高中数学北师大版选修2-1课时作业:2.5 夹角的计算 Word版含解析

合集下载

高二数学苏教版选修2-1课时跟踪训练:(三) “且”“或”“非” Word版含解析

高二数学苏教版选修2-1课时跟踪训练:(三) “且”“或”“非” Word版含解析

课时跟踪训练(三)“且”“或”“非”1.命题“正方形的两条对角线互相垂直平分”的构成形式是________.2.如果原命题是“p或q”的形式,那么它的否定形式是________________________.3.由命题p:6是12的约数,q:6是24的约数,构成的“p或q”形式的命题是_________________________________________________________________________,“p且q”形式的命题是____________________________________________________,“非p”形式的命题是______________________________________________________.4.“末位数字是1或3的整数不能被8整除”的否定形式是_____________________,否命题是__________________________________________________________________.5.分别用“p或q”,“p且q”,“非p”填空:(1)命题“非空集A∩B中的元素既是A中的元素,也是B中的元素”是________的形式;(2)命题“非空集A∪B中的元素是A中元素或B中的元素”是________的形式;(3)命题“非空集∁U A的元素是U中的元素但不是A中的元素”是________的形式.6.分别指出下列命题的形式及构成它的简单命题:(1)12可以被3或4整除;(2)3是12和15的公约数.7.分别写出由命题p:方程x2-4=0的两根符号不同,q:方程x2-4=0的两根绝对值相等构成的“p或q”“p且q”“非p”形式的命题.8.写出下列各命题的否定形式及否命题:(1)面积相等的三角形是全等三角形;(2)若m2+n2+a2+b2=0,则实数m,n,a,b全为零;(3)若xy=0,则x=0或y=0.答案1.解析:正方形的两条对角线互相垂直并且平分,是p且q的形式.答案:p且q2.綈p且綈q3.6是12或24的约数6是12的约数且是24的约数6不是12的约数4.解析:命题的否定仅否定结论,所以该命题的否定形式是:末位数字是1或3的整数能被8整除;而否命题要同时否定原命题的条件和结论,所以否命题是:末位数字不是1且不是3的整数能被8整除答案:末位数字是1或3的整数能被8整除末位数字不是1且不是3的整数能被8整除5.解析:(1)命题可以写为“非空集A∩B中的元素是A中的元素,且是B中的元素”,故填p且q;(2)“是A中元素或B中的元素”含有逻辑联结词“或”,故填p或q;(3)“不是A中的元素”暗含逻辑联结词“非”,故填非p.答案:(1)p且q(2)p或q(3)非p6.解:(1)这个命题是“p或q”的形式,其中p:12可以被3整除;q:12可以被4整除.(2)这个命题是“p且q”的形式,其中p:3是12的约数;q:3是15的约数.7.解:p或q:方程x2-4=0的两根符号不同或绝对值相等.p且q:方程x2-4=0的两根符号不同且绝对值相等.非p:方程x2-4=0的两根符号相同.8.解:(1)否定形式:面积相等的三角形不一定是全等三角形;否命题:面积不相等的三角形不是全等三角形.(2)否定形式:若m2+n2+a2+b2=0,则实数m,n,a,b不全为零;否命题:若m2+n2+a2+b2≠0,则实数m,n,a,b不全为零.(3)否定形式:若xy=0,则x≠0且y≠0;否命题:若xy≠0,则x≠0且y≠0.。

高二数学北师大版选修2-1章末综合测评(三) 圆锥曲线与方程 Word版含答案

高二数学北师大版选修2-1章末综合测评(三) 圆锥曲线与方程 Word版含答案

章末综合测评(三) 圆锥曲线与方程(时间分钟,满分分)一、选择题(本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的).抛物线=的准线方程是-=,则的值是( ).-..-【解析】抛物线=的标准方程为=,所以-=,即=-.【答案】.如图,已知圆的方程为+=,点(-),为圆上任意一点,的垂直平分线交于点,则点的轨迹是( )图.圆.抛物线.椭圆.两条直线【解析】∵为垂直平分线上的点.∴=.又∵+=,∴+=.故点的轨迹是以,为焦点,长轴长为的椭圆.【答案】.设是椭圆的长轴,点在椭圆上,且∠=.若=,=,则椭圆的焦距为( )..【解析】如图,设椭圆的标准方程为+=(>>),由题意可知,=,=.因为∠=,=,所以(-,).因为点在椭圆上,所以+=,所以=.由公式=+得=,所以焦距为.【答案】.双曲线-=的焦点坐标为( ).(±,) .(,±).(,±) .(±,)【解析】依题意=,=,∴=,又-=焦点在轴上,∴焦点坐标为(±,).【答案】.已知,为双曲线的左,右顶点,点在上,△为等腰三角形,且顶角为°,则的离心率为( )..【解析】结合图形,用表示出点的坐标,代入双曲线方程得出,的关系,进而求出离心率.不妨取点在第一象限,如图所示,设双曲线方程为-=(>,>),则==,∠=°-°=°,∴点的坐标为())).∵点在双曲线上,∴-=,=,∴=,==.故选.【答案】.已知双曲线:-。

【步步高学案导学设计】高中数学(人教a版,选修2-1)课时作业:第一章常用逻辑用语1.1.2word版含答案

【步步高学案导学设计】高中数学(人教a版,选修2-1)课时作业:第一章常用逻辑用语1.1.2word版含答案

1.1.2四种命题【课时目标】 1.了解四种命题的概念.2.认识四种命题的结构,会对命题进行转换.1.四种命题的概念:(1)对于两个命题,如果一个命题的条件和结论分别是另一个命题的______________,那么我们把这样的两个命题叫做互逆命题,其中的一个命题叫做原命题,另一个命题叫做原命题的逆命题.(2)对于两个命题,如果一个命题的条件和结论恰好是另一个命题的____________________________,我们把这样的两个命题叫做互否命题,把其中的一个命题叫做原命题,另一个命题叫做原命题的否命题.(3)对于两个命题,如果一个命题的条件和结论恰好是另一个命题的______________________________,我们把这样的两个命题叫做互为逆否命题,把其中的一个命题叫做原命题,另一个命题叫做原命题的逆否命题.2.四种命题的命题结构:用p和q分别表示原命题的条件和结论,用綈p,綈q分别表示p和q的否定,四种形式就是:原命题:若p成立,则q成立.即“若p,则q”.逆命题:________________________.即“若q,则p”.否命题:______________________.即“若綈p,则綈q”.逆否命题:__________________.即“若綈q,则綈p”.一、选择题1.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为()A.1 B.2 C.3 D.42.命题“若A∩B=A,则A?B”的逆否命题是()A.若A∪B≠A,则A?BB.若A∩B≠A,则A BC.若A B,则A∩B≠AD.若A?B,则A∩B≠A3.对于命题“若数列{a n}是等比数列,则a n≠0”,下列说法正确的是()A.它的逆命题是真命题B.它的否命题是真命题C.它的逆否命题是假命题D.它的否命题是假命题4.有下列四个命题:①“若xy=1,则x、y互为倒数”的逆命题;②“相似三角形的周长相等”的否命题;③“若b≤-1,则方程x2-2bx+b2+b=0有实根”的逆否命题;④若“A∪B=B,则A?B”的逆否命题.其中的真命题是()A.①②B.②③C.①③D.③④5.命题“当AB=AC时,△ABC为等腰三角形”与它的逆命题、否命题、逆否命题中,真命题的个数是()A.4 B.3 C.2 D.06.命题“若函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数,则log a2<0”的逆否命题是()A.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数B.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数C.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数D.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数题号123456答案二、填空题7.命题“若x>y,则x3>y3-1”的否命题是________________________.8.命题“各位数字之和是3的倍数的正整数,可以被3整除”的逆否命题是____________________________;逆命题是_______;否命题是________________________.9.有下列四个命题:①“全等三角形的面积相等”的否命题;②若a2+b2=0,则a,b全为0;③命题“若m≤1,则x2-2x+m=0有实根”的逆否命题;④命题“若A∩B=B,则A?B”的逆命题.其中是真命题的是________(填上你认为正确的命题的序号).三、解答题10.命题:“已知a,b,c,d是实数,若a=b,c=d,则a+c=b+d.”写出其逆命题、否命题、逆否命题,并判断真假.11.把下列命题写成“若p,则q”的形式,并写出它们的逆命题、否命题与逆否命题.(1)正数的平方根不等于0;(2)当x=2时,x2+x-6=0;(3)对顶角相等.12.写出下列命题的逆命题、否命题、逆否命题.(1)实数的平方是非负数;(2)等高的两个三角形是全等三角形;(3)弦的垂直平分线平分弦所对的弧.【能力提升】13.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数14.命题:已知a、b为实数,若关于x的不等式x2+ax+b≤0有非空解集,则a2-4b≥0,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.1.对条件、结论不明显的命题,可以先将命题改写成“若p则q”的形式后再进行转换.2.分清命题的条件和结论,然后进行互换和否定,即可得到原命题的逆命题,否命题和逆否命题.1.1.2四种命题知识梳理1.(1)结论和条件(2)条件的否定和结论的否定(3)结论的否定和条件的否定2.若q成立,则p成立若綈p成立,则綈q成立若綈q成立,则綈p成立作业设计1.B[由a>-3?a>-6,但由a>-6a>-3,故真命题为原命题及原命题的逆否命题,故选 B.]2.C[先明确命题的条件和结论,然后对命题进行转换.]3.D 4.C5.C[原命题和它的逆否命题为真命题.]6.A[由互为逆否命题的关系可知,原命题的逆否命题为:若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数.]7.若x≤y,则x3≤y3-18.不能被3整除的正整数,其各位数字之和不是3的倍数能被3整除的正整数,它的各位数字之和是3的倍数各位数字之和不是3的倍数的正整数,不能被3整除9.②③10.解逆命题:已知a,b,c,d是实数,若a+c=b+d,则a=b,c=d.假命题否命题:已知a,b,c,d是实数,若a≠b或c≠d,则a+c≠b+d.假命题逆否命题:已知a,b,c,d是实数,若a+c≠b+d,则a≠b或c≠d.真命题.11.解(1)原命题:“若a是正数,则a的平方根不等于0”.逆命题:“若a的平方根不等于0,则a是正数”.否命题:“若a不是正数,则a的平方根等于0”.逆否命题:“若a的平方根等于0,则a不是正数”.(2)原命题:“若x=2,则x2+x-6=0”.逆命题:“若x2+x-6=0,则x=2”.否命题:“若x≠2,则x2+x-6≠0”.逆否命题:“若x2+x-6≠0,则x≠2”.(3)原命题:“若两个角是对顶角,则它们相等”.逆命题:“若两个角相等,则它们是对顶角”.否命题:“若两个角不是对顶角,则它们不相等”.逆否命题:“若两个角不相等,则它们不是对顶角”.12.解(1)逆命题:若一个数的平方是非负数,则这个数是实数.否命题:若一个数不是实数,则它的平方不是非负数.逆否命题:若一个数的平方不是非负数,则这个数不是实数.(2)逆命题:若两个三角形全等,则这两个三角形等高.否命题:若两个三角形不等高,则这两个三角形不全等.逆否命题:若两个三角形不全等,则这两个三角形不等高.(3)逆命题:若一条直线平分弦所对的弧,则这条直线是弦的垂直平分线.否命题:若一条直线不是弦的垂直平分线,则这条直线不平分弦所对的弧.逆否命题:若一条直线不平分弦所对的弧,则这条直线不是弦的垂直平分线.13.B[命题“若p,则q”的否命题为“若綈p,则綈q”,而“是”的否定是“不是”,故选 B.] 14.解逆命题:已知a、b为实数,若a2-4b≥0,则关于x的不等式x2+ax+b≤0有非空解集.否命题:已知a、b为实数,若关于x的不等式x2+ax+b≤0没有非空解集,则a2-4b<0. 逆否命题:已知a、b为实数,若a2-4b<0,则关于x的不等式x2+ax+b≤0没有非空解集.原命题、逆命题、否命题、逆否命题均为真命题.。

