如何提高机床传动链的精度

合集下载

数控车床加工过程中尺寸精度的控制

数控车床加工过程中尺寸精度的控制

数控车床加工过程中尺寸精度的控制尺寸精度是指加工后的工件尺寸和图纸尺寸要求相符合的程度。

两者不相符合的程度通常是用误差大小来衡量。

误差包括加工误差、安装误差和定位误差。

其中,后两种误差是与工件和刀具的定位、安装有关,和加工本身无关。

要提高加工精度减小加工误差,首先要选择高精度的机床,保证工件和刀具的安装定位精度,其次主要与数控车床加工工艺有关。

工艺系统中的各组成部分,包括机床、刀具、夹具的制造误差、安装误差、使用中的磨损都直接影响工件的加工精度。

也就是说,在加工过程中工艺系统会产生各种误差,从而改变刀具和工件在切削运动过程中的相互位置关系而影响零件的加工精度。

这些误差与工艺系统本身的结构状态和切削过程有关,产生加工误差的主要因素有:1加工原理误差加工原理误差是由于采用了近似的加工运动方式或者近似的刀具轮廓而产生的误差,因在加工原理上存在误差,故称加工原理误差。

只要原理误差在允许范围内,这种加工方式仍是可行的。

2机床的几何误差机床的制造误差、安装误差以及使用中的磨损,都直接影响工件的加工精度。

其中主要是机床主轴回转运动、机床导轨直线运动和机床传动链的误差。

3刀具的制造误差及弹性变形我们很多人都有这样的经历,就是在前一刀车削了几毫米切深以后,发现离想要的尺寸还差几丝或者十几丝时,再按计划进行下一刀切削时,发现多切了很多,尺寸可能超差了。

那么这样的情况我们认真分析过其中的原因吗?有人说,这可能是因为机床间隙比较大所致,而在同一进刀方向上是不会受间隙影响的,其真正原因就是弹性形变和弹性恢复。

弹性形变表现在刀具、机床丝杠副、刀架、加工零件本身等对象的形变,使刀具相对工件出现后退,阻力减小时形变恢复又会出现过切,使工件报废。

产生形变的最终原因是这些对象的强度不足和切削力太大。

弹性形变会直接影响零件加工尺寸精度,有时还会影响几何精度(如零件变形时容易产生锥度,因为远离卡盘的位置形变幅度越大),刀具的强度不足,我们可以设法提高,有时机床和零件本身的强度,我们是没法选择或改变的,所以我们只能从减小切削力方面着手,来设法克服弹性形变,切深越小、刀具越锋利、工件材料硬度较低、走刀速度减小等都会减小实际切削阻力,都会减轻弹性形变。

浅谈提高加工产品质量的措施

浅谈提高加工产品质量的措施
的三 分 之一 左 右 。
1 机 床 精度 对 加 工质 量 的影 响
ห้องสมุดไป่ตู้
质量和生产效率, 为了保证机床的工作精度和延长它的使用寿命, 必须 12床身导轨的精度 床身导轨面是测量机床的各项几何精度 对机床进行合理 的保养, . 一般机床运转 5 0小时以后, 0 需进行一级保 和反映加工精度的基准面 。 这个基准面无论在空载或承受切削载荷 养 , 以操作工人为主雄 修工人配合进行。 保养时, 作好机床外保养及主 时, 都应保证溜板 运动 的直线性精度 , 使刀具获得均匀而平稳的直 轴箱、 溜板挂齿箱的清洁, 润滑系统油质必须合格 , 油路清洁畅通。 线 送进 , 同时还 应 保证 其 他 各 项 有 关 运 动 , 有 关 安 装 表 面 同 溜 板 及 32 作好机 床的润滑工 作 要使机床保 持正 常运转和减 少磨 _ 运动保持相 互位置的准确性。各导轨面磨损后 , 在精加工长轴类零 损 , 必须经常对机床的所有摩擦部 分进行 润滑 , 以减 少机床各部的 件时 ,以溜板移动在水平 面内的直线度误差对加工精度 的影Ⅱ 最 磨损量 , 向 操作人员必须注意每班加油。定期更换机床床头箱和拖板 大, 各使用单位可根据不同加工直径、 长度和精度要求, 规定该机床 箱内的润滑油 , 换油时将箱内用煤油清洗 , 然后加油。所用润滑油应 的极限磨损值 , 并根据不同工件的工艺要求 , 结合机床的技术状况 , 根据 季节 的 变 化而 不 同 , 冬 季 用 2 机 油 , 季 用 3 一般 O号 夏 O号 机 油 , 判定机床的可用程度, 以此作为大修理的依据。 以保证机床获得良好的润滑性。 33操作工人必须熟悉设备的使用性能 操作人 员必须对所辖 . 针对我公司修配车间机加工情况, 机床精度 引起的常见加工缺 设备性能熟悉掌握, 如果操作者对设备性能了解不够 , 使用不当, 则 陷分析 如 下 。 会造成机床零件磨 损急剧加 快, 甚至发生研伤和机构损坏 , 这样就

