(完整版)工程力学(静力学与材料力学)第四版习题答案
工程力学(静力学与材料力学)习题及答案 - 内力分析

习题6-1图习题6-2图习题6-3图 工程力学(静力学与材料力学)习题第6章 杆件的内力分析6-1 平衡微分方程中的正负号由哪些因素所确定?简支梁受力及Ox 坐标取向如图所示。
试分析下列平衡微分方程中哪一个是正确的。
(A ))(d d Q x q x F =;Q d d F x M=; (B ))(d d Q x q x F -=,Q d d F x M-=; (C ))(d d Q x q x F -=,Q d d F x M=; (D ))(d d Q x q x F =,Q d d F xM-=。
正确答案是 。
6-2 对于图示承受均布载荷q 的简支梁,其弯矩图凸凹性与哪些因素相关?试判断下列四种答案中哪几种是正确的。
正确答案是 。
6-3 已知梁的剪力图以及a 、e 截面上的弯矩M a 和M e ,如图所示。
为确定b 、d 二截面上的弯矩M b 、M d ,现有下列四种答案,试分析哪一种是正确的。
(A ))(Q F b a a b A M M -+=,)(Q F d e e d A M M -+=; (B ))(Q F b a a b A M M --=,)(Q F d e e d A M M --=; (C ))(Q F b a a b A M M -+=,)(Q F d e e d A M M --=; (D ))(Q F b a a b A M M --=,)(Q F d e e d A M M -+=。
上述各式中)(Q F b a A -为截面a 、b 之间剪力图的面积,以此类推。
正确答案是 。
6-4 应用平衡微分方程,试画出图示梁的剪力图和弯矩图,并确定 max Q ||F 。
习题6-4图6-5 应用平衡微分方程,试画出图示梁的剪力图和弯矩图,并确定 max Q ||F 。
习题6-5图6-6 应用平衡微分方程,试画出图示梁的剪力图和弯矩图,并确定 max Q ||F 。
习题6-6图6-7 应用平衡微分方程,试画出图示梁的剪力图和弯矩图,并确定 max Q ||F 。
工程力学(静力学与材料力学) 单祖辉 谢传峰合编 课后习题答案

工程力学(静力学与材料力学)单祖辉谢传峰合编课后习题答案1-1试画出以下各题中圆柱或圆盘的受力图。
与其它物体接触处的摩擦力均略去。
(a) (b)A(d)(e) 解: AA(a)(b)A(d) (e)1-2 试画出以下各题中AB杆的受力图。
a)b)c)A(c)(c)《工程力学》习题选解工程力学静力学与材料力学(单辉祖谢传锋著) 高等教育出版社课后答案(d)解:B FB(a)(b) (c)BB (e)1-3 试画出以下各题中AB梁的受力图。
F(a)(b) (c)(d)(e) 1《工程力学》习题选解解:D(d)(e)FBx(b)(c)F W1-4 试画出以下各题中指定物体的受力图。
(a) 拱ABCD;(b) 半拱AB部分;(c) 踏板AB;(d) 杠杆AB;(e) 方板ABCD;(f) 节点B。
解:(a) D (d)(b)(c)(e)(f) W B (b)D(c)FD B2(a)《工程力学》习题选解1-5 试画出以下各题中指定物体的受力图。
(a) 结点A,结点B;(b) 圆柱A和B及整体;(c) 半拱AB,半拱BC及整体;(d) 杠杆AB,切刀CEF及整体;(e) 秤杆AB,秤盘架BCD及整体。
(b)FC FB (d) (e)FBC (f) W(c)(d) e) 3《工程力学》习题选解解:(a)ATFFBA(b)(c)A A C C(d)’C(e)D D BC’4《工程力学》习题选解2-2 杆AC、BC在C处铰接,另一端均与墙面铰接,如图所示,F1和F2作用在销钉C上,F1=445 N,F2=535 N,不计杆重,试求两杆所受的力。