高中数学 3.1第1课时椭圆及其标准方程课件 北师大版选修2-1

高中数学 3.1第1课时椭圆及其标准方程课件 北师大版选修2-1

① 解得①②得-3<a<-1 或 a>1.
当 a>1 时,③不成立.当-3<a<-1 时,得 a<-2. 综上可得:a 的取值范围是-3<a<-2.
最值问题
F1 是x92+y52=1 的左焦点,P 是椭圆上的动点,A(1,1) 为定点,则|PA|+|PF1|的最小值为________________.
[解析] (1)∵椭圆的焦点在 x 轴上,所以设它的标准方程为ax22 +by22=1(a>b>0).
∵2a= 5+32+0+ 5-32+0=10,2c=6. ∴a=5,c=3, ∴b2=a2-c2=52-32=16. ∴所求椭圆的方程为:2x52 +1y62 =1.
(2)∵椭圆的焦点在 y 轴上,所以设它的标准方程为:ay22+bx22= 1(a>b>0).
3.已知△ABC 的顶点 B、C 在椭圆x32+y2=1 上,顶点 A 是
椭圆的一个焦点,且椭圆的另外一个焦点在 BC 边上,则△ABC
的周长是( )
A.2 3
B.6
C.4 3
D.12
[答案] C
[解析] 设椭圆的另一个焦点为 F(如图),
则 △ ABC 的 周 长 为 (|AB| + |BF|) + (|CA| + |CF|) = 2a + 2a =
∴-2c≤|PF1|-|PF2|≤2c, ∴2a-2c≤2|PF1|≤2a+2c,即 a-c≤|PF1|≤a+c
∴|PF1|的最大值为 a+c,最小值为 a-C.
[总结反思] 椭圆上到某一焦点的最远点与最近点分别是长 轴的两个端点,应掌握这一性质.
[总结反思] 椭圆的焦点在哪个坐标轴上主要看标准方程 中x2和y2项分母的大小,如果x2项的分母大于y2项的分母,则椭 圆的焦点在x轴上;反之,焦点在y轴上.由于本题中x2和y2项 分母的大小不确定,因此需要进行分类讨论.

【金版优课】高中数学人教版选修2-1课后训练:3-1-2 空间向量的数乘运算 Word版含解析

【金版优课】高中数学人教版选修2-1课后训练:3-1-2 空间向量的数乘运算 Word版含解析

04课后课时精练一、选择题1. 下列命题正确的有( )①空间向量就是空间中一条有向线段;②若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 是平行四边形的充要条件;③|a |=|b |是向量a =b 的必要不充分条件;④AB→=CD →的充要条件是A 与C 重合,B 与D 重合. A. 1个 B. 2个 C. 3个D. 4个解析:①不正确.有向线段可以表示向量,但不是向量. ②正确,∵AB→=DC →,∴|AB →|=|DC →|且AB →∥DC →. 又A ,B ,C ,D 不共线,∴四边形ABCD 是平行四边形. 反之,在▱ABCD 中,AB→=DC →. ③正确.a =b ⇒|a |=|b |,|a |=|b |D ⇒/a =b .④不正确.AB →=CD →⇒|AB →|=|CD →|,AB →与CD →同向.但是向量可以平移,起点位置不确定.答案:B2. A ,B ,C 不共线,对空间任意一点O ,若OP →=34OA →+18OB →+18OC →,则P ,A ,B ,C 四点( )A. 不共面B. 共面C. 不一定共面D. 无法判断是否共面解析:OP →=34OA →+18OB →+18OC →=34OA →+18(OA →+AB →)+18(OA →+AC →) =OA →+18AB →+18AC →, ∴OP →-OA →=18AB →+18AC →, ∴AP →=18AB →+18AC →. 由共面的充要条件知P ,A ,B ,C 四点共面. 答案:B3.在四面体O —ABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE→=( ) A. 12a -14b +14c B. a -12b +12c C. 12a +14b +14cD. 14a +12b +14c解析:OE →=OA →+AE →=a +12AD → =a +12(OD →-OA →) =12a +12OD →=12a +12×12(OB →+OC →) =12a +14b +14c . 答案:C4.已知两非零向量e 1,e 2,且e 1与e 2不共线,设a =λe 1+μe 2(λ,μ∈R ,且λ2+μ2≠0),则( )A .a ∥e 1B .a ∥e 2C .a 与e 1、e 2共面D .以上三种情况均有可能解析:假设a 与e 1共线,则a =k e 1,所以a =λe 1+μe 2可变为(k -λ)e 1=μe 2,所以e 1与e 2共线,这与e 1与e 2不共线相矛盾,故假设不成立,即A 不正确,同理B 不正确,则D 也错误.答案:C5.下列条件能使M 与A 、B 、C 一定共面的是( ) A. OM→=2OA →-OB →-OC → B. OM →=15OA →+13OB →+12OC → C. MA→+MB →+MC →=0 D. OM→+OA →+OB →+OC →=0 解析:在C 中,MA→=-MB →-MC →,∴MA →、MB →、MC →共面.∴M 、A 、B 、C 一定共面,故C 正确.在A 、B 、D 三个选项中,OM →=xOA →+yOB →+zOC →的式子中,x +y +z ≠1,故全错.答案:C6.在空间四边形OABC 中,D 、E 、F 分别是BC 、CA 、AB 的中点,OA→=a ,OB →=b ,OC →=c ,则下列命题: ①AB →=a +b ;②BE →=b +12(a +c );③CF →=12(a +b )-c ;④AF →=-12a +12b ;⑤AD →+BE →+CF →=0,其中正确的命题为( ) A .①②③ B .①②④ C .③④⑤ D .②③⑤ 解析:如图,AB →=OB →-OA →=b -a ,∴①错;BE →=OE →-OB →=12(a +c )-b ,∴②错.答案中只有C 不含①②,故选C.答案:C 二、填空题7.已知A ,B ,C 三点共线,则对空间任一点O ,存在三个不为0的实数λ,m ,n ,使 λOA →+mOB →+nOC →=0,那么λ+m +n 的值为________.解析:∵A ,B ,C 三点共线, ∴存在唯一实数k 使AB →=kAC →, 即OB→-OA →=k (OC →-OA →), ∴(k -1)OA→+OB →-kOC →=0, 又λOA→+mOB →+nOC →=0, 令λ=k -1,m =1,n =-k , 则λ+m +n =0. 答案:08.若G 为△ABC 内一点,且满足AG→+BG →+CG →=0,则G 为△ABC 的________.(填“外心”“内心”“垂心”或“重心”)解析:如下图,取BC 的中点O ,AC 的中点D ,连接OG 、DG .由题意知AG→=-BG →-CG →=GB →+GC →=2GO →,同理BG →=2GD →,故G为△ABC 的重心.答案:重心9.如右图,已知边长为1的正四面体O -ABC ,边OA 的中点为M ,自O 作平面ABC 的垂线OH 与平面ABC 交于点H ,与平面MBC 交于点I ,将OI→用OA →,OB →,OC →表示为________. 解析:易知H 是正三角形ABC 的中心,所以OH →=13(OA →+OB →+OC →).又I 在OH 上,故存在实数λ,满足OI →=λOH →,故OI →=λ3(OA →+OB →+OC →)=λ3(2OM →+OB →+OC →).因为I 在平面MBC 内,所以2λ3+λ3+λ3=1,所以λ=34,于是OI →=14OA →+14OB →+14OC →. 答案:OI →=14OA →+14OB →+14OC → 三、解答题10.如图,平行六面体ABCD -A 1B 1C 1D 1中,M 分CA→所成的比为2∶1,N 分DA 1→所成的比为1∶2,设AB →=m ,AD →=n ,AA 1→=t ,试将MN→表示成m 、n 、t 的关系式.解:连接AN ,则MN→=MA →+AN →,由已知得四边形ABCD 为平行四边形,故AC →=AB →+AD →=m +n ,又MA →=-13AC →=-13(m +n ),AN →=AD →+DN →=AD →-ND →=AD →-13A 1D →=13(t +2n ),MN →=MA →+AN →=-13(m +n )+13(t +2n )=13(n +t -m ).11.已知O 、A 、B 、C 、D 、E 、F 、G 、H 为空间的9个点(如图),并且OE →=kOA →,OF →=kOB →,OH →=kOD →,AC →=AD →+mAB →,EG →=EH →+mEF→.求证:(1)A 、B 、C 、D 四点共面,E 、F 、G 、H 四点共面; (2)AC →∥EG →; (3)OG→=kOC →.证明:(1)由AC→=AD →+mAB →,EG →=EH →+mEF →,知A 、B 、C 、D 四点共面,E 、F 、G 、H 四点共面.(2)∵EG→=EH →+mEF → =OH→-OE →+m (OF →-OE →) =k (OD →-OA →)+km (OB →-OA →) =kAD→+kmAB → =k (AD →+mAB →)=kAC →, ∴AC→∥EG →. (3)由(2)知OG→=EG →-EO →=kAC →-kAO →, =k (AC →-AO →)=kOC →, ∴OG→=kOC →. 12. 如图所示,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,M 为PD 的中点,证明PB ∥平面ACM .(用向量法)证明:∵M 是PD 的中点,∴PM→=MD →. 又∵PB→=PM →+MA →+AB →=PM →+MA →+AC →+CB → =PM→+MA →+AC →+DA →=PM→+MA →+AC →+MA →-MD →. ∴PB→=2MA →+AC →.∴PB →、MA →、AC →共面. 又∵PB ⊄平面ACM ,∴PB ∥平面ACM .。