江苏大学《机械制造技术基础》复试要点

江苏大学《机械制造技术基础》复试要点

《机械制造技术基础》江苏大学机械工程复试要点一.填空+名词解释1.制造:(广义)即输入输出系统,输入的是生产要素,输出的是具有直接使用价值的产品.(狭义)从原材料或半成品经加工和装配后形成最终产品的操作过程.P32.机械加工工艺过程:采用机械加工的方法直接改变毛坯的形状、尺寸、各表面间相互位置及各表面质量,使之成为合格零件的过程。

P423.机械加工工艺规程:将制订好的零(部)件的机械加工工艺过程按一定的格式和要求描述出来,作为指令性的技术文件.P2044.机械装配工艺过程:将组成机器的全部零、部件按一定的精度要求和技术要求连接与固定在一起,构成合格机械产品的过程。

P445.工序:一个或一组工人在同一台机床(或同一个工作地),对同一工件(或同时对几个)所连续完成的那一部分机械加工工艺过程。

【工序是机械加工工艺过程的基本单元,可细分为安装、工位、工步、走刀等】p426.工位:工件在机床上占据每一个位置所完成那部分工序7.工步:在加工表面不变,加工刀具不变,切削用量不变的条件下所连续完成的那部分工序.8.生产类型一般可分为:单件小批量生产、成批生产、大批大量生产。

P459.零件表面切削加工方法:轨迹法、成形法、相切法、范成法(展成法).P4710.工件表面的成形运动:主运动、进给运动、定位和调整运动。

P4811.切削用量三要素:切削速度v c、进给量f、背吃刀量a p。

p5512.装夹:就是定位和夹紧过程的综合。

P5613.定位:使工件在机床或夹具中占有准确的位置。

14.夹紧:在工件夹紧后用外力将其固定,使其在加工过程中保持定位位置不变的操作。

15.基准:用来确定加工对象上几何要素间的几何尺寸关系所依据的那些点、线、面。

16.基准可分为设计基准和工艺基准两大类。

【设计基准即在设计图样上所采用的基准,工艺基准即在工艺过程中所采用的基准】17.工艺基准可分为工序基准、定位基准、测量基准、装配基准。

18.定位基准又可分为粗基准、精基准、附加基准。

数控机床精度及性能检验

数控机床精度及性能检验

数控机床精度及性能检验数控机床的高精度最终是要靠机床本身的精度来保证,数控机床精度包括几何精度和切削精度。

另一方而,数控机床各项性能的好坏及数控功能能否正常发挥将直接影响到机床的正常使用。

因此,数控机床精度和性能检验对初始使用的数控机床及维修调整后机床的技术指标恢复是很重要的。

一、精度检验一台数控机床的检测验收工作,是一项工作量大而复杂,试验和检测技术要求高的工作。

它要用各种检测仪器和手段对机床的机、电、液、气各部分及整机进行综合性能及单项性能的检测,最后得出对该数控机床的综合评价。

这项工作为数控机床今后稳定可靠地运行打下一定的基础,可以将某些隐患消除在考机和验收阶段中,因此,这项工作必须认真、仔细,并将符合要求的技术数据整理归档,作为今后设备维护、故障诊断及维修中恢复技术指标的依据。

