ansys冲击振动仿真步骤

合集下载

用ANSYS软件分析压电陶瓷的振动状态

用ANSYS软件分析压电陶瓷的振动状态

第30卷第1期2008年3月湖北大学学报(自然科学版)Journal of Hubei University (Natural Science )Vol.30 No.1 Mar.,2008 收稿日期:2006206202作者简介:雷辉(19812 ),男,硕士生文章编号:100022375(2008)0120029205用ANSYS 软件分析压电陶瓷的振动状态雷辉,周双娥(湖北大学数学与计算机学院,湖北武汉430062)摘 要:近年来,压电陶瓷的应用日趋广泛.但是由于压电陶瓷片的边界条件和应力状况比较复杂,利用传统实验手段对其研究不仅耗时费力,而且其结果具有很强的局部性,因此利用大型通用仿真软件ANSYS 8.0来进行计算机仿真.通过对压电陶瓷片中的耦合效应进行计算机模拟分析,得出压电陶瓷的振动状态图.实验结果表明ANSYS 8.0在处理压电耦合场这方面有很强的处理能力,大大简化了建模和计算,强大的后处理功能更是让研究者能够很直观地获得数据结果和模拟图像. 关键词:仿真;压电陶瓷;振动状态 中图分类号:TP302 文献标志码:A1 引言计算机仿真技术是以多种学科和理论为基础,以计算机及其相应构件为工具,通过虚拟试验的方法来分析和解决问题的一门综合性技术[1].近年来,压电陶瓷的应用日趋广泛,而在实际应用中,特别是将压电陶瓷技术应用于混凝土结构的监测中,由于压电陶瓷片的边界条件和应力状况比较复杂,利用传统实验手段对其研究不仅耗时费力,而且其结果具有很强的局部性[2].因此利用计算机仿真技术对压电陶瓷进行研究具有较好的理论与实际意义.本文中利用大型通用有限元分析软件ANS YS 8.0,对压电陶瓷片中的耦合效应进行模拟分析,并得出其模态和谐振态,实验表明ANS YS 8.0能很好地解决压电陶瓷片的压电耦合问题.图1 处理器模型2 ANSYS 仿真原理ANS YS 软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件,由世界上最大的有限元分析软件公司之一的美国ANS YS 开发,它能与多数CAD 软件接口,实现数据的共享和交换.20世纪90年代该软件开始在我国的机械制造、航空航天、汽车交通、铁道、石油化工、能源等领域得到应用,为各领域中产品设计、科学研究作出了很大的贡献[3].ANS YS 软件使用统一的集中式数据库来存储所有模型数据和求解结果(见图1)[4].模型数据(包括实体模型和有限元模型、材料等)通过前处理器写入数据库;载荷和求解结果通过求解器写入数据库;后处理结果通过后处理器写入数据库.3 处理过程3.1 定义材料参数 材料参数包括定义单元类型,这里选取了solid226,并在它的option 选项里选择压 湖北大学学报(自然科学版)第30卷30电这个选项.然后定义压电陶瓷的密度、介电常数、刚度系数和压电常数,后两个参数是用矩阵的形式来表示的.为了方便后期的网格划分处理,添加了一个单元类型mesh200,它主要用来进行面划分,下一节将详细介绍.定义材料参数的部分代码及注释如下所示:ET,1,SOL ID226,101 !定义solid226单元类型KEYOP T,1,1,1001!在solid226选项中选择压电选项ET,2,M ESH200!3!定义mesh200单元类型KEYOP T,2,1,7KEYOP T,2,2,0MPTEMP,,,,,,,,MPTEMP,1,0MPDA TA,DENS,1,7600!定义压电陶瓷密度TB,AN EL,1,1,21,0!定义压电陶瓷的刚度系数TB TEMP,0TBDA TA,,1.32e11,7.1e10,7.3e10,,,TBDA TA,,1.32e11,7.3e10,,,,1.15e11TBDA TA,,,,,3.0e10,,TBDA TA,,2.6e10,,2.6e10,,,MPTEMP,,,,,,,,!定义压电陶瓷的介电常数MPTEMP,1,0MPDA TA,PERX,1,,7.124e-9MPDA TA,PER Y,1,,7.124e-9MPDA TA,PERZ,1,,5.841e-9TB,PIEZ,1,,,0!定义压电陶瓷的压电系数TBMODIF,1,1,TBMODIF,1,2,TBMODIF,1,3,-4.1TBMODIF,2,1,TBMODIF,2,2,TBMODIF,2,3,-4.1TBMODIF,3,1,TBMODIF,3,2,TBMODIF,3,3,14.1TBMODIF,4,1,TBMODIF,4,2,TBMODIF,4,3,TBMODIF,5,1,TBMODIF,5,2,10.5TBMODIF,5,3,TBMODIF,6,1,10.5TBMODIF,6,2,TBMODIF,6,3,3.2 建立模型及网格划分 首先新建一个长为0.005m,宽为0.001m的矩形.