高中数学北师大版选修2-2学案:1.1.2 类比推理 Word版含解析

高中数学北师大版选修2-2学案:1.1.2 类比推理 Word版含解析

1.2类比推理1.通过具体实例理解类比推理的意义.(重点)2.会用类比推理对具体问题作出判断.(难点)[基础·初探]教材整理1类比推理阅读教材P5“1.2类比推理”至P6前16行,完成下列问题.由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,我们把这种推理过程称为类比推理.类比推理是两类事物特征之间的推理.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列性质,你认为比较恰当的是________(填序号).①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.【解析】正四面体的面(或棱)可与正三角形的边类比,正四面体的相邻两面成的二面角(或共顶点的两棱的夹角)可与正三角形相邻两边的夹角类比,故①②③都对.【答案】①②③教材整理2合情推理阅读教材P6的最后4个自然段,完成下列问题.合情推理是根据实验和实践的结果、个人的经验和直觉、已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式. 合情推理的结果不一定正确.下列说法正确的是( )A.由合情推理得出的结论一定是正确的B.合情推理必须有前提有结论C.合情推理不能猜想D.合情推理得出的结论不能判断正误【解析】 根据合情推理可知,合情推理必须有前提有结论.【答案】 B[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:[小组合作型]在公比为4的等比数列{b n }中,若T n 是数列{b n }的前n 项积,则有T 20T 10,T 30T 20,T 40T 30也成等比数列,且公比为4100;类比上述结论,相应地在公差为3的等差数列{a n }中,若S n 是{a n }的前n 项和.(1)写出相应的结论,判断该结论是否正确,并加以证明;(2)写出一个更为一般的结论(不必证明).【精彩点拨】 结合已知等比数列的特征可类比等差数列每隔10项和的有关性质.【自主解答】 (1)数列S 20-S 10,S 30-S 20,S 40-S 30也是等差数列,且公差为300.该结论是正确的.证明如下:∵等差数列{a n }的公差d =3,∴(S 30-S 20)-(S 20-S 10)=(a 21+a 22+…+a 30)-(a 11+a 12+…+a 20)=10d +10d +…10d 10个=100d =300,同理可得:(S 40-S 30)-(S 30-S 20)=300,所以数列S 20-S 10,S 30-S 20,S 40-S 30是等差数列,且公差为300.(2)对于任意k ∈N +,都有数列S 2k -S k ,S 3k -S 2k ,S 4k -S 3k 是等差数列,且公差为k 2d .1.本题是等比数列与等差数列之间的类比推理,在等比数列与等差数列的类比推理中,要注意等差与等比、加与乘、减与除、乘法与乘方的类比特点.2.类比推理的思维过程观察、比较→联想、类推→猜测新的结论.即在两类不同事物之间进行对比,找出若干相同或相似之处后,推测这两类事物在其他方面的相同或相似之处.[再练一题]1.设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有:设等比数列{b n }的前n 项积为T n ,则T 4,________,________,T 16T 12成等比数列. 【导学号:94210005】【解析】 等差数列类比于等比数列时,和类比于积,减法类比于除法,可得类比结论为:设等比数列{b n }的前n 项积为T n ,则T 4,T 8T 4,T 12T 8,T 16T 12成等比数列.【答案】 T 8T 4 T 12T 8a b c ABC 三条边上的高,P 为△ABC 内任意一点,P 到相应三边的距离分别为p a ,p b ,p c ,可以得到结论p a h a +p b h b +p c h c=1.图1-1-10证明此结论,通过类比写出在空间中的类似结论,并加以证明.【精彩点拨】 三角形类比四面体,三角形的边类比四面体的面,三角形边上的高类比四面体以某一面为底面的高.【自主解答】 p a h a =12BC ·p a 12BC ·h a =S △PBC S △ABC , 同理,p b h b =S △P AC S △ABC ,p c h c=S △P AB S △ABC . ∵S △PBC +S △P AC +S △P AB =S △ABC ,∴p a h a +p b h b +p c h c=S △PBC +S △P AC +S △P AB S △ABC =1. 类比上述结论得出以下结论:如图所示,在四面体ABCD 中,设h a ,h b ,h c ,h d 分别是该四面体的四个顶点到对面的距离,P 为该四面体内任意一点,P 到相应四个面的距离分别为p a ,p b ,p c ,p d ,可以得到结论p a h a +p b h b +p c h c +p d h d=1.证明如下:p a h a=13S △BCD ·p a 13S △BCD ·h a=V P ­BCD V A ­BCD , 同理,p b h b =V P ­ACD V A ­BCD ,p c h c =V P ­ABD V A ­BCD ,p d h d=V P ­ABC V A ­BCD . ∵V P ­BCD +V P ­ACD +V P ­ABD +V P ­ABC =V A ­BCD ,∴p a h a +p b h b +p c h c +p d h d=V P ­BCD +V P ­ACD +V P ­ABD +V P ­ABC V A ­BCD=1.1.一般地,平面图形与空间图形类比如下:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质推测另一类事物的性质,得出一个明确的结论.[再练一题]2.在上例中,若△ABC 的边长分别为a ,b ,c ,其对角分别为A ,B ,C ,那么由a =b ·cos C +c ·cos B 可类比四面体的什么性质?【解】 在如图所示的四面体中,S 1,S 2,S 3,S 分别表示△P AB ,△PBC ,△PCA ,△ABC 的面积,α,β,γ依次表示平面P AB ,平面PBC ,平面PCA 与底面ABC 所成二面角的大小.猜想S =S 1·cos α+S 2·cos β+S 3·cos γ.[探究共研型]“锯子”能“锯”开木材,它们在功能上是类似的.因此,它们在形状上也应该类似,“锯子”应该是齿形的.你认为该过程为归纳推理还是类比推理?【提示】类比推理.探究2已知以下过程可以求1+2+3+…+n的和.因为(n+1)2-n2=2n+1,n2-(n-1)2=2(n-1)+1,……22-12=2×1+1,有(n+1)2-1=2(1+2+…+n)+n,所以1+2+3+…+n=n2+2n-n2=n(n+1)2.类比以上过程试求12+22+32+…+n2的和.【提示】因为(n+1)3-n3=3n2+3n+1,n3-(n-1)3=3(n-1)2+3(n-1)+1,…23-13=3×12+3×1+1,有(n+1)3-1=3(12+22+…+n2)+3(1+2+3+…+n)+n,所以12+22+…+n2=13⎝⎛⎭⎪⎫n3+3n2+3n-3n2+5n2=2n3+3n2+n6=n(n+1)(2n+1)6.已知椭圆具有性质:若M,N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM,PN的斜率k PM,k PN都存在时,那么k PM与k PN之积是与点P的位置无关的定值,试写出双曲线x2a2-y2b2=1(a>0,b>0)具有类似特征的性质,并加以证明.【精彩点拨】 双曲线与椭圆类比→椭圆中的结论→双曲线中的相应结论→理论证明 【自主解答】 类似性质:若M ,N 为双曲线x 2a 2-y 2b 2=1(a >0,b >0)上关于原点对称的两个点,点P 是双曲线上任意一点,当直线PM ,PN 的斜率k PM ,k PN 都存在时,那么k PM 与k PN 之积是与点P 的位置无关的定值.证明如下:设点M ,P 的坐标分别为(m ,n ),(x ,y ),则N (-m ,-n ).因为点M (m ,n )是双曲线上的点,所以n 2=b 2a 2m 2-b 2.同理y 2=b 2a 2x 2-b 2, 则k PM ·k PN =y -n x -m ·y +n x +m =y 2-n 2x 2-m 2=b 2a 2·x 2-m 2x 2-m 2=b 2a2(定值).1.两类事物能进行类比推理的关键是两类对象在某些方面具备相似特征.2.进行类比推理时,首先,找出两类对象之间可以确切表达的相似特征.然后,用一类对象的已知特征去推测另一类对象的特征,从而得到一个猜想.[再练一题]3.(2016·温州高二检测)如图1-1-11所示,椭圆中心在坐标原点,F 为左焦点,当FB →⊥AB →时,其离心率为5-12,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e 等于________.图1-1-11【解析】 如图所示,设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),则F (-c ,0),B (0,b ),A (a ,0),所以FB →=(c ,b ),AB →=(-a ,b ).又因为FB →⊥AB →,所以FB →·AB →=b 2-ac =0,所以c 2-a 2-ac =0,所以e 2-e -1=0,所以e =1+52或e =1-52(舍去).【答案】 1+52 [构建·体系]1.下面使用类比推理恰当的是( )A.“若a ·3=b ·3,则a =b ”类比推出“若a ·0=b ·0,则a =b ”B.“(a +b )c =ac +bc ”类比推出“(a ·b )c =ac ·bc ”C.“(a +b )c =ac +bc ”类比推出“a +b c =a c +b c (c ≠0)”D.“(ab )n =a n b n ”类比推出“(a +b )n =a n +b n ”【解析】 由实数运算的知识易得C 项正确.【答案】 C2.已知扇形的弧长为l ,半径为r ,类比三角形的面积公式S =底×高2,可知扇形面积公式为( )【导学号:94210006】A.r22 B.l22C.lr2 D.无法确定【解析】扇形的弧长对应三角形的底,扇形的半径对应三角形的高,因此可得扇形面积公式S=lr 2.【答案】 C3.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.【解析】由平面和空间的知识,可知面积之比与边长之比成平方关系,在空间中体积之比与棱长之比成立方关系,故若两个正四面体的棱长的比为1∶2,则它们的体积之比为1∶8.【答案】1∶84.在计算“1×2+2×3+…+n(n+1)”时,有如下方法:先改写第k项:k(k+1)=13[k(k+1)(k+2)-(k-1)k(k+1)],由此得1×2=13(1×2×3-0×1×2),2×3=13(2×3×4-1×2×3),……n(n+1)=13[n(n+1)(n+2)-(n-1)n(n+1)],相加得1×2+2×3+…+n(n+1)=13n(+1)(n+2).