1、几何精度检验几何精度检验,又称静态精度检验,是综合反映机床关键零部件经组装后的综合几何形状误差。

数控机床的几何精度的检验工具和检验方法类似于普通机床,但检测要求更高。

几何精度检测必须在地基完全稳定、地脚螺栓处于压紧状态下进行。

考虑到地基可能随时间而变化,一般要求机床使用半年后,再复校一次几何精度:在几何精度检测时应注意测量方法及测量工具应用不当所引起的误差。

在检测时,应按国家标准规定,即机床接通电源后,在预热状态下,机床各坐标轴往复运动几次,主轴故个等的转速运转十多分钟后进行。

常用的检测工具有精密水平仪、精密方箱、直角尺、平尺、平行光管、千分表、测微仪及高精度主轴心棒等。

检测工具的精度必须比所测的几何精度高一个等级。

(一)卧式加工中心几何精度检验1)x 、y 、z 坐标轴的相互垂直度。

2)工作台面的平行度。

3)x 、Z 轴移动时工作台面的平行度。

4)主轴回转轴线对工作台面的平行度。

5)主轴在Z 轴方向移动的直线度:6)x 轴移动时工作台边界与定位基准面的平行度。

7)主轴轴向及孔径跳动。

8)回转工作台精度。

具体的检测项目及方法见表2—1。

影响机械加工精度的几个重要因素

影响机械加工精度的几个重要因素

(二)工艺系统刚度对加工精度的影响
1.加工过程中由于工艺系统刚度发生
变化引起的误差 图
x
y系 y刀架 yx y刀架 y主轴 y尾座 y主轴 l
lx
F主轴 Fp xl
F尾座 Fp
y系 y刀架 y 例
l
x
Fp
1 k刀 架
1 k主 轴
l
l
x
2
1 k尾

x l
2
2.由于切削力变化引起的误差 加工过程中,由于毛坯加工余量和工件 材质不均等因素,会引起切削力变化,使工 艺系统变形发生变化。从而产生加工误差。 误差复映现象: 图 车削一具有锥形误 差的毛坯,加工表面上必然有锥形误差;待 加工表面上有什么样的误差,加工表面上必 然也有同样性质的误差,这就是切削加工中 的误差复映现象。
例如:用三爪自定心卡盘装夹薄壁套简 镗孔时,夹紧前薄壁套筒的内外圆是圆的, 夹紧后工件呈三棱圆形;镗孔后,内孔呈圆 形;但松开三爪卡盘后,外圆弹性恢复为圆 形,所加工孔变成为三棱圆形,使镗孔孔径 产生加工误差。为减少由此引起的加工误差, 可在薄壁套筒外面套上一个开口薄壁过渡环, 使夹紧力沿工件圆周均匀分布。
通常都是通过机床完成的。工件的加工精度 在很大程度上取决于机床的精度。
机床制造误差中对工件加工精度影响较 大的误差有:主轴回转误差、导轨误差和传 动误差。
1.主轴回转误差
机床主轴是用来装夹工件或刀具,并将 运动和动力传给工件或刀具的重要零件,主 轴回转误差将直接影响被加工工件的形状精 度和位置精度。
3)第一次卸载后,刀架恢复不到第一 次加载的起点,这说明有残余变形存在,经 多次加载和卸载后,加载曲线起点才和卸载 曲线终点重合,残余变形才逐渐减小到零。