然后选取单元类型为mesh200,对该矩形进行面划分,其中长和宽分别划分8份和10份,结果如图2所示.然后用操作选项中的Ext rude命令将其扩展成一个已划分好的圆盘体,其中要在Extrude选项中将单元类型选择为solid226,并在要划分的数目中填入10.接着用Extrude命令将其扩展成一个圆盘,其扩展结果如图3所示.第1期雷辉等:用ANSYS 软件分析压电陶瓷的振动状态31 图2 面划分图 图3 体划分图3.3 添加约束条件和负载 添加的约束条件是在上、下表面的圆心处分别添加位移约束,使其只能沿纵向方向移动.具体代码及注释如下:nsel ,s ,loc ,y ,0nsel ,r ,loc ,z ,0nsel ,r ,loc ,x ,0!选取下表面圆心上的点d ,all ,ux ,0!使其不能沿x 方向运动d ,all ,uz ,0!使其不能沿y 方向运动nsel ,s ,loc ,y ,0.001!选取上表面圆心上的点nsel ,r ,loc ,z ,0!同理nsel ,r ,loc ,x ,0d ,all ,ux ,0d ,all ,uz ,0给圆盘添加的电压负载是在圆盘的上下表面的两个电极上加上耦合电压,其电压值分别为5伏和0伏.这样使得圆盘上下电势差为5伏.其代码及注释如下:nsel ,s ,loc ,y ,0!选取下表面所有节点cp ,1,volt ,all !为下表面添加耦合电压3get ,n_bot ,node ,0,num ,min !定义下表面的电极节点nsel ,s ,loc ,y ,0.001!选取上表面所有节点cp ,2,volt ,all !为上表面添加耦合电压3get ,n_top ,node ,0,num ,min !定义上表面的电极节点nsel ,all !选取所有节点d ,n_bot ,volt ,0!下表面加0伏电压d ,n_top ,volt ,5!上表面加5伏电压3.4 静态和模态下的处理 首先选择处理状态为静态,并在此状态下得出其静态电容,代码及注释如下:/SOL !进入处理环节AN T YPE ,0!选择静态处理/STA TUS ,SOL U SOL V E !求解3get ,cs ,node ,n_top ,rf ,chrg !得到上电极电量值fini !处理结束3SET ,cs ,abs (cs )/5!得到静态电容接着进行模态分析,设定它有20个子步,频率范围为02200000Hz ,并且将上表面短路,代码及注释如下:/SOL U !进入处理环节AN T YPE ,2!选择模态处理MODOPT ,L ANB ,20!定义处理方法和子步数EQSL V ,SPAR !选择处理器MXPAND ,20,,,1!要显示的子步数L UMPM ,0PSTRES ,0MODOPT ,L ANB ,20,0,2000000,,OFF !定义频率范围32 湖北大学学报(自然科学版)第30卷d ,n_top ,volt ,0!上表面短路nsel ,all!选择所有节点/STA TUS ,SOL USOL V E !求解3.5 后处理 后处理是指检查并分析求解的结果的相关操作.这是分析中最重要的环节之一,因为任何分析的最终目的都是为了研究作用在模型上的的载荷是如何影响设计的[5].检查分析结果可使用两个后处理器:POST1(通用后处理器)和POST26(时间历程后处理器).POST1允许检查整个模型在某一载荷步和子步(或对某一特定时间点或频率)的结果.POST26可以检查模型的指定节点的某一结果项相对于时间、频率或其它结果项的变化.在求解时,ANS YS 将结果写入结果文件,进行后处理时,结果文件必须存在且可用.结果文件名的后缀取决于分析类型,对于结构分析的结果文件的后缀为RST [6].本次实验只用到了POST1.在后处理中利用一个循环语句可以得出不同频率下的动态电容、动态电感、电量以及阻抗值.其代码和注释如下:/POST13SET ,nmodes ,20!定义nmodes =203dim ,C ,array ,nmodes!定义电容数组3dim ,L ,array ,nmodes!定义电感数组3SET ,PI2,233.14159!定义PI2=233.14159set ,first!设定第一个子步/com ,3do ,i ,1,nmodes !定义一个循环,从1到20步3get ,Fi ,mode ,i ,freq !得到该步的频率值3get ,Qi ,node ,n_top ,rf ,chrg !得到该步的电量值3SET ,Omi ,Pi23Fi !将线速度转化为角速度3SET ,C (i ),(Qi/Omi )332!计算相关的动态电容3SET ,L (i ),1/(Omi 3323C (i ))!计算相关的动态电感/com ,Mode %i %!在输出窗口中显示第几步/com ,Resonant f requency F =%Fi %Hz !