类比上述方法,请你计算“1×3+2×4+…+n(n+2)”,其结果写成关于n 的一次因式的积的形式为________________.【解析】1×3=16×(1×2×9-0×1×7),2×4=16×(2×3×11-1×2×9),3×5=16×(3×4×13-2×3×11),……n (n +2)=16[n (n +1)(2n +7)-(n -1)n (2n +5)],各式相加,得1×3+2×4+3×5+…+n (n +2)=16n (n +1)(2n +7).【答案】 16n (n +1)(2n +7)5.如图1-1-12(1),在三角形ABC 中,AB ⊥AC ,若AD ⊥BC ,则AB 2=BD ·BC .若类比该命题,如图1-1-12(2),三棱锥A -BCD 中,AD ⊥平面ABC ,若A 点在三角形BCD 所在平面内的射影为M ,则可以得到什么命题?命题是否是真命题,并加以证明.(1) (2)图1-1-12【解】 命题是:三棱锥A -BCD 中,AD ⊥平面ABC ,若A 点在三角形BCD所在平面内的射影为M ,则有S 2△ABC =S △BCM ·S △BCD ,是一个真命题.证明如下:如图,连接DM ,并延长交BC 于E ,连接AE ,则有DE ⊥BC .因为AD ⊥平面ABC ,所以AD ⊥AE .又AM ⊥DE ,所以AE 2=EM ·ED .于是S 2△ABC =⎝ ⎛⎭⎪⎫12BC ·AE 2 =⎝ ⎛⎭⎪⎫12BC ·EM ·⎝ ⎛⎭⎪⎫12BC ·ED =S △BCM ·S △BCD .我还有这些不足:(1)(2)我的课下提升方案:(1)(2)学业分层测评(二)(建议用时:45分钟)[学业达标]一、选择题1.对命题“正三角形的内切圆切于三边中点”可类比猜想:正四面体的内切球切于四面体各正三角形的()A.一条中线上的点,但不是中心B.一条垂线上的点,但不是垂心C.一条角平分线上的点,但不是内心D.中心【解析】由正四面体的内切球可知,内切球切于四个面的中心.【答案】 D2.下列推理正确的是()A.把a(b+c)与log a(x+y)类比,则有log a(x+y)=log a x+log a yB.把a(b+c)与sin(x+y)类比,则有sin(x+y)=sin x+sin yC.把(ab)n与(a+b)n类比,则有(x+y)n=x n+y nD.把(a+b)+c与(xy)z类比,则有(xy)z=x(yz)【解析】乘法的结合律与加法结合律相类比得(xy)z=x(yz).故选D.【答案】 D3.设△ABC的三边长分别为a,b,c,△ABC的面积为S,内切圆半径为r,则r=2Sa+b+c,类比这个结论可知:四面体S-ABC的四个面的面积分别为S1,S2,S3,S4,内切球半径为R,四面体S-ABC的体积为V,则R=()【导学号:94210007】A.VS 1+S 2+S 3+S 4B.2VS 1+S 2+S 3+S 4C.3VS 1+S 2+S 3+S 4D.4VS 1+S 2+S 3+S 4【解析】 设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R ,所以四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为V 四面体S -ABC=13(S 1+S 2+S 3+S 4)R ,∴R =3VS 1+S 2+S 3+S 4.【答案】 C4.在等差数列{a n }中,若a n >0,公差d ≠0,则有a 4a 6>a 3a 7.类比上述性质,在等比数列{b n }中,若b n >0,公比q ≠1,则关于b 5,b 7,b 4,b 8的一个不等关系正确的是( )A.b 5b 7>b 4b 8B.b 7b 8>b 4b 5C.b 5+b 7<b 4+b 8D.b 7+b 8<b 4+b 5【解析】 b 5+b 7-b 4-b 8=b 1(q 4+q 6-q 3-q 7) =b 1[q 3(q -1)+q 6(1-q )] =b 1[-q 3(q -1)2(1+q +q 2)]<0, ∴b 5+b 7<b 4+b 8. 【答案】 C5.已知结论:“在正三角形ABC 中,若D 是边BC 的中点,G 是三角形ABC 的重心,则AGGD =2”.若把该结论推广到空间,则有结论:“在棱长都相等的四面体A -BCD 中,若△BCD 的中心为M ,四面体内部一点O 到四面体各面的距离都相等”,则AOOM =( )A.1B.2C.3D.4【解析】 如图,设正四面体的棱长为1,即易知其高AM =63,此时易知点O 即为正四面体内切球的球心,设其半径为r,利用等体积法有4×13×34r=13×34×63⇒r=612,故AO=AM-MO=63-612=64,故AO∶OM=64∶612=3∶1.【答案】 C二、填空题6.(2016·山东日照一模)36的所有正约数之和可按如下方法得到:因为36=22×32,所以36的所有正约数之和为(1+3+32)+(2+2×3+2×32)+(22+22×3+22×32)=(1+2+22)(1+3+32)=91,参照上述方法,可求得200的所有正约数之和为________.【解析】类比求36的所有正约数之和的方法,200的所有正约数之和可按如下方法求得:因为200=23×52,所以200的所有正约数之和为(1+2+22+23)(1+5+52)=465.【答案】4657.在Rt△ABC中,若C=90°,AC=b,BC=a,则△ABC的外接圆半径为r=a2+b22,将此结论类比到空间有______________________________.【解析】Rt△ABC类比到空间为三棱锥A-BCD,且AB⊥AC,AB⊥AD,AC⊥AD;△ABC的外接圆类比到空间为三棱锥A-BCD的外接球.【答案】在三棱锥A-BCD中,若AB⊥AC,AB⊥AD,AC⊥AD,AB=a,AC=b,AD=c,则三棱锥A-BCD的外接球半径R=a2+b2+c228.已知等差数列{a n}中,有a11+a12+…+a2010=a1+a2+…+a3030,则在等比数列{b n}中,会有类似的结论____________________.【解析】由等比数列的性质可知b1b30=b2b29=…=b11b20,∴10b11b12 (20)30b1b2 (30)【答案】10b11b12 (20)30b1b2…b30三、解答题9.如图1-1-13(1),在平面内有面积关系S△P A′B′S△P AB=P A′·PB′P A·PB,写出图1-1-13(2)中类似的体积关系,并证明你的结论.(1) (2)图1-1-13【解】 类比S △P A ′B ′S △P AB =P A ′·PB ′P A ·PB ,有V P ­A ′B ′C ′V P ­ABC=P A ′·PB ′·PC ′P A ·PB ·PC . 证明:如图,设C ′,C 到平面P AB 的距离分别为h ′,h .则h ′h =PC ′PC ,故V P ­A ′B ′C ′V P ­ABC=13S△P A ′B ′·h ′13S △P AB ·h=P A ′·PB ′·h ′P A ·PB ·h =P A ′·PB ′·PC ′P A ·PB ·PC .10.在等差数列{a n }中,若a 10=0,则有等式a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N +)成立.类比上述性质,相应地,在等比数列{b n }中,若b 9=1,则有什么样的等式成立?【解】 在等差数列{a n }中,由a 10=0,则有a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N +)成立,相应地,在等比数列{b n }中,若b 9=1,则可得 b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N +).[能力提升]1.已知正三角形内切圆的半径是其高的13,把这个结论推广到空间正四面体,类似的结论是( )A.正四面体的内切球的半径是其高的12 B.正四面体的内切球的半径是其高的13 C.正四面体的内切球的半径是其高的14D.正四面体的内切球的半径是其高的15【解析】 原问题的解法为等面积法,即S =12ah =3×12ar ⇒r =13h ,类比问题的解法应为等体积法,V =13Sh =4×13Sr ⇒r =14h ,即正四面体的内切球的半径是其高的14.【答案】 C2.若数列{a n }是等差数列,则数列{b n }⎝ ⎛⎭⎪⎫b n =a 1+a 2+…+a n n 也为等差数列.类比这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( )A.d n =c 1+c 2+…+c nnB.d n =c 1·c 2·…·c nnC.d n =n c n 1+c n 2+…+c nnnD.d n =nc 1·c 2·…·c n 【解析】 若{a n }是等差数列, 则a 1+a 2+…+a n =na 1+n (n -1)2d , ∴b n =a 1+(n -1)2d =d 2n +a 1-d2,即{b n }为等差数列;若{c n }是等比数列,则c 1·c 2·…·c n =c n 1·q 1+2+…+(n -1)=c n 1·qn (n -1)2, ∴d n =nc 1·c 2·…·c n =c 1·q n -12,即{d n }为等比数列. 【答案】 D3.类比“等差数列”的定义,写出“等和数列”的定义,并解答下列问题: 已知数列{a n }是等和数列,且a 1=2,公和为5,那么a 18=________,这个数列的前n 项和S n 的计算公式为________.【导学号:94210008】【解析】 定义“等和数列”:在一个数列中,从第二项起每一项与它前一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.由上述定义,得a n =⎩⎨⎧2,n 为奇数,3,n 为偶数,故a 18=3.从而S n =⎩⎪⎨⎪⎧52n -12,n 为奇数,52n ,n 为偶数.【答案】 3S n =⎩⎪⎨⎪⎧52n -12,n 为奇数,52n ,n 为偶数4.(1)椭圆C :x 2a 2+y 2b 2=1(a >b >0)与x 轴交于A ,B 两点,点P 是椭圆C 上异于A ,B 的任意一点,直线P A ,PB 分别与y 轴交于点M ,N ,求证:AN →·BM →为定值b 2-a 2.(2)类比(1)可得如下真命题:双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 轴交于A ,B 两点,点P 是双曲线C 上异于A ,B 的任意一点,直线P A ,PB 分别与y 轴交于点M ,N ,求证AN →·BM →为定值,请写出这个定值(不要求写出解题过程).【解】 (1)证明如下: 设点P (x 0,y 0)(x 0≠±a ), 依题意,得A (-a ,0),B (a ,0), 所以直线P A 的方程为y =y 0x 0+a(x +a ). 令x =0,得y M =ay 0x 0+a ,同理得y N =-ay 0x 0-a ,所以y M y N =a 2y 20a 2-x 20.又因为点P (x 0,y 0)在椭圆上,所以x 20a 2+y 20b 2=1, 因此y 20=b 2a2(a 2-x 20),所以y M y N =a 2y 2a 2-x 20=b 2.因为AN →=(a ,y N ),BM →=(-a ,y M ), 所以AN →·BM →=-a 2+y M y N =b 2-a 2. (2)-(a 2+b 2).。