F1 解:(1) 取节点C为研究对象,画受力图,注意AC、BC都为二力杆,(2) 列平衡方程:AC与BC两杆均受拉。
2-3 水平力F作用在刚架的B点,如图所示。
如不计刚架重量,试求支座A和D 处的约束力。
解:(1) 取整体ABCD为研究对象,受力分析如图,画封闭的力三角形:(2)5 F FD F A D《工程力学》习题选解2-4 在简支梁AB的中点C作用一个倾斜45o的力F,力的大小等于20KN,如图所示。
材料力学第四版课后习题答案

材料力学第四版课后习题答案1. 引言。
材料力学是材料科学与工程中的重要基础课程,通过学习材料力学,可以帮助我们更好地理解材料的性能和行为。
本文档将针对材料力学第四版的课后习题进行答案解析,帮助学习者更好地掌握课程内容。
2. 第一章。
2.1 课后习题1。
答,根据受力分析,可以得到杆件的受力情况。
然后利用杆件的受力平衡条件,可以得到杆件的应力状态。
最后,根据应力状态计算应变和变形。
2.2 课后习题2。
答,利用受力分析,可以得到杆件的受力情况。
然后利用杆件的受力平衡条件,可以得到杆件的应力状态。
最后,根据应力状态计算应变和变形。
3. 第二章。
3.1 课后习题1。
答,利用受力分析,可以得到梁的受力情况。
然后利用梁的受力平衡条件,可以得到梁的应力状态。
最后,根据应力状态计算应变和变形。
3.2 课后习题2。
答,利用受力分析,可以得到梁的受力情况。
然后利用梁的受力平衡条件,可以得到梁的应力状态。
最后,根据应力状态计算应变和变形。
4. 第三章。
4.1 课后习题1。
答,利用受力分析,可以得到薄壁压力容器的受力情况。
然后利用薄壁压力容器的受力平衡条件,可以得到薄壁压力容器的应力状态。
最后,根据应力状态计算应变和变形。
4.2 课后习题2。
答,利用受力分析,可以得到薄壁压力容器的受力情况。
然后利用薄壁压力容器的受力平衡条件,可以得到薄壁压力容器的应力状态。
最后,根据应力状态计算应变和变形。
5. 结论。
通过对材料力学第四版课后习题的答案解析,我们可以更好地掌握材料力学的基本原理和方法。
希望本文档能够对学习者有所帮助,促进大家对材料力学的深入理解和应用。
工程力学(静力学与材料力学)习题及答案 - 静力学设计

习题13-4图 工程力学(静力学与材料力学)习题第13章 杆类构件的静力学设计13-1 关于低碳钢试样拉伸至屈服时,有如下结论:(A )应力和塑性变形很快增加,因而认为材料失效;(B )应力和塑性变形虽然很快增加,但不意味着材料失效;(C )应力不增加塑性变形很快增加,因而认为材料失效;(D )应力不增加塑性变形很快增加,但不意味着材料失效。
正确答案是 。
13-2 韧性材料应变硬化之后,材料的力学性能发生下列变化:(A )屈服应力提高,弹性模量降低;(B )屈服应力提高,韧性降低;(C )屈服应力不变,弹性模量不变;(D )屈服应力不变,韧性不变。
正确答案是 。
13-3 关于条件屈服应力有如下论述:(A )弹性应变为0.2%时的应力值;(B )总应变为0.2%时的应力值;(C )塑性应变为0.2%时的应力值;(D )弹性应变为0.2时的应力值。
正确答案是 。
13-4 螺旋压紧装置如图所示。
现已知工作所受的压紧力为F = 4kN ,旋紧螺栓螺纹的内径d 1 = 13.8mm ,固定螺栓内径d 2 = 17.3mm 。
两根螺栓材料相同,其许用应力][σ= 53.0MPa 。
试校核各螺栓之强度是否安全。
13-5 现场施工中起重机吊环的每一侧臂AB 和BC ,均由两根矩形截面杆组成,连接处A 、B 、C 均为铰链,如图所示。