在输出窗口中显示频率值/com ,Dynamic capacitance C =%C (i )%F !在输出窗口中显示动态电容值/com ,Dynamic inductance L =%L (i )%H !在输出窗口中显示动态电感值/com ,charge Q =%Qi %C!在输出窗口中显示电量值/com ,Impedance R =%5/(233.141593Fi 3Qi )%!在输出窗口中显示阻抗值/com ,set ,next !进入下一个子步3enddo!循环结束FINISH同时可以在主菜单的Animation 选项下看一下压电圆盘在各个不同频率下的振动状态,这里截取了几个振动图,如图4所示:(a )频率为29728Hz (b )频率为65741Hz (c )频率为53476Hz图4 振动状态图第1期雷辉等:用ANSYS软件分析压电陶瓷的振动状态33 4 结束语本文对压电陶瓷圆盘添加了约束和对称负载,解决了压电陶瓷压电场与结构场的耦合问题,并且最终得到了压电圆盘在静态下的电容值,以及它在模态下的动态电容、动态电感、电量和阻抗,而且还可以观察圆盘在各个不同频率下的振动状态,以便于今后对材料性能的研究以及对材料的改进.同时,不难发现Ansys8.0在处理压电耦合场这方面有很强的处理能力,像Solid226就是专门针对压电分析而定义的,而且Ansys8.0在其材料库中建立了相关的压电材料,因此大大简化了有限元的建模和计算,强大的后处理功能更是让研究者能够很直观的获得数据结果和模拟图像.参考文献:[1]林书玉,张福成.压电陶瓷圆片振子的多模耦合振动[J].电子学报,1994,12:43249.[2]姜德义,郑拯宇.压电陶瓷片耦合振动模态的ANSYS模拟分析[J].传感技术学报,2003,12:9216.[3]陈大任.压电陶瓷微位移驱动器概述[J].电子元件与材料,1994,2:33240.[4]邵蕴秋.ANSYS8.0有限元分析实例导航[M].北京:中国铁道出版社,2004.[5]刘涛.精通ANSYS[M].北京:清华大学出版社,2002.[6]任重.ANSYS实用分析教程[M].北京:北京大学出版社,2003.Using ANSYS to analyze the vibration state of piezoelectric ceramicL EI Hui,ZHOU Shuang2e(School of Mathematics and Computer Science,Hubei University,Wuhan430062,China) Abstract:The application of piezoelect ric ceramic becomes more and more extensive,However,it needs to take much more time to st udy it by t raditional experiment s and t he result s are often unilateral for complex prezoelect ric ceramics boundary co ndition and st ress state.In t his view,we use big2scale general piezoelect ric ceramic’s boundary condition and st ress state simulating software ANS YS8.0to carry t hrough comp uter simulation.We gain t he pict ure of piezoelect ric ceramic’s vibration state by using comp uter to analyze t he coupling effect of piezoelect ric ceramic.The experiment result indicates t hat ANS YS8.0can competently deal wit h p roblems about piezoelectric coupling field.It optimizes t he time of creating model and comp uting largly,and it s st rong f unction of post dealing makes researchers can directly obtain data result s and simulating images.K ey w ords:simulation;piezoelect ric ceramic;vibratio n state(责任编辑肖铿,胡小洋)。