机床精度

机床精度

机床精度机床的技术经济指标用来制造机器零件的设备通称为金属切削机床,简称机床。

机床本身质量的优劣,直接影响所造机器的质量。

衡量一台机床的质量是多方面的,但主要是要求工艺性好,系列化、通用化、标准化程度高,结构简单,重量轻,工作可靠,生产率高等。

具体指标如下:1. 工艺的可能性工艺的可能性是指机床适应不同生产要求的能力。

通用机床可以完成一定尺寸范围内各种零件多工序加工,工艺的可能性较宽,因而结构相对复杂,适应于单件小批生产。

专用机床只能完成一个或几个零件的特定工序,其工艺的可能性较窄,适用于大批量生产,可以提高生产率,保证加工质量,简化机床结构,降低机床成本。

2. 加工精度和表面粗糙度要保证被加工零件的精度和表面粗糙度,机床本身必须具备一定的几何精度、运动精度、传动精度和动态精度。

(1)几何精度、运动精度、传动精度属于静态精度几何精度是指机床在不运转时部件间相互位置精度和主要零件的形状精度、位置精度。

机床的几何精度对加工精度有重要的影响,因此是评定机床精度的主要指标。

运动精度是指机床在以工作速度运转时主要零部件的几何位置精度,几何位置的变化量越大,运动精度越低。

传动精度是指机床传动链各末端执行件之间运动的协调性和均匀性。

(2)以上三种精度指标都是在空载条件下检测的,为全面反映机床的性能,必须要求机床有一定的动态精度和温升作用下主要零部件的形状、位置精度。

影响动态精度的主要因素有机床的刚度、抗振性和热变形等。

机床的刚度指机床在外力作用下抵抗变形的能力,机床的刚度越大,动态精度越高。

机床的刚度包括机床构件本身的刚度和构件之间的接触刚度。

机床构件本身的刚度主要取决于构件本身的材料性质、截面形状、大小等。

构件之间的接触刚度不仅与接触材料、接触面的几何尺寸和硬度有关,而且还与接触面的表面粗糙度、几何精度、加工方法、接触面介质、预压力等因素有关。

机床上出现的振动,可分为受迫振动和自激增动。

自激振动是在不受任何外力、激振力干扰的情况下,由切削过程内部产生的持续振动。

机床设备误差调整方法

1设备精度的误差来源1.1主轴回转精度的主要误差源1.1.1主轴的加工误差主轴上两个轴颈之间有同轴度误差。

主轴锥孔相对轴颈有同轴度误差。

轴颈有圆度误差。

轴承的轴向定位面与主轴轴线有垂直度误差。

1.1.2轴承的加工误差滚动轴承的滚动体之间有尺寸误差及圆度误差;内圈孔相对滚道有偏心;内圈滚道有圆度误差;前、后轴承之间有同轴度误差等。

滑动轴承有内、外圆的圆度误差和同轴度误差;前、后轴承之间有同轴度误差;轴承孔与轴颈之间有尺寸误差等。

1.1.3相配零件的加工误差及其装配质量箱体上的轴承孔有圆度误差;与轴承外圈相配合时有尺寸误差;轴向定位端面与孔的中心轴线有垂直度误差。

主轴上锁紧与调整轴承间隙的螺母有端面平面度误差;螺母端面与螺纹中心轴线之间有垂直度误差;螺纹之间存在联接误差等。

轴承衬套隔圈两端面有平行度误差。

装配中,轴承间隙调整是否合适,直接对主轴回转精度有明显影响。

1.2导轨导向精度的主要误差源1.2.1受导轨几何精度的影响导轨表面的不均匀磨损必将造成刀架溜板沿导轨运动时相对主轴运动产生较大的误差,并影响加工工件的尺寸精度和表面质量。

对于直线导轨来说,导向精度主要受导轨垂直方向与水平方向内的直线度误差影响。

对于环形圆导轨来说,导向精度主要受导轨的平直度误差和导轨与主轴中心线的垂直度误差的影响。

1.2.2受导轨间隙是否合适的影响间隙不合适的导轨,由于缺乏必要的约束,或者约束过死,会造成运动部件在导轨上的横向摆动或者爬行现象,不能实现平稳、轻快地运动,影响导轨的导向精度。

常见导轨间隙调整的方法有斜镶条调整法、压板移动调整法和磨刮压板接合面调整法等。

1.2.3受导轨自身刚度的影响对于大型设备来说,导轨的刚度受底座支承状况影响较大。

通过调整不同支承点的高度,可以改善导轨的精度状况。

1.3传动链传动精度的主要误差源一般机械设备中的传动链都是由齿轮与齿轮、齿轮与齿条、蜗轮与蜗杆、丝杠与螺母等传动副组成,传动误差是由动力输入环节向终端执行件进行传递进行累积。