已知起重载荷F P = 1200kN ,每根矩形杆截面尺寸比例为b /h = 0.3,材料的许用应力][σ= 78.5MPa 。
试设计矩形杆的截面尺寸b 和h 。
13-6 图示结构中BC 和AC 都是圆截面直杆,直径均为d = 20mm ,材料都是Q235钢,其许用应力][σ= 157 MPa 。
试求该结构的许可载荷。
(有人说:根据垂直方面的平衡条件,有P N N 45cos 30cos F F F AC BC =︒+︒,然后将])[4/(2N σπd F BC =,])[4/(2N σπd F AC =代入后即可得许可载荷,这种解法对吗?为什么?)习题13-5图习题13-7图 习题13-8图 习题13-9图13-7 图示汽缸内径D = 560mm ,内压p = 2.5MPa,活塞杆直径d = 100mm ,所以用材料的屈服应力s σ= 300MPa 。
工程力学(静力学与材料力学)课后习题答案(单辉祖) 2

D
D
2
A C F
F
A D
F
F B
B F ( d C ( e
W
B F F ( f
W
1-5 试画出以下各题中指定物体的受力力力图。 (a) 结点 A,结点 B;(b) 圆柱 A 和 B 及整体;(c) 半拱 AB,半拱 BC 及整体;(d) 杠杆 AB, 切刀刀 CEF 及整体;(e) 秤杆 AB,秤盘架 BCD 及整体。
1m 1m
E D P
A F
B
C O
5m
W
解:(1) 研究跑⻋车与操作架、平臂 OC 以及料料斗斗 C,受力力力分析,画出受力力力图(平面面平行行行力力力系);
16
10
A FA
M1 M2 B
50
FB
解:(1) 取整体为研究对象,受力力力分析,A、B 的约束力力力组成一一个力力力偶,画受力力力图; (2) 列列平衡方方程:
3-5 四连杆机构在图示位置平衡。已知 OA=60cm,BC=40cm,作用用 BC 上的力力力偶的力力力偶矩大大 小小为 M2=1N.m ,试求作用用在 OA 上力力力偶的力力力偶矩大大小小 M1 和 AB 所受的力力力 FAB 所受的力力力。 各杆重量量不不计。 A C M1
6
4
F C
8
B
6
6
D A E
解:(1) 取 DE 为研究对象,DE 为二二力力力杆;FD = FE FD D E
FE
(2) 取 ABC 为研究对象,受力力力分析并画受力力力图;画封闭的力力力三⻆角形: B F FA D 3 3 A F’D 4 FA F’D F
2-7 在四连杆机构 ABCD 的铰链 B 和 C 上分别作用用有力力力 F1 和 F2,机构在图示位置平衡。试 求平衡时力力力 F1 和 F2 的大大小小之间的关系。 C B
工程力学第四版张秉荣主编课后习题解析

FRy =F1y+F2y +…… +Fny =∑ Fy
2
2
FR = √ FRx + FRy
tan α力多边形,从
图中量得 FR的大小和方向。
.
图 1-2
.
1-3 、求图 1-3 所示各种情况下力 F 对点 O 的力矩。
解题提示—— 计算方法。
.
1-1 、已知: F1=2000N, F2=150N, F 3=200N, F 4=100N,各力的方向如图 1-1 所示。试求各力在 x、 y 轴上的投影。
解题提示 计算方法: Fx = + F cos α
Fy = + F sin α 注意:力的投影为代数量; 式中: Fx、 Fy 的“ +”的选取由力 F 的
指向来确定; α 为力 F 与 x 轴所夹的锐角。
图 1-1
1-2 、铆接薄钢板在孔 A、B、C、 D处受四个力作用,孔间尺寸如图
1-2 所示。
已知: F1=50N, F2=100N, F 3 =150N, F 4=220N,求此汇交力系的合力。
解题提示—— 计算方法。
一、解析法
FRx =F1x+F2x +…… +Fnx=∑ Fx
.