基于ANSYS的压气机叶轮振动特性有限元仿真分析

基于ANSYS的压气机叶轮振动特性有限元仿真分析
使用 条件 , 以求解时间及精度等为基本尺度 , 压气机 叶轮模态计
算 时要求 :1压气机 叶轮结构形状复杂 , () 建模时应以不影 响其结
测试 。 但实验往往存在周期长 、 费用高等局限性 , 使其很难成为综
合性 、 多方案研究的应用手段圈 。所 以 , 采用有 限元法对压气机叶
轮或类似结构进行模态分析成为 当前最重要 的手段之一 。 但是 目
长 h为 3 mm、r 、mm、. n 和 l m 对 其 进 行 有 限 元 网格 划 2m l a 1 Bi 5 m
的建立
分, 限元模型的节点数和单元数 , 有 如表 1 所示 。
表 1不 同单 元 尺寸 对 应 单 元数 、 点 数及 二 阶固 有频 率 节
从表 2中的数据可以分析得到 , 转速的存在 , 增加 了相应 的 频率。对于同一 阶频率而言 , 转速越高 , 相应 的频率越高 ; 在同一 转速时 , 离心力对高阶频率的影响较低 阶频率的影响更大 。 表 3 1 O 0 r n时( 1 0 0/ mi O一3 节径对应频率 ( z ) H )
和 不 同节径 时的频 率 , 并根 据计 算 结果绘 制 了 C m bl图 , 出 了与 压 气机 叶轮 固有频 率 产生共 振 的 a pe l 找
转速 , 为压 气机 叶轮 的优化 设 计提供 了依 据 , 同时说 明采 用子 结构 分析 的 方 法可 以较 精确 地 获得 整 体 模 型的低 阶 固有频 率解 。 关键 词 : 压气 机叶轮 ; 振动特 性 , I 模态 分析 ; 子结构
和节点位移 向量 ,在此对应 的为叶轮的质量矩阵 、刚度矩 阵、 节点加速度 向量和节点位移 向量。 假定叶轮各个部位 的振动为频率 、 相位均相同的简谐运 动 ,