分析影响机械加工精度的各种因素与对策


() 削时, 3车 由于主轴 的角度摆 动 , 工件径 向截 面仍然是一
圆形 , 轴 向截 面 则 是 一 梯 形 ; 孔 时 , 而 镗 由于 主 轴 的 角 度 摆 动 形 成 的回 转 轴 线 与 工作 台导 轨 不 平 行 , 出 的孔 将 为 椭 圆 形 。 镗
11 提 高主轴的回转精度 的方法 .2 . 可通过 以下方法提高主轴的回转精度 : () 1选择高精度 的主轴部件 。如选用 D、 C级的前轴承 , 或采
() 2 使主轴回转误差不反应到工件上 。 采用 主 轴 回 转 误 差对 工件 加 工 精 度 的影 响 。 如采 用 死 顶 尖 磨 N J 圆 , 要 保 证 定 位 中一 ' 只 I - t >E的 形 状 、 置 精 度 即可 加 工 位 出高 精 度 的 外 圆 柱面 。 轴 仅 仅 提 供 旋 转 运 动和 转矩 , 主轴 的 主 而 回 转 精 度 与 工件 无 _ 。 关
轨误差对加工精度 的影响, 以以年床为例米分析 , 可 在 削外 嘲
表 面 时 ,车 床 导 轨 在 水 平 面 内直 线度 误 差 中 的 径 向 误 差 11反 : 映 到 工件 加工 表 面 上 , 向 误差 为 圆锥 度 误 差 。 床 导 轨 在 垂 直 轴 午 面 内直 线度 误 差 对 径 向尺 寸 的 影 响 可 以忽 略 , 轴 向 截 则 为 ‘
差。 一般用传动链末端元件的转角误差来衡量 。 机床 的运动足通 过某些传 动机构实现的 , 这些元件本身存在 的制造 、 安装 羊以 及工作过程中的磨损所造成的误差 。这些误差将引起传递与运
动 的 不 准 确 , 而 影 响 工件 的加 工 精 度 。 如滚 齿机 分 齿 机 构 l 从 例 { j 各 转 动件 制造 ,安 装 误 差 会 引起 齿轮 转 角 不 均 匀 而 产 牛 分 齿 误 差 。可通 过 以 卜 径 提 高 传 动精 度 : 途 () 短 传 动 链 , 少传 动元 件 数 H, 1缩 减 从而 减 少 误 差 米源 。 () 高 传 动 元件 精 度 , 别 是 末 端 传 动 元 件 的 制 造 和 安 装 2提 特 精度 。