高二数学北师大版选修2-1教师用书第3章 3.2 双曲线的简单性质 Word版含答案

双曲线的简单性质
.结合双曲线的图形掌握双曲线的简单几何性质.(重点)
)
.感受双曲线在刻画现实世界和解决实际问题中的作用,体会数形结合思想.(难点
阅读教材“练习以下”~“例”以上的部分,完成下列问题.
续表
.判断(正确的打“√”,错误的打“×”)
()双曲线是轴对称图形.( )
()双曲线的离心率越大,它的开口越小.( )
()双曲线-=的虚轴长为.( )
【解析】()双曲线关于轴,轴对称.
()双曲线的离心率越大,它的开口越大.
()-=中=,∴虚轴长为=.
【答案】()√()×()×
.双曲线-=-的实轴长是( )




【解析】双曲线标准方程为-=
故实轴长为=.
【答案】
.双曲线-=的离心率为.
【解析】-=可化为-=,
∴==,=+=,
∴===.
【答案】
.求双曲线-=的焦点坐标,实轴长、虚轴长、离心率.
【导学号:】【解】∵=,=,∴=+=,
∴焦点坐标为(),(-),
实轴长=,虚轴长=,
离心率==.。

高中数学人教B版选修2-1练习1-3-2命题的四种形式b Word版含解析

课后课时精练一、选择题.命题“若α=β,则α=β”的否命题是( ).若α=β,则α=β.若α≠β,则α≠β.若α≠β,则α≠β.以上都不对解析:命题“若,则”的否命题是“若綈,则綈”.答案:.用反证法证明命题“+是无理数”时,应假设( )是有理数是有理数或是有理数+是有理数解析:在实数范围内无理数的反面是有理数.故选.答案:.有下列命题:①“若+=,则,全是”的否命题;②“全等三角形是相似三角形”的否命题;③“若≥,则-(+)++>的解集是”的逆命题;④“若+是无理数,则是无理数”的逆否命题.其中正确的是( ) . ①②③. ②③④. ①③④. ①④解析:①否命题为“若+≠,则,不全是”,为真.②否命题为“不全等的三角形不相似”,为假.③逆命题为“若-(+)++>的解集为,则≥”.∵当=时,解集不是,∴应有(\\(>,,Δ<,))即>.∴其逆命题是假命题.④原命题为真,逆否命题也为真.答案:.[·山东高考]给定两个命题,.若綈是的必要而不充分条件,则是綈的( ). 充分而不必要条件. 必要而不充分条件. 充要条件. 既不充分也不必要条件解析:∵綈是的必要而不充分条件,∴⇒綈,但綈,其逆否命题为⇒綈,但綈,因为原命题与其逆否命题是等价命题,故选.答案:.[·陕西高考]原命题为“若<,∈,则{}为递减数列”,关于其逆命题,否命题,逆否命题真假性的+判断依次如下,正确的是( ).真,真,真.假,假,真.真,真,假.假,假,假解析:本题以数列的单调性为背景考查命题真假的判断和四种命题之间的关系.从原命题的真假入手,由于<⇔+<⇔{}为递减数列,即原命题和否命题均为真命题,又原命题与逆否命题同真同假,则逆命题、否命题和逆否命题均为真命题,选.答案:.[·广州高二测试]下列命题中,真命题是( ).命题“若>,则>”。