ANSYS和ADAMS柔性仿真详细步骤解析

ANSYS和ADAMS柔性仿真详细步骤解析

ANSYS和ADAMS柔性仿真详细步骤解析步骤1:建立模型首先需要建立汽车悬挂系统的模型,包括车轮、悬架、车体等组成部分。

可以使用ANSYS的建模工具进行几何建模,也可以导入CAD模型进行后续处理。

步骤2:定义模型属性在ANSYS中,需要为模型定义材料属性、约束条件和加载条件。

对于悬挂系统,材料属性可以定义弹簧、阻尼器和悬挂臂的材料特性;约束条件可以设置车体和地面间的边界条件,例如固支或可移动支撑;加载条件可以设置车轮的载荷和运动。

步骤3:网格划分接下来需要对模型进行网格划分,将模型离散成小的单元,这些单元可以是三角形、四边形或立方体等形式。

网格划分的精细程度直接影响到仿真的准确性和计算速度。

步骤4:设置运动学和约束在ANSYS中,可以设置模型的运动学和约束条件,即定义汽车悬挂系统中各个部件的运动关系和限制。

例如,可以设置车轮的旋转和转向运动以及悬挂臂的运动自由度。

这些设置可以通过定义关节、连接、驱动器等方式来实现。

步骤5:施加载荷在ANSYS中,可以施加各种静态和动态的载荷,模拟实际工作条件下的受力情况。

例如,可以施加车轮产生的垂直载荷、离心力、横向力等。

载荷可以施加在车轮、悬挂臂或车体上,可以是静态的或随时间变化的。

步骤6:求解模型设置好加载条件后,可以开始求解模型并进行分析。

ANSYS会根据模型的几何形状、材料特性、约束条件和加载条件等参数进行计算,得到模型在各种受力情况下的应力、变形、振动等结果。

求解模型可能需要较长的计算时间,特别是对于复杂的模型。

步骤7:分析结果在求解完成后,可以对模型的分析结果进行后处理和可视化。

ANSYS提供了各种图形和数据输出选项,可以将结果以图像、表格或动画的形式展现出来。

在分析结果中,可以观察汽车悬挂系统各个部件的受力、变形、振动等情况,从而评估其性能和安全性。

ADAMS是一种基于多体动力学的仿真软件,能够模拟和分析多体系统的运动、受力、碰撞等特性。

这里以汽车悬挂系统为例进行详细解析。

用ANSYS实现车桥耦合空间振动分析

用ANSYS实现车桥耦合空间振动分析
analyzing.
The vehicle-bridge coupling vibration is analyzed in aspects of driving source,
calculation model and solution method vehicle—bridge coupling vibration is established.And snake motion and irregularity of track are considered as the driving source of system.Besides,dynamic balance
AbstracC
And it is realized as an external program so as to analyze dynamic reSpONSe to the whole process of vehicle’S bridge·crossing.
Through computing vehicle-bridge coupling vibration response of deck steel plate girder whose span is 40 m.the author learns that which bunting wave is the main driving source of the bridge lateral vibration.The speed and amplitude of the bridge lateral sympathetic vibration is related to the length of bunting WaVe;when the bunting wave length is 8.2 m,and the speed is 63 km/h,the bridge occurring sympathetic vibration.the wavelength and waveform are similar to the results of

电机多转速下振动噪声瀑布图仿真流程

电机多转速下振动噪声瀑布图仿真流程

Maxwell 2019 R1新功能
电机多转速下振动噪声瀑布图仿真流程ANSYS China
2019年4月
电机多转速ERP(等效辐射功率)Level Waterfall 仿真流程
多转速下电磁激振力模态叠加法计算多
转速下结构谐响应多转速ERPL瀑布图
步骤1:新建Workbench工程,导入Maxwell工程文件,拖入谐响应模块
步骤2:打开Maxwell模块的Geometry标签,对转速/求解时间进行变量设置
步骤3:对转速进行参数化扫描设置
步骤4:设置DesignXplorerSetup
步骤5:取出定子齿尖部分,对其进行加密剖分
步骤6:开启谐波力计算选项,勾选定子齿尖
步骤7:在Maxwell模块的Solution标签点右键updata刷新数据
步骤8:谐响应模块导入定子铁心机壳三维模型,双击打开谐响应模块Setup标签,设置系统单位
步骤9:创建定子齿尖内表面Named Selection
步骤10:点击B5下的Imported Romate Loads标签,并按下图设置,然后右键Generate Romate Loads,软件会导入多个转速的电磁力载荷,并自动完成Analysis Setup设置
步骤11:选中定子安装孔并施加Fixed Support 约束
步骤12:创建定子机壳外表面Named Selection
步骤13:B6处添加ERP Level Waterfall Diagram计算,并施加于定子机壳外表面
步骤14:完成材料属性和mesh设置,在B5处右键选择solve开始计算
步骤15:计算结束后查看ERP Level Waterfall Diagram。

4振动分析ANSYS算例

4振动分析ANSYS算例

4振动分析ANSYS算例UNIT 4 振动分析ANSYS应⽤实例【ANSYS应⽤实例4.1】桥梁结构的振动模态分析【ANSYS应⽤实例4.2】卫星结构的振动模态分析学习要点:【ANSYS应⽤实例4.3】⼤型模锻液压机机架的振动模态分析(3梁2⽴柱的3D结构)【ANSYS应⽤实例4.1】桥梁结构的振动模态分析针对静⼒分析ANSYS算例中的⼩型铁路钢桥的桁架结构,进⾏振动模态的分析和计算。

【建模要点】X采⽤【ANSYS应⽤实例 1.2】中的模型和相应的约束条件,在此基础上采⽤命令< ANTYPE,2>设置模态分析类型、采⽤命令< MODOPT >设置分块Lanczos法进⾏模态分析;Y进⼊后处理,采⽤命令< SET,LIST >列出所计算出的前各阶固有频率,然后采⽤命令< ANMODE >以动画⽅式显⽰每⼀阶固有频率所对应的振型。

解答:以下为基于ANSYS图形界⾯(GUI)的菜单操作流程;注意:符号“→”表⽰针对菜单中选项的⿏标点击操作。

1 基于图形界⾯的交互式操作(step by step)⾸先利⽤【ANSYS应⽤实例1.2】中已建⽴的模型和相应的约束条件,即前8步,在此基础上完成模态分析如下。

