益
投资比例 方差 标准差 0
无风险资 产 风险资产
1-w
rf
0
w
E(r)

2 r
r
2 p 2 B 2 B 2 S 2 S
7-32
相关系数: 可能的值
1,2值的范围
+ 1.0 > > -1.0 如果= 1.0, 资产间完全正相关 如果= - 1.0, 资产间完全负相关
7-33
两个风险资产的组合
假设市场中的资产是两个风险资产,例如一个股票和
一个公司债券,且投资到股票上的财富比例为w,则 投资组合的期望收益和标准差为:

博迪《投资学》(第9版)课后习题-最优风险资产组合(圣才出品)

博迪《投资学》(第9版)课后习题-最优风险资产组合(圣才出品)

第7章最优风险资产组合一、习题1.以下哪些因素反映了单纯市场风险?a.短期利率上升b.公司仓库失火c.保险成本增加d.首席执行官死亡e.劳动力成本上升答:ae。

2.当增加房地产到一个股票、债券和货币的资产组合中,房地产收益的哪些因素影响组合风险?a.标准差b.期望收益c.和其他资产的相关性答:ac。

房地产被添加到组合中后,在投资组合中有四个资产类别:股票、债券、现金和房地产。

现在投资组合的方差包括房地产收益的方差项和房地产收益与其他三个资产类别之间的协方差项。

因此,房地产收益的方差(或标准差)和房地产收益与其他资产类别收益之间的相关性影响着投资组合的风险。

(注意房地产收益和现金收益之间的相关性很有可能为零。

)3.以下关于最小方差组合的陈述哪些是正确的? a .它的方差小于其他证券或组合 b .它的期望收益比无风险利率低 c .它可能是最优风险组合 d .它包含所有证券 答:a 。

4.用以下数据回答习题4~10:一个养老金经理考虑3个共同基金。

第一个是股票基金,第二个是长期政府和公司债基金,第三个是短期国债货币基金,收益率为8%。

风险组合的概率分布如表7-1所示。

表7-1基金的收益率之间的相关系数为0.1。

两种风险基金的最小方差投资组合的投资比例是多少?这种投资组合收益率的期望值与标准差各是多少?答:机会集的参数为:E (r S )=20%,E (r B )=12%,σS =30%,σB =15%,ρ=0.10。

根据标准差和相关系数,可以推出协方差矩阵(注意()ov ,S B S B C r r ρσσ=⨯⨯):债券 股票 债券 225 45 股票45900最小方差组合可由下列公式推出:w Min(S)=()()()222,225459002252452,B S BS B S BCov r rCov r rσσσ−−=+−⨯+−=0.1739w Min(B)=1-0.1739=0.8261最小方差组合的均值和标准差为:E(r Min)=(0.1739×0.20)+(0.8261×0.12)=0.1339=13.39%σMin=()122222w w2w w ov,S S B B S B S BC r rσσ/⎡⎤++⎣⎦=[(0.17392×900)+(0.82612×225)+(2×0.1739×0.8261×45)]1/2=13.92%5.制表并画出这两种风险基金的投资可行集,股票基金的投资比率从0~100%按照20%的幅度增长。

ch07风险资产与无风险资产之间的组合

ch07风险资产与无风险资产之间的组合
7-5
举例 Example
rf = 7% E(rp) = 15% y = % in p σrf = 0% σp = 22% (1-y) = % in rf
7-6
投资组合预期收益
Expected Returns for Combinations
E(rc) = yE(rp) + (1 - y)rf rc = 全部或组合收益 全部或组合收益complete or combined portfolio For example, y = .75 E(rc) = .75(.15) + .25(.07) = .13 or 13%
7-15
杠杆头寸 leveraged position
Suppose the investment budget is $300,000 and our investor borrows an additional $120,000, investing the total available funds in the risky asset. This is a leveraged position in the risky asset; it is financed in part by borrowing. In that case Y = 420,000 / 300,000= 1.4 and 1 – y =1 -1.4 = 0.4 =1 reflecting a short position in the risk-free asset, which is a borrowing riskposition. Rather than lending at a 7% interest rate, the investor borrows at 7%. The distribution of the portfolio rate of return still exhibits the same reward-toreward-to-variability ratio: E (r C ) = 7% + (1.4 X 8%) = 18.2% σC = 1.4 X 22% = 30.8% S= E(rC ) - rf / σC = 18.2 – 7/30.8 = 0.36 E(

optimal portfolio weight公式

optimal portfolio weight公式

optimal portfolio weight公式
"Optimal Portfolio Weight" 是指在给定风险和预期收益的情况下,一个
投资组合中各种资产的最优配置比例。

这个比例是通过优化算法计算得出的,以最大化投资组合的预期收益,同时最小化投资组合的风险。

具体的公式取决于所使用的优化模型和方法。

一种常用的方法是使用马科维茨(Markowitz)均值-方差优化模型。

这个模型的目标是找到一个最优的
资产配置,使得给定风险水平下的预期收益最大,或者在给定期望收益水平下的风险最小。

公式如下:
\(w = argmax_{w \in \Delta} E(w) - \lambda var(w)\)
其中,\(w\) 是资产配置权重向量,\(\Delta\) 是有效前沿,\(E(w)\) 是资产配置的预期收益,\(var(w)\) 是资产配置的风险,\(\lambda\) 是风险厌恶
系数。

这个公式是一个优化问题,需要通过迭代算法(如梯度上升法、牛顿法等)来求解。

求解得到的 \(w\) 就是最优的资产配置权重。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最优风险资产组合公式
1、rr=β* v
rr为风险收益率;
β为风险价值系数;
v为标准离差率。

2、rr=β*(km-rf)
rr为风险收益率;
β为风险价值系数;
km为市场组合平均收益率;
rf为无风险收益率;
(km-rf)为市场组合平均风险报酬率。

风险收益率,就是由投资者承担风险而额外建议的风险补偿率为。

风险收益率包含偿付风险收益率,流动性风险收益率和期限风险收益率。

影响因素:
风险大小和风险价格。

在风险市场上,风险价格的多寡依赖于投资者对风险的偏好程度。

风险收益率包括违约风险收益率,流动性风险收益率和期限风险收益率。

风险收益就是指乘以当时基本的市场收益后的投资收益。

风险收益就是无风险证券与其他证券间存有的利差,它充分反映了投资者出售非财政证券所遭遇的额外风险。

风险收益额是指投资者因冒风险进行投资而获得的超过资金时间价值的那部分额外收益。

风险就是指人们事先能确实实行某种犯罪行为所有可能将的后果,以及每种后果发生可能性的状况。

风险报酬是指投资者因承担风险而获得的超过时间价值的那部分额外报酬。

相关文档
最新文档