图 1-3
①按力矩的定义计算 MO( F) = + Fd
②按合力矩定理计算 MO ( F) = MO( Fx ) +MO (F y )
1-4 、求图 1-4 所示两种情 况下 G 与 F 对转心 A 之矩。
解题提示 此题按合力矩定理计算各 力矩较方便、简捷。 以图 1-4a 为例: 力 F、 G 至 A 点的距离不易
工程力学(静力学与材料力学)课后习题答案(单辉祖)

1-1试画出以下各题中圆柱或圆盘的受力图。
与其它物体接触处的摩擦力均略去。
解:1-2 试画出以下各题中AB 杆的受力图。
(a) B(b)(c)(d)A(e)A(a)(b) A(c)A(d)A(e)(c)(a)(b)解:1-3 试画出以下各题中AB 梁的受力图。
(d)(e)BB(a)B(b)(c)F B(a)(c)F (b)(d)(e)解:1-4 试画出以下各题中指定物体的受力图。
(a) 拱ABCD ;(b) 半拱AB 部分;(c) 踏板AB ;(d) 杠杆AB ;(e) 方板ABCD ;(f) 节点B 。
解:(a)F (b)W(c)(d)D(e)F Bx(a)(b)(c)(d)D(e)W(f)(a)D(b)B(c)BF D1-5 试画出以下各题中指定物体的受力图。
(a) 结点A ,结点B ;(b) 圆柱A 和B 及整体;(c) 半拱AB ,半拱BC 及整体;(d) 杠杆AB ,切刀CEF 及整体;(e) 秤杆AB ,秤盘架BCD 及整体。
解:(a)(d)FC(e)WB(f)F FBC(c)(d)AT F BAF (b)(e)(b)(c)(d)(e)CAA C’CDDC ’B2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445 N ,F 2=535 N ,不计杆重,试求两杆所受的力。
解:(1) 取节点C 为研究对象,画受力图,注意AC 、BC 都为二力杆,(2) 列平衡方程:12140 sin 600530 cos 6005207 164 o y AC o x BC AC AC BC F F F F F F F F F N F N=⨯+-==⨯--=∴==∑∑ AC 与BC 两杆均受拉。
2-3 水平力F 作用在刚架的B 点,如图所示。
如不计刚架重量,试求支座A 和D 处的约束力。
解:(1) 取整体ABCD 为研究对象,受力分析如图,画封闭的力三角形:(2)F 1F FDF F AF D211 1.122D A D D A F F FF F BC AB AC F F F F =====∴===2-4 在简支梁AB 的中点C 作用一个倾斜45o 的力F ,力的大小等于20KN ,如图所示。
工程力学(静力学与材料力学)习题及答案 - 静不定系统

工程力学(静力学与材料力学)习题第15章静不定系统15-1 图示结构中梁ABC的两端固定,在点B刚好与圆环接触,圆环下方为光滑刚性平面。
在图示载荷作用下,多余约束力的个数有如下四种答案,试判断哪一种是正确的。
(A)5个;(B)6个;(C)7个;(D)8个。
正确答案是。
习题15-1图15-2 图示结构中,结构与题15-18相同,承受载荷情况略有不同。
这时利用对称性或反对称性,结构的未知约束力个数有如下四种答案,试判断哪一种是正确的。
(A)2个;(B)3个;(C)4个;(D)5个。
正确答案是。
习题15-2图15-3 关于求解图a所示的超静定结构,解除多余约束有图b、c、d、e所示四种选择,试判断下列结论中哪一种是正确的。
(A)b、c、d都正确;(B)b、d正确;(C)b、c、e正确;(D)仅e是正确的。
正确答案是。
习题15-3图15-4 由弯曲刚度EI相等的直杆形成的闭合框架承受载荷如图a所示。
为利用对称性与反对称性,采用图b、c、d、e中四种系统,试判断哪一种是正确的。
(A)b正确;(B)c、e正确;(C)b、d正确;(D)e正确。
正确答案是。
习题15-4图F’X习题15-5图习题15-6图15-5 由弯曲刚度EI相等的直杆形成的正方形闭合框架承受载荷如图a所示。
为利用对称性与反对称性,b、c、d、e图所示的系统,哪一种是正确的。
(A)c、d正确;(B)c正确;(C)b正确;(D)b、e正确。
正确答案是。
15-6 两个弯由刚度EI相同、半径为R的半圆环,在A、C两处铰链连接,加力方式如图所示。
关于A、B两处截面上的内力分量的绝对值,有如下四种结论,试分析哪一种是正确的。