教科版选修1-1课时分层作业:第5章+2、3、4、515+Word版含解析.doc

课时分层作业(十五)[基础达标练](15分钟48分)1.(6分)(多选)以下说法正确的是()A.微波具有致热性B.微波具有反射性C.微波具有可透射性D.以上说法都不对ABC[微波的特点:①致热性;②反射性;③可透射性,故ABC正确.] 2.(6分)关于录音机放音说法正确的是()A.扬声器把电信号转化为声音信号B.将磁带上的磁信号转化为声音信号C.将声音信号转化为电信号D.以上说法都不对B[放音时录音机将磁带上记录的磁信号转化为声音信号,故B正确.] 3.(6分)电话的听筒主要应用了电流的()A.热效应B.磁效应C.化学效应D.以上说法都不正确B[听筒是电流的强弱变化引起振动线圈磁性大小的变化从而使振动膜震动发生,这是利用了电流的磁效应,故B正确.]4.(6分)使用手机进行语音通讯时,手机要发射出一种波,研究发现儿童对这种波的吸收是成年人的三倍,因此专家建议家长不要让儿童使用手机进行语音通讯.手机发射的这种波是()【导学号:37032114】A.超声波B.次声波C.电磁波D.水波C[手机发射的是电磁波,故C正确.]5.(6分)在使用家用电器时,下列说法正确的是()A.洗衣机使用三孔插座主要是为了防雷击B.电冰箱紧贴墙壁放置有利于散热C.电视机处于待机状态时仍会消耗电能D.电饭锅的插头沾水后不能接入电路是因为容易造成断路C[洗衣机用三孔插座主要是防止外壳带电引起的触电事故.电冰箱应离开墙壁一定距离才有利于散热,故A、B错误.电视机待机状态时有些部件仍在工作也会消耗电能,故C正确.电饭锅插头沾水后不能接入电路是因为容易造成短路,故D错误.]6.(6分)在炎热的夏天,某同学为了降低室内温度,采取的措施是,紧闭门窗,开动冰箱并打开冰箱门,关于这位同学所采取的措施,下列判断中正确的是()A.可以降低室内温度B.室内温度不会降低,还可能升高C.室内温度不升不降D.不能确定B[由于电冰箱消耗电能并最终转化为内能,因而室内温度会升高.]7.(6分)关于话筒的工作过程,有如下几句话,正确的排列顺序是()①膜片忽松忽紧挤压碳粒②人对话筒说话时,声波使膜片振动③电阻忽大忽小④在电路中产生了强弱按声音振动而变化的电流A.①②③④B.②①④③C.②①③④D.①②④③C[根据话筒是把声音信号转化为电信号,可知合理的顺序应为C.]8.(6分)下列关于说明书使用的做法,正确的是()A.选购和安装家电,不需要参照说明书进行B.应该自己先摸索家电的使用方法,再通过说明书求证、拾遗C.应该先阅读说明书,再学习实践家电的使用方法D.知道如何使用家电后,说明书就可以不再保留了C[选购和安装家电,需要参照说明书进行,明确基本需要,同时在使用电器之前,先看说明书,了解注意事项和正确的使用方法,以防止错误使用,导致触电等事故;并且说明书要妥善保管,以备需要时查看,故C正确,A、B、D 错误.][能力提升练](25分钟50分)9.(6分)如图5-2-2所示是现代家庭生活中常见的微波炉.它的作用是快速加热食物,既省时省电,又安全卫生.有关微波炉使用的说法中不正确的是()图5-2-2A.加热食物不能使用金属器皿B.盒装牛奶可直接用微波炉加热C.微波炉的外壳及玻璃门上的屏蔽网都是金属的D.微波炉加热食物快的原因是电磁波可以深入到食物内部,食物的内、外部几乎同时变热B[金属对微波具有反射作用,故加热食物不能用金属器皿,A正确;盒装牛奶的包装袋内表面附有锡箔纸,对微波也有反射作用,故盒装牛奶不能直接用微波炉加热,B错误;微波炉的外壳和玻璃上的屏蔽网是金属的,可以使微波在炉腔内反射,提高能量的利用率,C正确;微波具有可透射性,D正确.] 10.(6分)LED灯具有节能、环保特点.“220 V8.5 W”LED灯泡和“220 V60 W”白炽灯泡正常发光时的亮度相当.与白炽灯相比,LED灯泡可以节能约()A.14.2% B.85.8%C.16.5% D.83.5%B[设两种灯泡正常发光的时间为t,LED消耗的电能为W1=P1t=8.5 W·t,白炽灯消耗的电能为W2=P2t=60 W·t,所以LED灯可以节约60 W·t-8.5 W·t60 W·t×100%≈85.8%.]11.(6分)下表是某电视机的部分技术参数,该电视机正常工作时的电流为________安;如该电视机长期不用而一直处于待机状态,则一个月(30天)该电视机将消耗电能________度.【导学号:37032115】,额定电压为220 V ,所以正常工作电流I =P U =200 W 220 V =0.9 A ,待机状态一个月消耗电能W =Pt =5×30×24×3 600 J =5×30×24×36003.6×106度=3.6 度. 【答案】 0.9 3.612.(8分)将如图5-2-3所示电水壶的三条接线按照安全用电的原则对应连接到插头上.图5-2-3【解析】 与外壳相连的线接地线,与保险丝相连的线接火线,剩下的一根接零线.【答案】 见解析(图略)13.(10分)城市居民家庭选用储水式热水器应注意哪些问题?图5-2-4【解析】 (1)一般三四口之家50~80 L 容量的热水器基本能满足需要;如使用热水频繁,60 L 以下的热水器将频繁启动,不但增加耗电量,而且频率和启动电流冲击对其他家电也有一定的影响.(2)将恒温器度数调到65 ℃左右,这时用电量最为经济.(3)沐浴比浴缸浸浴节省约50%的热水和电力.(4)采用保温性能良好的储水式热水器,最好晚间接通热水器电源,白天关掉电源.【答案】见解析14.(14分)某同学家电能表的规格是(5 A,220 V),他家已有40 W 灯2盏,80 W彩电1台,120 W洗衣机1台,当这些电器同时使用时,能否再接一只800 W的电饭煲使用?【解析】电能表额定功率P=UI=220 V×5 A=1 100 W.原有电器总功率P1=P灯×2+P视+P机=40 W×2+80 W+120 W=280 W,P-P1=1 100 W-280 W=820 W>800 W,能再接一只800 W的电饭煲使用.【答案】见解析经典语录1、最疼的疼是原谅,最黑的黑是背叛。