数控机床主传动系统的设计及优化

i 。 i 圜 : ! :
。 。 。 。 . 。 。 。 . 。 。.
工 程 设 计 及 优 化
柴 宝 新 ( 天津市 红教修建公 司 天津 3 0 1 01 ) 3 摘 要: 本文 首先论 述 了数控 机床 传动 系统 的特 点 , 在此基 础上设 计 了数控机床 主传 动 系统 的组 成部分和 实现方法 。 最后通过 对数控机 床 主 传 动 系统 精 度 影 响 比较 大 的一 些 因 素 的 分 析 , 出 了数 控 机 床 主 传 动 系统 进 行 优 化 的 内容 。 提 关键词 : 数控机床 主传 动系统 设 计及优 化 中图分 类号 : l TG5 9 文 献标 识码 : A 文章编 号 : 6 4 0 8 2 1 )4 a - O 7 — 0 1 7 — 9 x( 0 O 0 ( ) 0 2 2
数控 机床是 指机 床的操 作命 令以数 值数 感应 电动 机 的转 速 为 链 前 边传 动 副 的误 差 , 但要 注意 传 动 比分 配 字的形式 描述 工作过 程按规 定的 程序 自动进 =n(一 ) 0 1 / o1 =6 (一 ) P 合 理 , 别是 对加 工 精度 影 响较 大 的末 端传 特 行 的机床 。 随着微 电子 技术 , 特别是 计算 机技 式 中 : 电源 的频 率 一 动 副 可采 用大 降 速 比 , 传 递螺 旋运 动 用蜗 如 术 的发 展 , 数控 机 床迅 速 地 发展 起来 。 s~转差率 杆副 , 递直线 运动 用丝杆 螺母 副等 。 传 同时应 p~ 磁场极对 数 合理 选 择传 动 元件 , 能选 择 摩擦 传 动等 传 不 1主传动系统设计 由上 式 可知 , 当转 差 率 化 不大 时 , 转 动 比不 准 确的 传动 副 , 末端 传 动副 如 选择 蜗 数 控机 床 是高 度 自动 化 机床 , 其传 动 系 子转 速/ 比于 。 3 正 改变 电源的 频率 , 而改 杆副 , 从 则蜗 轮直径 尽量 大 , 般要大 于工件 直 一 统的 特点 是 : 转速 高 、 功率 大 、 速 自动 变换 变异 步 电动 机 的 同步 转 速 , 子转 速 力 转 转 就 径 , 末端 传动 副如选 择 丝杆螺 母副 , 则丝杆 的 迅 速可 靠 、 主轴 刚度 和 回转精 度 高 、 主轴 转速 随之得 到调 节 , 种调速 方法 称为 变频调 速 。 导 程应 取得 小一 些 , 这 这样 可提 高传 动精度 。 范 围广 , 能进行 高效率加 工 。 所以 对数控 机床 平滑 调节 频 率 , 可实 现异 步 电动 机 的平 滑 2 2传 动系统 齿轮及 轴 承间 隙产 生 误差 即 , 的 传 动精 度有 一 定 的要 求 : ) 1有较 大 的调 速 调 速 。 流调 频调速 电机具 有体 积小 , 交 转动惯 传动 系 统齿 轮 间 隙会 影 响传 动精 度 、 灵 范 围并 实现无 级调速 ;) 率满 足各 转速 段 ; 性 小 , 2功 响应 快 , 没有 电刷 , 用较 为, 泛。 该 敏 度和工 作稳 定性 , 应 现 因此要 消除 间隙 。 对于 3 传动平 稳 , 作 灵活 , 构 简单 紧 凑 , 艺 技 术 已普 遍使 用 。 ) 操 结 工 滚 动轴 承 , 理调 整轴 承 间 隙可 以提 高 主轴 合 性好 , 足 经济性 要 求 。 满 1 3驱动 电机和 主轴功 率 匹配设计 . 的刚 度和 回转精 度 , 少轴 承的振 动和 噪声 。 减 主传 动系统 是用 来实现 机床 主运 动的传 机 床 与 电动 机有 各 自的调 速 特性 , 了 为 调 整 间隙时 , 可采 取预 加 载荷 的 方法 消 除轴 动系统 , 它应 具有 一定 的转速 ( 度和一 定的 实现 宽范 围调速 并 充分 利 用设 备 , 须使 电 承 间 隙 , 速 必 甚至 造成过 盈 。 但预加 载荷 的大小 及 变 速范 围 , 以便 采用 不同材 料的 刀具 , 工不 动机和 机床有 类似 的调速性 能[ 一 般交 流调 过 盈量 要严 格控制 , 加 2 1 。 否则 , 主轴 轴承 工作时 发 同材料 、 不同 尺寸 , 同要 求 的 工件 , 能方 速 电动机 的 恒功 率调 速 范 围为 3 。 不 并 ~5 机床 主 热量 将 增大 , 剧 轴承 自身的 变形 , 加 使主轴 精 便地 实现 运 动 的开停 、 变速 、 向 和制 动等 。 轴 的恒 功 率调 速 范 围一般 为 1 ~2 , 远 大 度 降低 。 换 0 0远 实践 证 明 , 承 精 度越 高 , 轴 达到 同 样 在数控 机床的主传动 系统 中, 目前 多采用 于 电动机 的恒功 率 范围 。 