(1)~(8)与【ANSYS应⽤实例1.2】完全相同。

(9)设置分析类型为模态分析Main Menu: Solution → Analysis Type → New Analysis → ANTYPE: Modal →OK(10) 采⽤分块Lanczos法提取前10阶模态Main Menu: Solution → Analysis Type → Analysis Options → Mode extraction method: Block Lanczos , No.of modes to extract: 10 → OK → OK(11)求解Main Menu: Solution → Solve → Current LS →(弹出⼀个对话框)OK →(求解完成后,弹出⼀个对话框Solution is done!)Close →(关闭信息⽂件右上⾓的X)/ STATUS Command(12)列出前10阶固有频率Main Menu: General Postproc → List Results → Detailed Summary前10阶固有频率如下:***** INDEX OF DATA SETS ON RESULTS FILE *****SET TIME/FREQ LOAD STEP SUBSTEP CUMULATIVE1 49.674 1 1 12 74.797 1 2 23 156.97 1 3 34 200.44 1 4 45 253.34 1 5 56 280.88 1 6 67 322.24 1 7 78 359.48 1 8 89 382.20 1 9 910 449.79 1 10 10(13)对于线型单元(如杆、梁)按实体效果进⾏显⽰(以3倍⽐例)Utility Menu: PlotCtrls → Style → Size and Shape → ESHAPE: [9]ON, SCALE:3 → OK(14)调⼊第⼀阶固有频率Main Menu: General Postproc → Read Results → First Set(15)在显⽰时将变形形状与原型⼀起显⽰Utility Menu: Plot → Results → Deformed Shape → KUND: Def+undeformed →OK(16)以动画⽅式显⽰对应的阵型Utility Menu: PlotCtrls → Animate → Mode Shape → No. of frames to create: 10 , Time delay(seconds): 0.5 ,Display Type: DOF solution , Def+undeformed → OK(18) 退出系统ANSYS Utility Menu: File → Exit…→ Save Everything → OK桥梁结构的第1阶振型及第10阶振型见图4-1及图4-2。

ANSYS谐响应分析实例-振动电机轴分析

ANSYS谐响应分析实例-振动电机轴分析

AnsysWorkBench11.0振动电机轴谐响应分析最小网站长:kingstudio最小网Ansys 教程频道为您打造最IN 的教程/1.谐响应分析简介任何持续的周期载荷将在结构系统中产生持续的周期响应(谐响应)。

谐响应分析是用于确定线性结构在承受随时间按正弦(简谐)规律变化的载荷时的稳态响应的一种技术。

分析的目的是计算出结构在几种频率下的响应并得到一些响应值(通常是位移)对频率的曲线。

从这些曲线上可以找到“峰值”响应,并进一步观察峰值频率对应的应力。

该技术只计算结构的稳态受迫振动,而不考虑发生在激励开始时的瞬态振动。

(见图1)。

谐响应分析使设计人员能预测结构的持续动力特性,从而使设计人员能够验证其设计能否成功地克服共振、疲劳,及其它受迫振动引起的有害效果。

谐响应分析是一种线性分析。

任何非线性特性,如塑性和接触(间隙)单元,即使定义了也将被忽略。

分析中可以包含非对称系统矩阵,如分析在流体─结构相互作用中问题。

谐响应分析也可以分析有预应力结构,如小提琴的弦(假定简谐应力比预加的拉伸应力小得多)。

谐响应分析的定义与应用介绍:/ArticleContent.asp?ID=7852. 工程背景在长距离振动输送机、概率振动筛等变载荷振动机械中,由于载荷的变化幅度较大,且多为冲击或交变载荷,使得作为动力源与振动源的振动电机寿命大为缩短,其中振动电机阶梯轴的弹塑性变形又会中速振动电机的失效,故研究振动电机轴的谐响应,进而合理设计其尺寸与结构,是角决振动电机在此类场合过早失效的主要途径之一。

现以某型振动电机阶梯轴为分对象,振动电机属于将动帮源与振动源合为一体的电动施转式激振源,在振动电机轴两端分别装有两个偏心块,工作时电机轴还动两偏心块作顺转无能无力产生周期性激振力t sin F F 1ω=,其中为施加载荷,由些电机轴受到偏心块施加的变载荷冲击,极易产生变形和疲劳损坏,更严重者,当激振力的频率与阶梯轴的固有频率相等时,就会发生共振,造成电机严重破坏,故对电机进行谐应力分析很必要。