2019-2020学年高二数学北师大版选修2-1教师用书:第3章 3.1 双曲线及其标准方程 Word版含答案

§3 双曲线3.1 双曲线及其标准方程1.掌握双曲线的定义及其应用.(重点) 2.掌握双曲线的标准方程及其推导过程.(难点) 3.会求双曲线的标准方程.(易混点)教材整理1 双曲线的定义阅读教材P 78“动手实践”以下的部分,完成下列问题.我们把平面内到两定点F 1、F 2的距离之差的绝对值等于常数(大于零且小于|F 1F 2|)的点的集合叫作双曲线.定点F 1、F 2叫作双曲线的焦点,两个焦点之间的距离叫作双曲线的焦距.1.双曲线x225-y29=1的两个焦点分别是F 1,F 2,双曲线上一点P 到F 1的距离是12,则P 到F 2的距离是( )A .17B .7C .7或17D .2或22【解析】 由双曲线定义知||PF 1|-|PF 2||=10,即|12-|PF 2||=10.解得|PF 2|=2或|PF 2|=22. 【答案】 D2.设F 1,F 2是双曲线x216-y220=1的焦点,点P 在双曲线上,若点P 到焦点F 1的距离等于9,求点P 到焦点F 2的距离.【解】 因为a =4,所以2a =8,由双曲线的定义得||PF 1|-|PF 2||=8,所以|9-|PF 2||=8,所以|PF 2|=1或17.因为c 2=a 2+b 2=36,所以|F 1F 2|=12,当|PF 2|=1时,|PF 1|+|PF 2|=10<|F 1F 2|,不符合“两点之间线段最短”,应舍去,所以|PF 2|=17.教材整理2 双曲线的标准方程阅读教材P 79“例1”以上的部分,完成下列问题.1.双曲线x24-y216=1的焦点坐标为________.【解析】 c 2=a 2+b 2=20,∴c =25, ∵焦点在x 轴上,∴焦点坐标为(25,0),(-25,0). 【答案】 (25,0),(-25,0)2.若a =3,b =4,则双曲线的标准方程是________________.【解析】 当焦点在x 轴上时,双曲线的标准方程为x29-y216=1;当焦点在y 轴上时,双曲线的标准方程为y29-x216=1.【答案】x29-y216=1或y29-x216=1预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1:________________________________________________ 解惑:________________________________________________ 疑问2:________________________________________________ 解惑:________________________________________________ 疑问3:________________________________________________ 解惑:________________________________________________①已知定点F 1(-1,0),F 2(1,0),则满足|PF 1|-|PF 2|=2的点P 的轨迹为双曲线; ②已知定点F 1(-2,0),F 2(2,0),则满足||PF 1|-|PF 2||=4的点P 的轨迹为两条射线; ③到定点F 1(-3,0),F 2(3,0)距离之差的绝对值等于7的点P 的轨迹为双曲线;④若点P 到定点F 1(-4,0),F 2(4,0)的距离的差的绝对值等于点M (1,2)到点N (-3,-1)的距离,则点P 的轨迹为双曲线.【自主解答】 ①2<2,故点P 的轨迹是双曲线的一支;②因为2a =|F 1F 2|=4,所以点P 的轨迹是分别以F 1,F 2为端点的两条射线;③到定点F 1(-3,0),F 2(3,0)距离之差的绝对值等于7,而7>6,故点P 的轨迹不存在;④点M (1,2)到点N (-3,-1)的距离为-3-+-1-=5<8,故点P 的轨迹是以F 1(-4,0),F 2(4,0)为焦点的双曲线.【答案】 ②④如图3­3­1,若F 1,F 2是双曲线x29-y216=1的两个焦点.图3­3­1(1)若双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离; (2)若P 是双曲线左支上的点,且|PF 1|·|PF 2|=32,试求△F 1PF 2的面积. 【精彩点拨】 (1)利用双曲线的定义求解.(2)欲求△F 1PF 2的面积,可考虑用12|PF 1||PF 2|sin ∠F 1PF 2求解,只要求出∠F 1PF 2的正弦值即可.而△F 1PF 2的三边中,|PF 1|-|PF 2|=±6,|F 1F 2|=10,故可考虑用余弦定理求解.【自主解答】 双曲线的标准方程为x29-y216=1,故a =3,b =4,c =a2+b2=5.(1)由双曲线的定义得||MF 1|-|MF 2||=2a =6,又双曲线上一点M 到它的一个焦点的距离等于16,假设点M 到另一个焦点的距离等于x ,则|16-x |=6,解得x =10或x =22.故点M 到另一个焦点的距离为10或22.(2)将||PF 2|-|PF 1||=2a =6,两边平方得|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=36,∴|PF 1|2+|PF 2|2=36+2|PF 1|·|PF 2|=36+2×32=100.由△F 1PF 2中,由余弦定理得cos ∠F 1PF 2=|PF1|2+|PF2|2-|F1F2|22|PF1|·|PF2|=100-1002|PF1|·|PF2|=0,∴∠F 1PF 2=90°,∴S △F 1PF 2=12|PF 1|·|PF 2|=12×32=16.1.求双曲线上一点到某一焦点的距离时,若已知该点的横、纵坐标,则根据两点间距离公式可求结果;若已知该点到另一焦点的距离,则根据||PF 1|-|PF 2||=2a 求解,注意对所求结果进行必要的验证(负数应该舍去,且所求距离应该不小于c -a ).2.在解决双曲线中与焦点三角形有关的问题时,首先要注意定义中的条件||PF 1|-|PF 2||=2a 的应用;其次是要利用余弦定理、勾股定理或三角形面积公式等知识进行运算,在运算中要注意整体思想和一些变形技巧的应用.1.已知双曲线x29-y216=1的左、右焦点分别是F 1、F 2,若双曲线上一点P 使得∠F 1PF 2=60°,求△F 1PF 2的面积.【导学号:32550081】【解】 由x29-y216=1,得a =3,b =4,c =5.由定义和余弦定理得|PF 1|-|PF 2|=±6, |F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos 60°, 所以102=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|, 所以|PF 1|·|PF 2|=64,∴S △F 1PF 2=12|PF 1|·|PF 2|·sin∠F 1PF 2=12×64×32=16 3.(1)求以椭圆x216+y29=1的短轴的两个端点为焦点,且过点A (4,-5)的双曲线的标准方程;(2)已知双曲线通过M (1,1),N (-2,5)两点,求双曲线的标准方程.【精彩点拨】 用待定系数法,根据双曲线焦点的位置设方程,根据条件确定参数.当已知双曲线的两个焦点和双曲线上某一点,也可利用双曲线的定义求解.【自主解答】 (1)法一:(待定系数法) 由题意知双曲线的两焦点F 1(0,-3),F 2(0,3). 设双曲线的标准方程为y2a2-x2b2=1(a >0,b >0),将点A (4,-5)代入双曲线方程得 25a2-16b2=1,又a 2+b 2=9, 解得a 2=5,b 2=4.∴双曲线的标准方程为y25-x24=1.法二:(定义法)由题意知双曲线的两个焦点分别为F 1(0,-3),F 2(0,3)且A (4,-5)在双曲线上, 则2a =||AF 1|-|AF 2||=|20-80|=25, ∴a =5,∴b 2=c 2-a 2=9-5=4. 即双曲线的标准方程为y25-x24=1.(2)法一:若焦点在x 轴上,设双曲线的标准方程为x2a2-y2b2=1(a >0,b >0).因为M (1,1),N (-2,5)在双曲线上, 所以⎩⎪⎨⎪⎧1a2-1b2=1,-a2-52b2=1,解得⎩⎪⎨⎪⎧a2=78,b2=7.若焦点在y 轴上,设双曲线的标准方程为y2a2-x2b2=1(a >0,b >0).同理有⎩⎪⎨⎪⎧1a2-1b2=1,52a2--b2=1,解得⎩⎪⎨⎪⎧a2=-7,b2=-78(不合题意,舍去).所以所求双曲线的标准方程为x278-y27=1.法二:设所求双曲线的方程为mx 2+ny 2=1(mn <0). 将点M (1,1),N (-2,5)代入上述方程,得⎩⎪⎨⎪⎧m +n =1,4m +25n =1,解得⎩⎪⎨⎪⎧m =87,n =-17.所以所求双曲线的标准方程为x278-y27=1.求双曲线标准方程的常用方法:(1)定义法:若由题设条件能够判断出动点的轨迹满足双曲线的定义,则可根据双曲线的定义确定方程. (2)用待定系数法,具体步骤如下:2.求适合下列条件的双曲线的标准方程:(1)焦点在x 轴上,经过点(4,-2)和(26,22); (2)a =25,经过点A (2,-5),焦点在y 轴上.【解】 (1)因为焦点在x 轴上,所以设双曲线的标准方程为x2a2-y2b2=1(a >0,b >0),因为点(4,-2)和(26,22)在双曲线上,所以⎩⎪⎨⎪⎧16a2-4b2=124a2-8b2=1,解得⎩⎪⎨⎪⎧a2=8b2=4.故所求双曲线的标准方程是x28-y24=1.(2)因为焦点在y 轴上,所以双曲线的标准方程可设为y2a2-x2b2=1(a >0,b >0).由a =25,且点A (2,-5)在双曲线上,可得⎩⎪⎨⎪⎧a =2525a2-4b2=1,解得b 2=16.因此,所求双曲线的标准方程为y220-x216=1.已知动圆M 12内切,求动圆圆心M 的轨迹方程.【导学号:32550082】【精彩点拨】 利用两圆内、外切的充要条件找出M 点满足的几何条件,结合双曲线定义求解.【自主解答】 如图,设动圆M 的半径为r ,则由已知|MC 1|=r +2,|MC 2|=r -2,∴|MC 1|-|MC 2|=2 2. 又C 1(-4,0),C 2(4,0), ∴|C 1C 2|=8, ∵22<|C 1C 2|.根据双曲线定义知,点M 的轨迹是以C 1(-4,0)、C 2(4,0)为焦点的双曲线的右支. ∵a =2,c =4,∴b 2=c 2-a 2=14, ∴点M 的轨迹方程是x22-y214=1(x ≥2).1.本题易忽略|MC 1|-|MC 2|=22没有“绝对值”,故忘加“x ≥2”这一条件.2.求曲线的轨迹方程时,应尽量利用几何条件探求轨迹的曲线类型,从而再用待定系数法求出轨迹的方程,这样可以减少运算量,提高解题速度与质量.在运用双曲线定义时,应特别注意定义中的条件“差的绝对值”,弄清所求轨迹是整条双曲线,还是双曲线的一支,若是一支,是哪一支,需用变量的范围确定.3.在△ABC 中,B (4,0),C (-4,0),动点A 满足sin B -sin C =12sin A .求点A 的轨迹.【解】 在△ABC 中,sin B -sin C =12sin A ,∴|AC |-|AB |=12|BC |.又∵B (4,0),C (-4,0),∴|BC |=8.∴|AC |-|AB |=4<|BC |.∴点A 的轨迹是以B ,C 为焦点的双曲线的右支(除去与B ,C 共线的一点).其方程为x24-y212=1(x >2).探究1 【提示】 双曲线的定义中若没有“的绝对值”,则点的轨迹就是双曲线的一支,而双曲线是由两个分支组成的,故定义中的“的绝对值”不能去掉.当P 满足0<|PF 1|-|PF 2|<|F 1F 2|时,点P 的轨迹是双曲线的一支;当0<|PF 2|-|PF 1|<|F 1F 2|时,点P 的轨迹是双曲线的另一支;当|PF 1|-|PF 2|=±|F 1F 2|时,点P 的轨迹是两条射线,||PF 1|-|PF 2||不可能大于|F 1F 2|.探究2 设点M 是双曲线上的任意一点,F 1,F 2分别是双曲线的左、右焦点,如何确定|MF 1|-|MF 2|的符号?【提示】 若点M 在双曲线的右支上,则|MF 1|>|MF 2|,故|MF 1|-|MF 2|=2a ;若点M 在双曲线的左支上,则|MF 1|<|MF 2|,故|MF 1|-|MF 2|=-2a ,综上得|MF 1|-|MF 2|=±2a ,这是与椭圆不同的地方.探究1 双曲线的标准方程a2-b2=1(a >0,b >0)和a2-b2=1(a >0,b >0)有何异同点?【提示】 相同点:它们的形状、大小都相同,都有a >0,b >0和c 2=a 2+b 2. 不同点:它们的位置不同,焦点坐标不同.探究2 椭圆、双曲线的定义及标准方程之间有什么区别? 【提示】设双曲线与椭圆27+36=1有相同的焦点,且与椭圆相交,一个交点A 的纵坐标为4,则此双曲线的标准方程为________.【导学号:32550083】【精彩点拨】 常规解法易想到,但需解方程组,解方程时易错,而巧妙解法利用曲线系方程求解,将方程设为x227-λ+y236-λ=1(27<λ<36)求解.可以减少计算量.【自主解答】 由题意设双曲线方程为:x227-λ+y236-λ=1(27<λ<36),将A (±15,4)代入得λ=32,λ=0(舍),所以所求双曲线方程为y24-x25=1.【答案】 y24-x25=14.已知某双曲线与x216-y24=1共焦点,且过点(32,2),则此双曲线的标准方程为________.【导学号:32550084】【解析】 设双曲线的方程为x216-k -y24+k=1(-4<k <16). 将点(32,2)代入得k =4, 所以双曲线的标准方程为x212-y28=1.【答案】x212-y28=11.判断(正确的打“√”,错误的打“×”)(1)平面内到两定点的距离的差等于非零常数(小于两定点间距离)的点的轨迹是双曲线.( ) (2)在双曲线标准方程x2a2-y2b2=1中,a >0,b >0且a ≠b .( )(3)双曲线标准方程中,a ,b 的大小关系是a >b .( ) 【解析】 (1)注意双曲线定义中是“差的绝对值”. (2)x2a2-y2b2=1中,a <0,b <0也可以. (3)双曲线标准方程中,a ,b 的大小关系不确定. 【答案】 (1)× (2)× (3)×2.双曲线x29-y27=1的焦距为( )A. 2 B .2 2 C. 4D .8【解析】 c 2=a 2+b 2=9+7=16, ∴c =4,∵焦距为2c =8, 【答案】 D3.已知点F 1,F 2是双曲线x2a2-y2b2=1(a >0,b >0)的左、右焦点,点P 是双曲线上的一点,且PF1→·PF2→=0,则△PF 1F 2的面积为( )A .abB .12abC .b 2D .a 2【解析】 由题意知|||PF1|-|PF2|=2a .① |PF 1|2+|PF 2|2=4c 2.② ②-①2,得|PF 1||PF 2|=2b 2, ∴S △PF 1F 2=12|PF 1||PF 2|=b 2.【答案】 C4.双曲线的焦点在x 轴上,且a +c =9,b =3,则双曲线的标准方程为________. 【解析】 由⎩⎪⎨⎪⎧a +c =9b =3c2=a2+b2,得⎩⎪⎨⎪⎧a =4c =5,∵焦点在x 轴上,∴双曲线标准方程为x216-y29=1.【答案】x216-b29=1 5.求适合下列条件的双曲线的标准方程:(1)已知焦点F 1(0,-6),F 2(0,6),双曲线上的一点P 到F 1,F 2的距离差的绝对值等于8; (2)c =6,经过点A (-5,2),焦点在x 轴上. 【解】 (1)∵双曲线的焦点在y 轴上, ∴设它的标准方程为y2a2-x2b2=1(a >0,b >0).∵2a =8,2c =12,∴a =4,c =6,∴b 2=62-42=20. ∴所求双曲线的标准方程为y216-x220=1.(2)设双曲线的标准方程为x2a2-y2b2=1. ∵c =6,∴b 2=c 2-a 2=6-a 2.由题意知25a2-4b2=1,∴25a2-46-a2=1,解得a 2=5或a 2=30(舍去).∴b 2=1. ∴双曲线的标准方程为x25-y 2=1.我还有这些不足:(1)________________________________________________(2)________________________________________________我的课下提升方案:(1)________________________________________________(2)________________________________________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 §5 课时作业19
一、选择题
1.[2014·课标全国卷Ⅱ]直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,
A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为( )