(A)FF A=Q,0=AM,FF B=N,FRMB=;(B)FF A=Q,0=AM,2NFF B=,2FRM B=;(C)2QFF A=,0=AM,FF B=N,FRMB=;(B)2QFF A=,0=AM,2NFF B=,2FRM B=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静力学部分第一章基本概念受力图2-1 解:由解析法,23cos 80RX F X P P N θ==+=∑12sin 140RY F Y P P N θ==+=∑故: 22161.2R RX RY F F F N =+=1(,)arccos 2944RY R R F F P F '∠==o v v2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN ==++=∑o o13sin 45sin 450RY F Y P P ==-=∑o o故: 223R RX RY F F F KN =+= 方向沿OB 。
2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。
(a ) 由平衡方程有:0X =∑ sin 300AC AB F F -=o0Y =∑ cos300AC F W -=o0.577AB F W =(拉力) 1.155AC F W =(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=o0Y =∑ sin 700AB F W -=o1.064AB F W =(拉力)0.364AC F W =(压力)(c ) 由平衡方程有:0X =∑ cos 60cos300AC AB F F -=o o0Y =∑ sin 30sin 600AB AC F F W +-=o o0.5AB F W = (拉力)0.866AC F W =(压力)(d ) 由平衡方程有:0X =∑ sin 30sin 300AB AC F F -=o o0Y =∑ cos30cos300AB AC F F W +-=o o0.577AB F W = (拉力)0.577AC F W = (拉力)2-4 解:(a )受力分析如图所示:由0x =∑ 22cos 45042RA F P -=+o15.8RA F KN ∴= 由0Y =∑ 22sin 45042RA RB F F P +-=+o7.1RB F KN ∴=(b)解:受力分析如图所示:由 0x =∑ cos 45cos 45010RA RB F F P --=o o0Y =∑sin 45sin 45010RA RB F F P -=o o联立上二式,得: 22.410RA RB F KNF KN ==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以: 5RA F KN = (压力) 5RB F KN =(与X 轴正向夹150度) 2-6解:受力如图所示:已知,1R F G = ,2AC F G =由0x =∑ cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由0x =∑ cos 45cos 450RA CB P F F --=o o0Y =∑sin 45sin 450CB RA F F '-=o o 联立后,解得: 0.707RA F P = 0.707RB F P =由二力平衡定理 0.707RB CB CB F F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=o o0Y =∑sin 30sin 600AB AC F F W +-=o o联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC P F α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '=Q 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=o o0Y =∑cos 75cos 750AB AD F F P +-=o o联立后可得: 2cos 75AD AB PF F ==o取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=o ocos5cos80NDAD F F '=⋅oo由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N NDADP F F F KN '∴===⋅=o o o o o2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=o0Y =∑sin sin 300RA F P α-=o联立上二式得:2.92RA F KN=1.33DC F KN=(压力) 列C 点平衡x =∑405DC AC F F -⋅=Y=∑305BC ACF F+⋅=联立上二式得: 1.67ACF KN=(拉力)1.0BCF KN=-(压力)2-13解:(1)取DEH部分,对H点列平衡x=∑05RD REF F'=Y=∑05RDF Q-=联立方程后解得:5RDF Q=2REF Q'=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=o0Y =∑sin 450RB RA F F P --=o且RE REF F '=联立上面各式得: 22RA F Q =2RB F Q P=+(3)取BCE 部分。