Ansys培训_随机振动分析汇总

Ansys培训_随机振动分析汇总
– The data points can be entered for each Freq & Amplitude, or a function can be entered.
DYNAMICS 11.0
A2
A3
Acceleration
A1 A4
F1
F2
F3
F4
Frequency
Workshop – 假定
• 和确定性谱分析不同,随机振动不能用瞬态动 力学分析代替. • 应用基于概率的功率谱密度分析,分析载荷作 用过程中的统计规律
DYNAMICS 11.0
Image from “Random Vibrations Theory and Practice” by Wirsching, Paez and Ortiz.
定义和目的
输入:
– 结构的自然频率和阵型 – 功率谱密度曲线
Training Manual
DYNAMICS 11.0
输出:
– 1s位移和应力 (用于疲劳分析).
• 载荷:
– 单点激励
Training Manual
• 得到结果:
– 相对或绝对的1s 输出 – 整体结构的结果,可以进行云图显示. – 1s位移, 速度或加速度
Training Manual
DYNAMICS 11.0
随机振动分析
随机振动分析流程
• • • • 插入一个PSD Base Excitation. 在弹出的PSD Base Excitation详情串口,选择新的PSD载荷. 选择带G的加速度PSD,单位G^2/Hz. 设置PSD曲线
Training Manual
打开, Tower.dsdb.
Training Manual
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ansys冲击振动仿真步骤
ANSYS冲击振动仿真步骤:
引言:
在工程领域中,冲击振动是指物体受到突然作用力后所产生的振动。

冲击振动分析对于设计和优化结构、评估结构强度和可靠性至关重要。

ANSYS是一款流行的有限元分析软件,可以
用于模拟和分析各种结构的冲击振动情况。

本文将介绍ANSYS中进行冲击振动仿真的基本步骤。

步骤一:建立几何模型
在ANSYS中进行冲击振动仿真的第一步是通过几何建模工具
绘制或导入待分析的物体。

可以使用ANSYS内置的CAD工
具进行几何建模,也可以从其他CAD软件中导入现有的几何
模型。

在建模过程中,需要确保几何模型的完整性和准确性。

步骤二:定义材料属性
在进行冲击振动分析之前,需要为材料定义适当的属性。

这包括材料的弹性模量、密度和屈服强度等信息。

根据具体模拟对象的材料特性和工作条件,可以选择线性材料模型或非线性材料模型。

通过合理的材料属性定义,可以更准确地预测结构在受到冲击振动时的响应。

步骤三:网格划分
在进行有限元分析之前,需要将几何模型划分为小的离散单元,即网格。

网格划分的质量和密度对结果的准确性和计算时间都有重要影响。

ANSYS提供了多种网格划分工具和算法,可以
根据需要进行网格划分。

划分完成后,需要检查网格质量并进行必要的调整以保证模型的准确性。

步骤四:添加边界条件
冲击振动仿真中,边界条件的设定非常重要。

通过设置适当的边界条件,可以模拟真实工作环境中物体受到冲击作用的情况。

常见的边界条件包括固定支撑、壁面约束和施加的载荷。

根据具体仿真问题的要求,需要合理选择和设置边界条件。

步骤五:设置求解器
在ANSYS中进行冲击振动仿真时,需要选择合适的求解器。

ANSYS提供了多种求解器,包括静力学、动力学和瞬态求解器。

根据具体问题的特点,可以选择适当的求解器。

在设置求解器时,需要指定计算的时间步长、求解的精度和收敛标准等参数。

步骤六:运行仿真
在设置完求解器后,可以运行仿真并进行计算。

ANSYS将根
据设定的边界条件和材料属性,在每个时间步长上对物体进行计算和求解。

通过运行仿真,可以得到物体在冲击作用下的振动响应情况。

需要注意的是,冲击振动仿真可能需要较长的计算时间,尤其是在处理复杂模型时。

步骤七:分析结果
在仿真计算完成后,可以通过ANSYS提供的后处理工具对结
果进行分析。

通过查看图形和数据输出,可以获得物体在冲击作用下的振动模式、频率响应等信息。

可以根据分析结果对结
构进行优化和改进,以提高结构的抗冲击振动性能。

总结:
本文介绍了在ANSYS中进行冲击振动仿真的基本步骤,包括建立几何模型、定义材料属性、网格划分、添加边界条件、设置求解器、运行仿真和分析结果。

通过合理选择和设置这些步骤,可以更准确地模拟和分析结构在受到冲击振动时的响应情况,以指导工程设计和优化。

相关文档
最新文档