可见在 一般情 况下 , 刚 度所 需 的预 加 载荷 越 小 , 滚动 轴 承比 球轴 交流 主轴 电动机和 直流 主轴 电动机 无级调 速 电动 机的恒 转矩 调速 范 围满 足机 床所需 的恒 承所 需 的 预加 载荷 小 。 于 己产 生磨 损 的 旧 对 系统 , 可以大大简化机械机构 , 便于实现 自动变 转矩 变 速范 围 , 其恒 功 率调 速 范 围却 不能 轴承 , 可 以通 过 上 述方 法对 其 间 隙进 行合 但 也 速、 连续变速和 负载下变速 。 为扩 大调速范 围 , 满足 机 床所 需 的恒 功 率变 速 范 围的要 求 。 因 理的 调整 , 以恢 复或提 高轴 承精 度 , 从而 达到 适应 低速大扭矩 的要 求 , 也经常应 用齿轮有级 此 , 主轴和 电机 之 间进行适 当调 整 , 主轴 提 高 主 轴精 度 的 目的 。 在 使 调速 和 电动机 无级调速相 结合 的调速方式 。 有合 理 的转 速 , 证机 床 的恒 功 率 范 围 。 保 2 3轴 承精度 应 与轴颈 的精 度 、轴 承座孔 精 . 1 1数控 机床 主传 动系统 的调 速方 式 . 在设计机 床主传动时 , 必须考虑 电机 与机 度 相 适 应 数控机 床主传动 系统 配置方式较 多 , 常见 床 主轴 功率的特性 匹配 问题 , 由于主轴要 求的 主轴 的 回转 精 度不仅 与轴 承本 身的 质量 的是 分级变 速系统 和无级 变速 系统 …。 数控 机 恒功率 变速范 围, 大于 电机 的恒功率变速 范 有关 , 远 而目与主轴组件的精度 、 装配质量密切相 床为 了得到广泛 的加工转速 , 一般主传动采 用 围, 所以 在 电机与 主轴 之 间串一 个变 速 器( 主 关 。 因此轴承座孔 和轴颈的精 度与轴承的精 度 无级变速 , 能够在 一定的调速 范围内选择 经济 轴箱) 以满足 低速大功率 输 出 确 定主轴箱 速 应相适应 。 。 轴承座 孔和轴颈配 合的松紧程度 也 合理的主轴切 削速 度 。 数控机床 的无级变速 多 比也 就是确 定 主传动 系统 的传动路 线 。 影响主轴部件的工作性能 , 配合紧些 , 可以提 高 采 用 电气无级 调速 。 用无 级调速 , 轴箱结 采 主 在 设计 主 轴箱 速 比 时 , 其变 速级 数 为 主轴部件 的接触刚 度 , 从而提高 主轴 精度 和抗 构 大大 简化 , 调速 方便 , 传动链 缩短 。 是 , 但 机 Z=1 g +1 /g 】 振性 ; 但过 紧 , 轴承 内圈会胀大 、 圈缩小 , 外 轴承 床调速 范围很宽 , 一般情 况下单靠调速 电机无 上 式 中 : 齿 轮变 速级 数 ( 劲 一般 取 ≤4; ) 的正 常间隙发生 改变 , 降低轴承 回转精度 , 引起 法满足 , 另外 调速 电机的功率 和转矩特性 也难 为 变速 箱 的有 级变 速 范 围 ; 发热 , 不仅影响轴 承的寿命 , 还给装配工作增大 以与机床 的功 率和转矩要 求完全 匹配, 别是 特 难度 。 为避免此类 问题的发生 , 一般座孔与外圈 为 电动机 的 恒功 率调 速 范 围 。 在低速时 , 出转矩 无法满足机 床强力切 削的 输 级1。 ] 通 过 设 计 主轴 箱传 动 系统 , 主轴 的 恒功 的 配合比轴颈 与内圈的配 合低一一 4 要求 。 若单纯追 求 无级调速 , 必要增 大主轴 率调 速 范 围扩 大 为 =月 。 _ 无 级 调 势 月 在 主轴 轴 承座 孔 的表 面 粗糙 度应 与所选 用的轴 电动机的功率 , 从而 使主轴 电动 机 与驱动装 置 速 系统 的设 计 中 , 当地 综 合与 优化 电机和 承 精度 相 适应 。 恰 一般 要求 轴 承座 孔 的表 面粗 的 体积 、 重量及成 本增加 。 因此数 控机 床常采 变 速 器调 速 范 围 , 于 机床 的加 工性 能和 经 糙 度应 比轴 承 外 圈 的表 面粗 糙 度高 一级 。 对 用 I~Ⅳ挡齿轮 变速 与无级 调速 相结 合产方 济 性 能都 有 重要 意 义 。 以 上几 方面在 进 行数控 机床 : 动系统 £传 式, 即分段 无级变 速方式 。 用齿 轮变速 虽然 采 进 行优 化时 应 给 予足 够 的考 虑 , 才能 满 足数 低速时的输 出转矩 增大 , 降低 了最高 主轴 转 2主传动系统 的优化 但 控 机 床加 工 精 度要 求 。 速。 因此 , 通常用 数控系统控 制齿轮 自 变挡 , 动 机床 主传动 系统 的精 度对 于数控 机床 的 同时满足低速转矩 和高 主轴转 速。 一般数控 系 加 工精 度 有着 非 常重 要 的影 响 , 以在 主 传 3结 语 所 统 均提供 Ⅱ~Ⅳ挡变速功能 , 而数控机床通 常 动 系统优化 的时 候首 先考 虑传动 系统 传动误 本文 通 过论 述 , 出 �

机械制造技术基础习题word总结

第二章金属切削原理及刀具● 1. 切削时工件上形成的三个表面是已加工表面、过渡表面和待加工表面。

● 2. 工件与刀具之间的相对运动称为切削运动,按其功用可分为主运动和进给运动,其中主运动消耗功率最大。

● 3. 按照切削性能,高速钢可分为普通性能高速钢和高性能高速钢两种,超硬刀具材料主要有陶瓷、金刚石和立方氮化硼三种● 4. 外圆车刀的主偏角增加,背向力Fp 减少,进给力Ff 增大。

● 5. 切削用量要素包括切削深度(背吃刀量)、进给量、切削速度三个。

● 6. 加工脆性材料时,刀具切削力集中在刀尖附近,宜取较小的前角和后角。

第二章金属切削原理及刀具7. 在车削外圆时,切削力可以分解为三个垂直方向的分力,即主切削力,进给抗力和切深抗力,其中在切削过程中不作功的是切深抗力。

8. 金刚石刀具不适合加工铁族金属材料,原因是金刚石的碳元素与铁原子有很强的化学亲和作用,使之转化成石墨,失去切削性能。

9. 刀具磨损形态包括前刀面磨损、后刀面磨损和边界磨损。

11. 刀具的磨损过程分为初期磨损、正常磨损和急剧磨损三个阶段,其中初期磨损阶段刀具磨损较快。

12. 车刀的主偏角越大,在切削过程中产生的径向切削力就越小。

13. 刀具后角是指后刀面与切削平面间的夹角。

5第二章金属切削原理及刀具14. 当高速切削时,宜选用(高速钢,硬质合金)刀具;粗车钢时,应选用(YT5、YG6、YT30)。

15. 制造复杂刀具宜选用(高速钢、硬质合金);粗车钢时,应选用(YT5、YG6、YT30)。

第二章金属切削原理及刀具● 1. 安装外车槽刀时,刀尖低于工件回转中心时,与其标注角度相比。

其工作角度将会:( C )● A、前角不变,后角减小; B、前角变大,后角变小;● C、前角变小,后角变大; D、前、后角均不变。

● 2. 车外圆时,能使切屑流向工件待加工表面的几何要素是:(A )● A、刃倾角大于0°;B、刃倾角小于0°;● C、前角大于0°; D、前角小于0°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如何提高机床传动链的精度?
答:机床设计时,提高机床传动链精度可从以下几个方面着手:
(1)尽量减少传动链中传动元件的数量,以减少误差的来源。

(2)在传动链中,从首端到末端尽量采用降速排列,并为末端传动副创造最大的传动比(增大蜗轮齿数、减少蜗杆头数、减少丝杠线数及减小丝杠螺距)。

(3)末端传动副附近尽量不采用螺旋齿轮、锥齿轮或离合器。

(4)将交换齿轮尽量放在末端传动副的前面。

(5)尽量采用传动比为1∶1的齿轮副传动,以补偿其传动误差。

(6)提高传动元件的精度。

(7)提高传动元件的安装精度以及装配时采用误差补偿办法。

(8)采用误差校正装置。

修理或改装机床同新设计有所不同,难于从改变机床传动链的结构(如减少传动元件数量、从主动件到末端采用降速排列等)或提高元件精度方面来提高传动链精度。

切实可行的办法是提高传动件的安装精度,采用误差相应补偿办法和加装误差校正装置,可以在修理工作中使机床精度在原有基础上提高一步,或精度丧失不太严重的情况下使它恢复。

相关文档
最新文档