A.110 B.25

C.3010 D.22
解析:解法一:取BC的中点Q,连接QN,AQ,易知BM∥QN,则∠ANQ即为所求,

设BC=CA=CC1=2,
则AQ=5,AN=5,QN=6,

∴cos∠ANQ=AN2+NQ2-AQ22AN·NQ=5+6-525×6=6230=3010,故选C.
解法二:以C1为坐标原点,建立如图所示的空间直角坐标系,

设BC=CA=CC1=2,则A(2,0,2),N(1,0,0),M(1,1,0),B(0,2,2),∴AN→=(-1,0,-2),
BM→=(1,-1,-2),

∴cos〈AN→,BM→〉=AN→·BM→|AN→||BM→|=-1+45×6=330=3010,故选C.
答案:C
2.正方体ABCD-A1B1C1D1中,E,F分别为AB,C1D1的中点,则A1B1与平面A1EF
夹角的正弦值为( )
A.62 B.63
C.64 D.2
解析:建系如图,设棱长为1,则
A1(1,0,1),E(1,12,0),F(0,12,1),B1(1,1,1).

A1B1→=(0,1,0).
设平面A1EF的法向量n=(x,y,z),

则 n·A1E→=0,n·A1F→=0, 即 12y-z=0,-x+y2=0.

令y=2,则 x=1,z=1,
∴n=(1,2,1),cos〈n,A1B1→〉=26=63,
即线面角的正弦值为63.
答案:B
3.在矩形ABCD中,AB=1,BC=2,PA⊥平面ABCD,PA=1,则PC与平面ABCD
所成角是( )
A.30° B.45°
C.60° D.90°
解析:建立如右图所示的空间直角坐标系,则P(0,0,1),C(1,2,

0),PC→=(1,2,-1),平面ABCD的一个法向量为n=(0,0,1),

所以cos〈PC→,n〉=PC→·n|PC→||n|
=-12,
所以〈PC→,n〉=120°,
所以斜线PC与平面ABCD的法向量所在直线所成角为60°,
所以斜线PC与平面ABCD所成角为30°,故选A.
答案:A
4.正方形ABCD所在平面外有一点P,PA⊥平面ABCD.若PA=AB,则平面PAB与平
面PCD的夹角为( )
A.30° B.45°
C.60° D.90°
解析:建系如图,设AB=1,
则A(0,0,0),B(0,1,0),
P(0,0,1),D(1,0,0),C(1,1,0).
平面PAB的法向量为
n1=(1,0,0).
设平面PCD的法向量
n2=(x,y,z),

则 n2·PD→=0,n2·CD→=0,得 x-z=0,y=0.
令x=1,则z=1.
∴n2=(1,0,1),cos〈n1,n2〉=12=22.

∴平面PAB与平面PCD的夹角的余弦值为22.
∴此角的大小为45°.
答案:B
二、填空题
5.在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为边长是1的正方形,PA=2,
则AB与PC的夹角的余弦值为________.

解析:因为AB→·PC→=AB→·(PA→+AC→)=AB→·PA→+AB→·AC→=1×2×cos45°=1,
又|AB→|=1,|PC→|=6,

∴cos〈AB→,PC→〉=AB→·PC→|AB→||PC→|=11×6=66.

答案:66
6.正三角形ABC与正三角形BCD所在平面垂直,则二面角A-BD-C的正弦值为
__________.
解析:取BC中点O,连接AO,DO.建立如右图所示空间直角坐标系,
设BC=1,

则A(0,0,32),B(0,-12,0),D(32,0,0).
∴OA→=(0,0,32),BA→=(0,12,32),BD→=(32,12,0).
由于OA→=(0,0,32)为面BCD的法向量,可进一步求出面ABD的一个法向量n=(1,
-3,1),
∴cos〈n,OA→〉=55,sin〈n,OA→〉=255.

答案:255
7.[2014·辽宁抚顺市四校统考]如图所示,在棱长为1的正方体
ABCD-A1B1C1D1中,P是棱CC1上的一点,CP=m,若直线AP与平

面BDD1B1所成角的正弦值为33819,则m=__________.
解析:如右图,以D为原点,DA、DC、DD1所在直线分别为x,
y,z轴建立空间直角坐标系D-xyz,则
A(1,0,0),P(0,1,m),C(0,1,0),

D(0,0,0),所以AP→=(-1,1,m),AC→=(-1,1,0),
又AC→·BD→=0,AC→·BB1→=0,
所以AC→是平面BDD1B1的一个法向量.

设AP与平面BDD1B1所成的角为θ,则sinθ=cos(π2-θ)=|AP→·AC→||AP→||AC→|=22·2+m2=31938,
所以m=13.
答案:13
三、解答题
8.PA⊥平面ABC,AC⊥BC,PA=AC=1,BC=2.求二面角A-PB-C的余弦值.
解:法一:如图,建立空间直角坐标系,则A(0,0,0),B(2,1,0),C(0,1,0),
P(0,0,1),

∴AP→=(0,0,1),AB→=(2,1,0).
设平面PAB的法向量为n1=(x1,y1,z1),

由 n1·AP→=0,n1·AB→=0,得 z1=0,2x1+y1=0.
令x1=1,则n1=(1,-2,0).
CP→=(0,-1,1),CB→=(2,0,0).
设平面PBC的法向量为n2=(x2,y2,z2),

由 n2·CP→=0,n2·CB→=0,得 -y2+z2=0,2x2=0.
令z2=1,则n2=(0,1,1).
∴cos〈n1,n2〉=n1·n2|n1||n2|=-23×2=-33.
∵所求二面角为锐角,
∴二面角A-PB-C的余弦值为33.
法二:如图所示,取PB的中点D,连接CD.

∵PA⊥平面ABC,
∴PA⊥AC.
∴PC=PA2+AC2=2.
∵PC=BC=2,∴CD⊥PB.
作AE⊥PB于E,

那么二面角A-PB-C平面角的大小就等于DC→与EA→的夹角θ.
∵PA⊥平面ABC,BC⊥AC,∴PC⊥BC.
∴PB=PC2+BC2=2.
∴PD=1,PE=PA2PB=12.

∴DE=PD-PE=12.
又∵AE=AP·ABPB=32,CD=1,AC=1,
AC→=AE→+ED→+DC→,
且AE→⊥ED→,ED→⊥DC→,
∴|AC→|2=|AE→|2+|ED→|2+|DC→|2+2|AE→|·|DC

|·cos(π-θ),
即1=34+14+1-2·32·1·cosθ,解得cosθ=33,
故二面角A-PB-C的余弦值为33.
9.如图,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,
且MD=NB=1,E为BC的中点.

(1)求异面直线NE与AM所成角的余弦值;
(2)求直线AM与平面ANE所成的角.
解:(1)如图,以D为坐标原点,建立空间直角坐标系Dxyz.

依题意,易得D(0,0,0),A(1,0,0),M(0,0,1),C(0,1,0),B(1,1,0),N(1,1,1),E(12,1,0).

∴NE→=(-12,0,-1),
AM→=(-1,0,1).

∵cos〈NE→,AM→〉=NE→·AM→|NE→||AM→|=-1252×2=-1010,

所以异面直线NE与AM所成角的余弦值为1010.
(2)AN→=(0,1,1),AE→=(-12,1,0).
设平面ANE的法向量为n=(x,y,z),

则 y+z=0,-12x+y=0.取x=2,则n=(2,1,-1).
又AM→=(-1,0,1),
∴cos〈AM→,n〉=-32×6=-32,
则直线AM与平面ANE所成的角为60°.

相关文档
最新文档