根据平面汇交力系平衡的几何条件。
)()(2222222284RC RE RB F F F Q Q P Q PQ P =+=++=++2-14解:(1)对A 球列平衡方程x =∑cos sin 0AB NA F F αθ-=(1)0Y =∑cos sin 20NA AB F F P θα--=(2)(2)对B 球列平衡方程x =∑cos cos 0NB ABF F θα'-=(3)0Y =∑sin sin 0NB ABF F P θα'+-=(4) 且有:NB NBF F '=(5) 把(5)代入(3),(4) 由(1),(2)得: cos sin 2AB AB F tg F P αθα=+(6) 又(3),(4)得: sin cos AB AB P F tg F αθα-=(7) 由(7)得: cos sin AB PF tg θαα=+(8)将(8)代入(6)后整理得:22(12)(2)3cos23sin cosP tgtgP tg tgθαθθθθθ-=+-=2-15解:NAF,NDF和P构成作用于AB的汇交力系,由几何关系:22cosAD AF Rθ==2sinO D AD tg Rθθ'∴=⋅=又32cos2RCD AD AC Rθ=-=-Q332cos2cos222sin2sinRCDtgO D Rθθθθθ--∴==='整理上式后有:234cos cos202θθ--=取正根233()44222cos0.92θ++⨯⨯==2312θ'∴≈o第三章 力矩 平面力偶系3-1试分别计算图示各种情况下力P 对点O 之矩。
()()()()00()()sin cos 0sin ()()()()()()()sin cos 0sin O O O O O O a M P P lb M P Pc M P P l P Pld M P P ae M P P l rf M P P P θθθααα=⋅=⨯==⋅+⋅==-⋅=⋅+=⋅⋅=vvvvvv3-2已知P1=P2=P3=P5=60KN ,P4=P6=40KN ,图中长度单位为mm ,求图示平面力偶系合成的结果。
解:132546,;,;,P P P P P P 构成三个力偶1243(0.30.1)(0.40.1)(0.20.4)530M P P P N m =-⨯++⨯+⨯-⨯+=-⋅因为是负号,故转向为顺时针。
3-3图示为卷扬机简图,重物M 放在小台车C 上,小台车上装有A 轮和B 轮,可沿导轨ED 上下运动。
已知重物重量G=2KN ,图中长度单位为mm ,试求导轨对A 轮和B 轮的约束反力。
解:小台车受力如图,为一力偶系,故F G =,NA NB F F =由0M =∑0.80.30NA F G -⨯+⨯=0.75750NA NB F F KN N∴===3-4锻锤工作时,如工件给它的反作用力有偏心,则会使锻锤C 发生偏斜,这将在导轨AB 上产生很大的压力,从而加速导轨的磨损并影响锻件的精度,已知打击力P=1000KN ,偏心距e=20 mm ,锻锤高度h=200mm ,试求锻锤给导轨两侧的压力。
解:锤头受力如图,锤头给两侧导轨的侧压力1N F 和2N F 构成一力偶,与P ,P '构成力偶平衡由M=∑10NP e F h⋅-⋅= 12100N NF F KN∴==3-5炼钢用的电炉上,有一电极提升装置,如图所示,设电极HI和支架共重W,重心在C上。
支架上A,B和E三个导轮可沿固定立柱JK滚动,钢丝绳在D点。
求电极等速直线上升时的钢丝绳的拉力及A,B,E三处的约束反力。
解:电极受力如图,等速直线上升时E处支反力为零即:RE F = 且有:S W =由0M =∑NA F b W a ⋅-⋅=NA NB Wa F F b ==3-6已知m1=3KNM ,m2=1KNM ,转向如图。
Α=1m 试求图示刚架的A 及B 处的约束反力。
解:A ,B 处的约束反力构成一力偶由0M =∑2120RB M M F a -+⋅=1RB RA F F KN∴==3-7四连杆机构在图示位置时平衡,α=30,β=90。
试求平衡时m1/m2的值。
解:1O A,2O B受力如图,由M=∑,分别有:1O A杆:16sin 30AB m F a -+⋅o(1)2O B杆:280BA m F a -⋅= (2)且有:AB BAF F =(3)将(3)代入(2)后由(1)(2)得: 1238m m =3-8图示曲柄滑道机构中,杆AE 上有一导槽,套在杆BD 的销子C 上,销子C 可在光滑导槽内滑动,已知m1=4KNM ,转向如图,AB=2m,在图示位置处于平衡,θ=30,试求m2及铰链A 和B 的反力。